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1. Introduction

Theoretical analysis of inequality compares discrete distributions of individual (or household)

incomes. Such a ‘univariate approach’is now widely considered to be inadequate because it does

not take into account that people differ in many aspects (as. e.g. gender, life expectancy, needs, etc)

besides income and therefore individual disparities can arise in more than one dimension. Moreover,

the standard classes of unidimensional inequality indices do not provide suffi cient information on

individual deprivation because, taking income as the unique explanatory variable, they neglect

fundamental problems as e.g. individual lack of access to health care or to education.

However, the problem of extending the theory of inequality measurement from the unidimensional

to the multidimensional setting is a quite complex and unexplored research field.1 Several orderings

have been used to compare multidimensional distributions in terms of inequality, but there is not

yet a criterion that “universally” recognizes a redistribution of resources as more equitable than

another one.

In the present work, we address the issue of assessing multidimensional inequality by introducing

a new ordering that compares (discrete) multivariate distributions representing households that

differ in several characteristics besides income and that could have different size and weights.

The relevance of the problem arises from the following considerations.

The Lorenz curve and the related Lorenz dominance criterion 2 are the principal tools for ranking

income distributions in terms of inequality. They apply whenever distributions are defined over a

fixed population and have identical means. These assumptions severely restrict the usefulness of

this approach in many important practical situations.

The present work establishes a suitable multidimensional extension of a fundamental theorem of

inequality measurement, namely the characterization of the Lorenz (or dually majorization) preorder

of real-valued univariate (income) distributions, via a class of reasonable welfare functions (or dually

inequality indices) due to Hardy, Littlewood and Polÿa (henceforth HLP, (1934)). In particular,

we compare multidimensional distributions in terms of inequality starting from a certain partial

preordering that ranks matrices representing the distribution of commodities among households

with different weights.

Our analogue to the classic HLP theorem consists in proving that a version of the result due to

Schur and Ostrowski on the class of majorization order-preserving functions (see Marshall and Olkin

(1979) ch. 1) also holds in our more general setting of distributions of households with different

needs/compositions endowed with different goods. The importance of defining an order-preserving

function in such a setting relies on the one-to-one correspondence between isotone functions, maps

1For an almost complete analysis of the economic literature on multidimensional inequality see the three surveys

of Savaglio, Trannoy and Weymark in [4].
2See e.g. Marshall and Olkin [9] chapter 1 for a formal definition of the Lorenz curve and the Lorenz criterion.
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that preserve the majorization relation, and the so-called social evaluation functions (SEF)). SEFs

are widely used to define inequality indices, which in turn provide the basis for welfare comparisons

between and within populations by equity-concerned policy-makers.

When non-income attributes are regarded as relevant for the purposes of inequality and the obser-

vations of common data sets usually are weighted. Indeed, we know that economists often confront

(and are urged to do so) different and welfare-relevant non-income personal characteristics between

and within countries. Therefore, it seems natural to investigate criteria for ranking multivariate

distributions with different population, where multiple attributes of well-being have to be compared

simultaneously. Moreover, scholars typically analyze grouped data where the frequency denotes the

weights of the groups of households in a population. More recently, theoretical and empirical works

on the equivalence scales have emphasized the importance of weights for distributive analysis in the

case of heterogeneous households.3

2. Theorem

For k ∈ N and for each n ∈ N, we define with:

Γkn =
{

(x1, ...,xn) : xi ∈ Rk, 1 ≤ i ≤ n
}

the real vector space of (n, k) matrices with real entries, where the generic xi is a row vector of

length k. We could interpret an element xi,j of a multivariate distribution X∈Γkn as the quantity

of the jth (real-valued) attribute (such as the net annual flow of the jth commodity) belonging to

the ith individual. The ith row of X is denoted rowi or xi,·, the jth column colj or x·,j . Given

X = (x1, ...,xn) ∈ Γkn, we denote with Mm,n the set of all row-stochastic m× n matrices R, namely
nonnegative rectangular matrices with all its row sums equal to one. Finally, we define:

Ξn =

{
(a1, ..., an) : ai ∈ (0, 1) , 1 ≤ i ≤ n,

n∑
i=1

ai = 1

}
.

the set of all possible weight systems and with Λkn = Γkn ⊗ Ξn the space of all possible pairs of

distribution matrices and (households’) weights.

We now introduce a binary relational system to compare (in terms of relative inequality) multi-

dimensional distributions (of individual/attributes) in the most general case in which a population

could differ in size and its members (individuals, households, groups) (could) have different weights.

