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Abstract

It is shown that simple and coalitional strategy-proofness of a vot-
ing rule as de�ned on the full unimodal domain of a convex idempotent
interval space (X; I) are equivalent properties if (X; I) satis�es interval
anti-exchange, a basic property also shared by a large class of convex
geometries including -but not reducing to- trees and linear geometries.
Therefore, strategy-proof location problems in a vast class of networks
fall under the scope of that statement.
It is also established that a much weaker minimal anti-exchange

property is necessary to ensure equivalence of simple and coalitional
strategy-proofness in that setting. An immediate corollary to that
result is that such �unimodal�equivalence fails to hold both in certan
median interval spaces including those induced by bounded median
semilattices that are not chains, and in certain non-median interval
spaces including those induced by Hamming graphs and partial cubes.
MSC 2010 Classi�cation: 05C05, 52021, 52037
JEL Classi�cation number : D71
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1 Introduction

It is well-known that nontrivial nondictatorial strategy-proof voting rules
can be de�ned on certain domains of unimodal preference pro�les. It is
also known that in some of those unimodal domains all the strategy-proof
voting rules are coalitionally strategy-proof as well i.e. immune to coalitional
manipulations, while in other cases they are not (see e.g. Moulin (1980),
Danilov (1994), Nehring, Puppe (2007(b)), Barberà, Berga, Moreno (2010),
Savaglio, Vannucci (2012)). Or, to put it in slightly more precise terms, for
some full unimodal domains simple (or individual) strategy-proofness and
coalitional strategy-proofness turn out to be equivalent properties, while for
others that equivalence fails. But then, what is the dividing line between such
an equivalence and its failure i.e. under which cases does a full unimodal
domain support equivalence of simple/individual and coalitional strategy-
proofness?
The present paper purports to address the foregoing open issue in a suit-

ably general setting in order to cover -among others- strategy-proof loca-
tion problems in a vast class of networks. Indeed, the most �tting environ-
ment to introduce the general notion of unimodality is perhaps an interval
space. An interval space is a set X endowed with a suitable interval func-
tion I : X2 ! P(X) mapping each pair of points of X into a subset of X
denoting their �interval�namely the set of points located �between�them (see
e.g. Sholander (1952, 1954), Prenowitz, Jantosciak (1979), Mulder (1980),
van de Vel (1993), Coppel (1998), Nebeský (2007), Mulder, Nebeský (2009),
Chvátal, Rautenbach, Schäfer (2011)). In particular, interval spaces are said
to be median if for any three points a; b; c, the intervals of their three pairs
have precisely one point in common (their median). A total preorder on a
certain interval space is unimodal if it has a unique maximum and is such
that for any a; b; c of the underlying space, if c lies �between�a and b then
its lower contour must include at least one of the latter. It is well-known
that under many relevant speci�cations of the interval space (including the
-median- interval spaces induced by �nite chains, by bounded chains of the
extended real line, by bounded median semilattices, by bounded undirected
trees, by bounded median graphs) and, possibly, under some slight variation
on the notion of unimodality, there exist nondictatorial strategy-proof voting
rules on unimodal domains even allowing for �many�-i.e. more than just two-
possible outcomes. Moreover, it has also been shown that in a few key cases
namely bounded chains (see Moulin (1980)) and bounded undirected trees
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(see Danilov (1994), Danilov, Sotskov (2002)) all the strategy-proof voting
rules on full unimodal domains are also coalitionally strategy-proof, hence
simple (or individual) strategy-proofness and coalitional strategy-proofness
turn out to be equivalent properties. But then, to what extent such an equiv-
alence between simple and coalitional strategy-proofness of voting rules on
full unimodal domains can be generalized to other interval spaces? Partial
information on that issue is provided by Le Breton, Zaporozhets (2009) and
Barberà, Berga, Moreno (2010) that identify certain su¢ cient conditions for
equivalence in more general domains under a stricter notion of unimodal-
ity (see also Schummer, Vohra(2002) for some relevant results on strategy-
proofness in possibly cyclic, non-median graphs). Nehring, Puppe (2007a,
2007b) do not address explicitly that issue but establish some results suggest-
ing equivalence failure for unimodal domains of linear orders on some median
interval spaces, while Savaglio, Vannucci (2012) show equivalence failure for
unimodal domains on the (median) interval spaces induced by bounded dis-
tributive lattices that are not chains. However, to the best knowledge of the
author, no result is available for general, minimally �regular�-i.e. convex and
idempotent- interval spaces (an interval space is denoted here �convex�if its
intervals are convex in the obvious sense, and �idempotent�if the degenerate
interval between one point and itself reduces to the very same point).
The present paper addresses the issue of equivalence between simple and

coalitional strategy-proofness of voting rules on full unimodal domains in such
a general setting of minimally �regular�interval spaces. A su¢ cient condition
for equivalence is provided: it is shown that equivalence holds whenever the
interval space satis�es a certain �Interval Anti-Exchange� property that is
sometimes used as a basic axiom to characterize linear geometries among
convex geometries (recall that standard Euclidean convex sets amount in fact
to a very special subclass of linear geometries), and is shared by all trees. A
signi�cant implication of that result for location problems in networks is quite
clear: whenever the network is a tree, a linear geometry or indeed any graph
whose interval function is convex, idempotent and satis�es Interval Anti-
Exchange, any strategy-proof voting rule for the corresponding full unimodal
domain is also coalitionally strategy-proof on that domain.
A much weaker �Minimal Anti-Exchange�property is also shown to be

a necessary condition for equivalence of simple and coalitional strategy-
proofness of voting rules on full unimodal domains. It follows that, as a
consequence, equivalence fails to hold in any median interval space induced
by a bounded median semilattice (or bounded median graph) that is not a
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chain and in a large class of non-median interval spaces, including those in-
duced by Hamming and partial cubes as discussed below. Such an equivalence
failure is established by proving the existence of a nontrivial nondictatorial
strategy-proof voting rule on the relevant full unimodal domain that admits
at least four distinct outcomes in its range and is not immune to coalitional
manipulations.

2 Simple and coalitional strategy-proofness
on full unimodal domains: equivalent prop-
erties or not?

Let us consider a location problem on a network (or graph), or on a suit-
ably ordered structure, to be settled by a voting rule under the assumption
that the voters�preferences are unimodal. Then, it is quite natural to focus
on strategy-proof voting rules, namely on those rules that are immune to
simple/individual manipulations. Moreover, it is also worth asking which -if
any- of the available strategy-proof rules are also coalitionally strategy-proof
i.e. immune to coalitional manipulations. In particular, �unimodal�equiva-
lence between simple and coalitional strategy proofness obtains on a certain
outcome space whenever all of the voting rules that are strategy-proof on the
full unimodal domain of that space turn out to be coalitionally strategy-proof
as well.
Those issues have been partially explored in some speci�c classes of out-

come spaces, including some median interval spaces. As mentioned above,
median interval spaces are those interval spaces such that the intervals of
any three points have precisely one point in common, their median. Indeed,
some facts about equivalence of simple and coalitional strategy-proofness (or
lack of it) on full unimodal domains in some speci�c median interval spaces
are well-known. That is largely due to the circumstance that the structure of
strategy-proof voting rules in those spaces is now well understood: in fact, it
has been established that strategy-proof voting rules on unimodal domains in
median interval spaces can be represented by iterated medians of projections
(i.e. dictatorial rules) and constants (see e.g. Moulin (1980), Danilov (1994),
Savaglio, Vannucci (2012)). Let us then start with a quick review of the best
known classes of examples:
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The outcome space is a �nite or bounded chain
If (X; I) is the median interval space induced by a bounded chain
(X;�) -with I(x; y) = fz 2 X : x � z � y or y � z � x g for all x; y 2

X- the equivalence-issue is settled by the pioneering work of Moulin (1980),
showing that (i) the strategy-proof rules for the full unimodal domain on
(X; I) are precisely those which can be represented as iterated medians of
projections (i.e. dictatorial rules) and constants, and (ii) all such strategy-
proof rules are also coalitionally strategy-proof on the same domain. Thus,
simple strategy-proofness and coalitional strategy-proofness are equivalent
properties here. In particular, the ordinary (extended) median rule is coali-
tionally strategy-proof.