Therefore, we state:

Definition 1. Let (X,p) ∈ Λkm and (Y,q) ∈ Λkn. Then, we say that (X,p) is less unequal than

(Y,q), denoted to as (X,p) ≺h (Y,q), if there exists a matrix R ∈Mm,n such that

X = RY and q = pR.

3See e.g. Ebert (????)
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Then, we have:

Theorem 1. Let (X,p) ∈ Λkm and (Y,q) ∈ Λkn. The following conditions are equivalent:

(i): (X,p) ≺h (Y,q);

(ii): For any continuous convex function φ : Rk → R

m∑
i=1

piφ (xi) ≤
n∑
j=1

qjφ (yj) .

Proof. The implication (i) ⇒ (ii) is an immediate consequence of Jensen’s inequality, i.e. that a

‘convex transformation of a mean is less or equal than the mean after a convex transformation’.

Indeed:

First notice that X = RY and q = pR for some R ∈ Mm,n mean that xi =
∑n

j=1 rijyj for any

i ∈ {1, ...,m} and qj =
∑m

i=1 pirij for any j ∈ {1, ..., n}. Then, for any φ : Rk → R continuous and

convex, X = RY implies by Jensen inequality that:

φ

 n∑
j=1

rijyj

 ≤ n∑
j=1

rijφ (yj) for any 1 ≤ i ≤ m,

namely:

φ (xi) ≤
n∑
j=1

rijφ (yj) for any 1 ≤ i ≤ m.

Now, if we multiply both members by pi and we sum, then we get:

m∑
i=1

piφ (xi) ≤
m∑
i=1

pi

n∑
j=1

rijφ (yj) =

= p1

n∑
j=1

rijφ (yj) + ...+ pm

n∑
j=1

rijφ (yj) =

=

n∑
j=1

φ (yj) [p1r1j + ...+ pmrmj ] =

=

n∑
j=1

φ (yj)

m∑
i=1

pirij =

=

n∑
j=1

φ (yj) qj ,

i.e.:
m∑
i=1

piφ (xi) ≤
n∑
j=1

qjφ (yj)

as required.
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In order to prove that (ii) ⇒ (i), assume (ii) holds for X ∈ Γkm and Y ∈ Γkn and that p =

(p1, ..., pm) ∈ Ξm and q = (q1, ..., qn) ∈ Ξn. Then, define the set:

C (X,Y ) =

R = (rij) ∈Mm,n | xi =

n∑
j=1

rijyj , for any 1 ≤ i ≤ m


as the set of all (m× n) row-stochastic matrices such that xi is in the convex hull of the rows of Y ,

i.e xi ∈ conv(Y ), where conv (Y ) is defined as the set of all convex combinations of the points yj of

Y with j ∈ {1, ..., n}.
The set C (X,Y ) is convex, because the set of all row-stochastic matrices is closed by convex

combination. Moreover, it is closed. Indeed, suppose not, namely that C (X,Y ) is open. Then, its

complement C
′
(X,Y ) =

{
R = (rij) ∈Mm,n | xi >

∑n
j=1 rijyj , for any 1 ≤ i ≤ m

}
is closed. But,

xi −
∑n

j=1 rijyj > 0 is an open halfspace in Rm,n, that is an open set by Theorem 1.7.1 pg. 33 in

Webster (1994). Hence, C (X,Y ) must be closed. In other terms, for any i, xi =
∑n

j=1 rijyj is a

hyperplane in Rm,k dimensions that by definition has no interior points, namely no points that are

the centre of some open ball which lies in A. Since, the interior of any set is open, and no points in

Mm,n are interior points of the set, then that set cannot be open. Therefore, C (X,Y ) is closed.

Finally, C (X,Y ) is non-empty. To prove that C (X,Y ) 6= ∅ means to show that if (ii) holds than

X = RY for some R ∈Mm,n, i.e. there exists at least one R ∈ C (X,Y ) such that xi =
∑n

j=1 rijyj

for any 1 ≤ i ≤ m that means that any entry of X is a convex combination of the (column) entries

of Y . Now, in order to prove that C (X,Y ) 6= ∅, it is suffi cient to show that if condition (ii) holds,

then xi = conv (y1, ...,yn) for any i = {1, ...,m}, where conv (y1, ...,yn) represents the convex hull

of all vectors y1, ...,yn. So, suppose by contradiction that there is a xj /∈ conv (y1, ...,yn) for some

j ∈ {1, ...,m} and then consider the function φ : Rk → R defined as φ (t) = d (t, conv (y1, ...,yn)),

where d is the Haussdorf distance in Rk of a point from a set. We observe that φ (t) is a convex

function since conv (y1, ...,yn) is a non-empty convex subset of Rk. Then, we notice that φ (xj) > 0,

φ (yl) = 0 for any 1 ≤ l ≤ n. Thus, it follows that
m∑
i=1

piφ (xi)︸ ︷︷ ︸
>0

>

n∑
i=1

qjφ (yi)︸ ︷︷ ︸
=0 for any j

which contradicts

condition (ii) above. Hence, xi = conv (y1, ...,yn) for any i = {1, ...,m}, and C (X,Y ) must be

non-empty as required. To sum up, we have proved that if condition (ii) above holds then X = RY .