The outcome space is a bounded tree
If (X; I) is the median interval space induced by a (discrete) bounded

tree (i.e. a bounded connected graph without cycles) -with
I(x; y) = fz 2 X : z lies on the unique shortest path joining x and yg
for all x; y 2 X-
the equivalence-issue is also settled by Danilov (1994), showing that (i)

the strategy-proof rules for the full unimodal domain on (X; I) are precisely
those which can be represented as iterated medians of projections (i.e. dicta-
torial rules) and constants, and (ii) all such strategy-proof rules are also coali-
tionally strategy-proof on the same domain. Thus, simple strategy-proofness
and coalitional strategy-proofness are equivalent properties for full unimodal
domains in bounded trees. In particular, the ordinary (extended) median
rule is coalitionally strategy-proof.

The outcome space is a bounded distributive lattice (or its cov-
ering graph)
If (X; I) is the (median) interval space induced by an arbitrary bounded

distributive lattice (X;6) that is not a chain ( as de�ned by the usual rule
I(x; y) = fz : x ^ y 6 z 6 x _ yg, where ^ and _ denote the 6-induced g.l.b.
and l.u.b. operations), the equivalence-issue is also already settled in the neg-
ative by Savaglio,Vannucci (2012) showing that (i) the strategy-proof rules
for the full unimodal domain on (X; I) are precisely those which can be
represented as iterated medians of projections (i.e. dictatorial rules) and
constants, and (ii) if (X;6) is a bounded distributive lattice but is not a
chain, then there are strategy-proof voting rules on that domain that are
not coalitionally strategy-proof (but see also Nehring, Puppe (2007 (a),(b))
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that do not address the equivalence-issue as such, but include some related,
remarkable observations and results). Notice that the former equivalence-
failure result can be instantly extended to the interval space induced by the
covering graph (or Hasse diagram) of (X;6) itself: the general equivalence-
issue is therefore also settled in the negative for the class of all median interval
spaces induced by median graphs that are not trees (and a fortiori for the
even larger class of interval spaces induced by connected graphs that are not
trees).
Namely, simple strategy-proofness and coalitional strategy-proofness are

not equivalent properties for full unimodal domains in the class of all median
interval spaces induced by some arbitrary bounded distributive lattice, or by
some arbitrary median graphs. In particular, it can be shown that the ordi-
nary (extended) median rule retains its strategy-proofness on such domains
but may be not coalitionally strategy-proof. To check the last point, consider
for instance the following example borrowed e.g. from Nehring, Puppe (2007
(b)). Take the interval space induced by the Boolean cube 23 = (23;6)
where
6= f(y; x) : x 2 23 and y 2 f1; xgg[
[
�
(x1; x4); (x1; x5); (x1; 0); (x2; x4); (x2; x6); (x2; 0);
(x3; x5); (x3; x6); (x3; 0); (x4; 0); (x5; 0); (x6; 0)

�
.

Notice that such a (median) interval space I =(23; I) induced by
(23;6) is de�ned as follows: I(1; x4) = I(x1; x2) = f1; x1; x2; x4g ; I(1; x5) =

I(x1; x3) = f1; x1; x3; x5g ; I(1; x6) = I(x2; x3) = f1; x2; x3; x6g ;
I(x1; 0) = I(x4; x5) = fx1; x4; x5; 0g ; I(x2; 0) = I(x4; x6) = fx2; x4; x6; 0g ;
I(x3; 0) = I(x5; x6) = fx3; x5; x6; 0g, I(1; 0) = I(x1; x6) = I(x2; x5) =

I(x3; x4) = 2
3, and I(x; y) = fx; yg otherwise.

Let N = f1; 2; 3g and consider an I-unimodal preference pro�le
(<1;<2;<3) such that top(<1) = x1, top(<2) = x2, top(<3) = 0, and

x3 �i x4 for all i 2 N . Note that such an I-unimodal preference pro�le does
certainly exist since there is no x 2 23, x 6= x4 with x4 2 I(x3; x). Now, it
is immediately checked that the median of the top outcomes of preference
pro�le (<1;<2;<3) is �(x1; x2; 0) = x4 because I(x1; x2)\I(x2; 0)\I(x1; 0) =
fx4g. However, observe that e.g. �(x3; x3; z) = �(z; x3; x3) = �(x3; z; x3) =
�(x3; x3; x3) = x3 for any z 2 23. It follows that the median rule is in fact
manipulable by the grand coalition and by any two-player coalition, hence it
is clearly not coalitionally strategy-proof.

Let us nowmove on to a few interesting classes of networks/interval spaces
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where -to the best of our knowledge- very little is known about the structure
of strategy-proof voting rules on the corresponding full unimodal domains.
To begin with, let us consider the class of (convex, idempotent) interval

spaces as resulting from the following important class of outcome spaces.

The outcome space is a simplex in an Euclidean convex space
In that case (X; IE) is the (convex, idempotent) interval space induced

by a simplex in an Euclidean convex space in the standard manner, namely
X =

�
x 2 Rm+ :

Pm
i=1 xi = 1

	
, and for all x; y 2 X,

IE(x; y) = fz 2 X : z = �x+ (1� �)y for some � 2 [0; 1]g.
That is clearly not a median interval space: in fact, any nondegenerate

triangle in X fails to admit a median as de�ned above. As mentioned above,
very little is apparently known about the class of strategy-proof voting rules
for the full unimodal domain on (X; IE), or the existence of nontrivial non-
dictatorial strategy-proof voting rules on such domain.

The next class of outcome spaces is clearly less widely used than the
previous one, but is also a most remarkable one, since it is one of the few
irreducible building blocks of any linear geometry (to be discussed below, in
Section 3):

The outcome space is a multi-cross
Let X be a (minimal) multi-cross with centre z i.e. an array of three-

point and two-point lines such that z is the middle point of each three-point
line, and does not lie on any two-point line (see e.g. Coppel (1998)): thus,
the corresponding (convex, idempotent) interval space (X; I) is such that
for all x; y 2 X r fzg either I(x; y) = fx; y; zg or I(x; y) = fx; yg, and
I(x; z) = fx; zg for all x 2 X. Clearly, (X; I) is not median. To the best of
the author�s knowledge, no attempt has been made to study the structure
of strategy-proof voting rules on the corresponding full unimodal domain,
or even to establish whether nontrivial nondictatorial strategy-proof voting
rules on that domain are available.

The next two following types of networks are also of considerable interest
as models of location problems in a large class of abstract spaces:
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The outcome space is a Hamming graph
A Hamming graph can be regarded as a network whose vertices a 2 XH

denote words a = (l1; :::; lk) of a �xed length k having at each position i =

1; :::; k a letter li chosen from a �nite alphabet Ai =
n
ai1 ; :::aihi

o
(distinct

positions may have distinct alphabets), while edges join any two vertices
denoting two distinct words having distinct letters at just one position (see
e.g. Mulder (1980)). Equivalently, the vertices of a Hamming graph may be
regarded as points of a �nite multiattribute space, with edges joining pairs of
points that di¤er for the value of just one attribute. Therefore, the (convex,
idempotent) interval space (XH ; IH) induced by a Hamming graph is de�ned
by the following rule:
XH = �ki=1Ai, and for all x; y 2 XH ,
IH(x; y) =

�
z 2 XH :z lies on one of the shortest paths joining x and y

	
.

Notice that if hi � 3 for some i = 1; :::; k, a Hamming graph is not
triangle-free and, as a consequence, its interval space is not median. To the
best of the author�s knowledge, the structure of strategy-proof voting rules
on the full unimodal domain of (XH ; IH) is still essentially unknown.

The outcome space is a partial cube (or mediatic graph)
A partial cube is a network that can be isometrically embedded into the

cube induced by some arbitrary set Y (recall that the cube induced by set Y
is the graph having the subsets of Y as vertices, with edges joining precisely
those subsets A � Y;B � Y such that #(ArB) [ (B rA) = 1 ). It is now
well-known that the class of partial cubes is precisely the class of mediatic
graphs i.e. those graphs that represent the set of states and transitions as-
sociated with procedures satisfying a suitable pair of conditions and denoted
as media (see e.g. Eppstein, Falmagne, Ovchinnikov (2008)). The convex
idempotent interval space induced by a partial cube is de�ned in the usual
way in terms of geodesics i.e. shortest paths and, generally speaking, is not
median. Apparently, the structure of strategy-proof voting rules on the full
unimodal domain of such spaces has not been the object of any work in the
earlier literature.