In order to prove that q = pR, take a R = (ri,j) ∈ C (X,Y ) and define a vector s (R) =

(s1 (R) , ..., sn (R)) ∈ Rn as follows sj (R) =
∑m

i=1 piri,j , for any 1 ≤ j ≤ n. Then, define a set:

F (X,Y ) = {s (R) : R ∈ C (X,Y )} .

and note that F (X,Y ) is convex. Indeed, for any R, R
′ ∈ C (X,Y ) and α ∈ [0, 1] α

m∑
i=1

pirij +

(1− α)

m∑
i=1

pir
′

ij =

m∑
i=1

pi

[
αrij + (1− α) r

′

ij

]
or equivalently αs (R)+(1− α) s

(
R

′
)

= s
(
αR+ (1− α)R

′
)
.
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Since the set of row-stochastic matrices is closed by convex combination, s
(
αR+ (1− α)R

′
)
∈

F (X,Y ), i.e. F (X,Y ) is convex.

Moreover, F (X,Y ) is closed. Indeed, it is the set of linear combinations of the elements of a set

that is closed and convex.

Finally, we need to show that there is a matrix R∗ =
(
r∗i,j
)
∈ C (X,Y ) such that s (R∗) = q,

namely q ∈F (X,Y ). In order to prove that, suppose by contradiction that q /∈F (X,Y ). Then,

since F (X,Y ) is a closed and convex set, by the Hahn-Banach theorem (see Rudin (1977))4, it

follows that there exists a γ ∈ R and a vector (t1, ..., tn) ∈ Rn such that the following inequality
holds:

(2.1)
n∑
j=1

tjqj < γ <

n∑
j=1

tjsj for any (s1, ..., sn) ∈ F (X,Y ) .

Consider first the left inequality in 2.1, i.e.
∑n

j=1 tjqj < γ. Take a vector y ∈ conv (y1, ...,yn)

and define the simplex:

∆ (y) =

(ζ1, ..., ζn) ∈ [0, 1]
n

: y =

n∑
j=1

ζjyj ,
n∑
j=1

ζj = 1

 ,
namely the set of all points whose scalar product with yj is y. The set ∆ (y) is a compact, i.e.

a closed and bounded, set because [0, 1] is a closed and bounded interval. Then, define a convex

function C : conv (y1, ...,yn)→ R as follows:

C (y) = max


n∑
j=1

ζjtj : (ζ1, ..., ζn) ∈ ∆ (y)

 for y ∈ conv (y1, ...,yn) .

Since C (yj) = tjζj < tj for any 1 ≤ j ≤ n because ζj ∈ [0, 1], we have:

(2.2)
n∑
j

qjC (yj) <

n∑
j

qjtj < γ.

Take now the right inequality in 2.1, i.e. γ <
∑n

j=1 tjsj . Then, for any R = (zij) ∈Mm,n, we have:

γ <

n∑
j

tjsj (Z) =

n∑
j=1

tj

m∑
i=1

piri,j =

m∑
i

n∑
j

pitjri,j .

According to the previous result xi = conv (y1, ...,yn) for any 1 ≤ i ≤ m, so the number ζj (xi)

are well-defined for 1 ≤ i ≤ m and 1 ≤ j ≤ m. Further, note that
(
ζj (xi)

)
∈Mm,n and therefore:

(2.3)
m∑
i

n∑
j

pitjzi,j =

m∑
i

piC (xi) .

4The Hahn-Banach Theorem in the separation form states that if A and B are two non-empty disjoint convex

subsets of a real normed linear space X, with A that is compact and B that is closed, then A and B can be strictly

separated by a closed hyperplane. This means that there exists a nonzero continuous linear functional φ and a real

number α such that φ (x) < α < φ (y) for all x ∈ A and y ∈ B.
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Expressions 2.2, 2.3 together entail:
n∑
j=1

qjC (yj) <

m∑
i=1

piC (xi) .

that contradicts condition (ii) above and thus the thesis that q ∈ F (X,Y ) i.e. q = pR that

completes the proof. �
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