Finally, let us consider a further class of networks/interval spaces where
the existence of nontrivial nondictatorial strategy-proof voting rules for the
full unimodal domain has been already established (while the resulting �uni-
modal�equivalence-issue between simple and coalitional strategy-proofness
has not been addressed yet).
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The outcome space is the join of a clique and a chain
Let (X; I) be the interval space induced by a graph that can be decom-

posed into a clique (or complete graph) and a chain as joined through a
common vertex. The latter sort of graph is a special subclass of the class of
networks studied by Schummer, Vohra (2002), where it is shown that some
nontrivial nondictatorial voting rules exist on a certain unimodal domain on
(X; I) (e.g. those rules resulting from the combination of a locally-dictatorial
rule that applies whenever the top outcome of the relevant �clique-dictator�
lies on the clique, and a median rule as restricted to the subset of outcomes
lying between the top outcome of the �clique-dictator�and the outcome that
is closest to the clique, that applies otherwise). However, the equivalence-
issue concerning simple and coalitional strategy-proofness of voting rules on
that full unimodal domain has never been addressed in the extant literature.

Thus, the foregoing list includes examples of outcome spaces where the
status of available information on the issue concerning equivalence of simple
and coalitional strategy-proofness of voting rules for full unimodal domains
is quite diverse. In a few of them, the �unimodal�equivalence-issue has been
addressed and settled (either a¢ rmatively, for bounded chains and bounded
trees, or negatively, for bounded semilattices - or bounded median graphs -
that are not chains). In other cases (i.e. Euclidean simplexes, multi-crosses,
Hamming graphs, partial cubes) no general results on the existence of non-
trivial nondictatorial strategy-proof voting rules for the full unimodal domain
are available in earlier works. In the last case of that list (i.e. joins of one
clique and one chain) it is known that nontrivial nondictatorial strategy-proof
voting rules for the full unimodal domain do exist but is not known whether
equivalence of simple and coalitional strategy-proofness on that domain holds
true.
It is therefore quite remarkable that the main results of the present paper

( i.e. Theorems 3 and 5) jointly address and settle at once such �unimodal�
equivalence-issue in all of the outcome spaces considered above. Indeed, it is
easily checked that (the interval spaces induced by) bounded chains, bounded
trees, Euclidean simplexes, multi-crosses, and joins of cliques and chains do
satisfy the Interval Anti-Exchange property (to be introduced in the next
Section) so that Theorem 3 applies to them to the e¤ect of ensuring that
�unimodal�equivalence holds for strategy-proof voting rules on those spaces.
Conversely, it is easily checked that (the interval spaces induced by) bounded
semilattices and bounded median graphs which are not chains violate Mini-
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mal Anti-Exchange (as de�ned in the next Section), and the same observation
applies to (the non-median interval spaces induced by) Hamming graphs and
partial cubes. Therefore, Theorem 5 below applies, establishing that nontriv-
ial nondictatorial strategy-proof voting rules that are coalitionally manipulable
(and admit at least four distinct outcomes) do exist on the full unimodal do-
mains of those interval spaces: as a consequence, �unimodal�equivalence fails
to hold for such spaces.
Let us then turn to the formal setting and the ensuing analysis.

3 Model and results

Let N = f1; ::; ng denote the �nite population of voters, and I = (X; I) the
interval space of alternative outcomes, i.e. X is an arbitrary nonempty set
and I an interval function on X; namely I : X2 ! P(X) is a function that
satis�es the following conditions:
I-(i) (Extension): fx; yg � I(x; y) for all x; y 2 X,
I-(ii) (Symmetry): I(x; y) = I(y; x) for all x; y 2 X.
In particular, we also assume that n � 2 in order to avoid tedious quali-

�cations, and that I = (X; I) is an idempotent interval space namely that
(Idempotence): I(x; x) = fxg for all x 2 X
is also satis�ed.
A subset Y � X is I-convex i¤ I(x; y) � Y for all x; y 2 Y . For any

Y � X, the I-convex hull of Y - denoted coI(Y )- is the smallest I-convex
superset of Y , namely coI(Y ) =

\
fA � X : A is I-convex and A � Y g.

An interval space I = (X; I) is convex if I also satis�es
(Convexity): I(x; y) is I-convex for all x; y 2 X:
Observe that Idempotence and Convexity are indeed mutually indepen-

dent properties of interval spaces. To con�rm that statement, consider inter-
val spaces I1 = (X; I1), I2 = (fx; y; v; zg ; I2) where #X > 1, # fx; y; v; zg =
4; I1(a; b) = X for all a; b 2 X, while I2(x; y) = fx; y; zg, I2(y; z) = fy; v; zg,
and I2(a; b) = fa; bg for all a; b 2 X such that fx; yg 6= fa; bg 6= fy; zg. It
is immediately checked that I1 is convex but not idempotent, while I2 is
idempotent but not convex since fy; zg � I2(x; y) and v 2 I2(y; z) n I2(x; y).

Remark 1 An idempotent interval space (X; I) is said to be a convex
geometry if it also satis�es
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(Peano Convexity) for all x; y; v1; v2; z 2 X, if y 2 I(x; v1) and z 2
I(y; v2) then there exists v 2 I(v1; v2) such that z 2 I(x; v).
It can be quite easily shown that a convex geometry is in particular a con-

vex interval space (see e.g. Coppel (1998), chpt.2, Proposition 1). The con-
verse however does not hold: to check the latter statement, consider interval
space I� = (X; I�) with X = fx; y1; y2; v1; v2; zg, #X = 6, and I� de�ned as
follows: I�(x; y1) = fx; y1; v1g, I�(x; y2) = fx; y2; v2g, I�(v1; v2) = fv1; v2; zg,
I�(y1; z) = fy1; v1; z; g, I�(y2; z) = fy2; v2; z; g, I�(y2; v1) = fy2; y1; v1g, and
I�(a; b) = fa; bg otherwise. As it is easily checked, I� is idempotent and con-
vex by construction. However, it can also be shown (see e.g. Coppel (1998),
chpt.2, Proposition 2) that a convex geometry also satisfes the following
property:
(�) for all x; y1; y2; v1; v2; z 2 X, if v1 2 I�(x; y1), v2 2 I�(x; y2) and

z 2 I�(v1; v2) then there exists w 2 I�(y1; y2) such that z 2 I�(x;w).
Now, it is immediately checked that no such w exists in I�
for x; y1; y2; v1; v2; z 2 X, since by construction I�(y1; y2) = fy1; y2g, and

z =2 I�(x; y1) [ I�(x; y2) = fx; y1; y2; v1; v2g.
Therefore, I� fails to satisfy Peano convexity.
It follows that Peano convexity is indeed a strictly stronger requirement

than convexity of an interval space as previously de�ned or, equivalently, a
convex idempotent interval space amounts to a generalized convex geometry.
Therefore all of the results of the present paper clearly hold in particular when
restricting the statements to convex geometries.
On the other hand, a linear geometry is a convex geometry that satis�es

interval anti-exchange ( to be de�ned below) and three further properties
called additivity (i.e. for all x; y; z 2 X, if z 2 I(x; y) then I(x; y) =
I(x; z)[ I(z; y)), no-branchpoint (i.e. for all x; y; z 2 X, if z =2 I(x; y) and
y =2 I(x; z) then I(x; y) \ I(x; z) = fxg), and the Pasch-Peano condition
(i.e. for all x; y; z; u; v 2 X, if y 2 I(x; u) and z 2 I(x; v) then I(y; v) \
I(z; u) 6= ?: see e.g. Coppel (1998)).
Finally, (undirected) trees (i.e. connected graphs without cycles) are

also convex geometries if the interval I(x; y) of each pair x; y of vertices is
de�ned as the set of vertices that lie on the (unique) shortest path joining x
and y. Characterizations of the interval functions of trees thus de�ned have
been provided by Sholander (1952, 1954) and, most recently, by Chvátal,
Rautenbach, Schäfer (2011). It should be noticed that trees do satisfy weak
anti-exchange (as de�ned below) and additivity, but may or may not satisfy
the no-branchpoint property and the Pasch-Peano condition (namely, some
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trees satisfy both of those properties, while others violate both). Conversely,
linear geometries may or may not have cycles (we shall introduce below some
examples of linear geometries with cycles). Thus, linear geometries and trees
are subclasses of convex geometries that partially overlap: there are convex
geometries that are both linear geometries and trees (namely, trees with no
branchpoints), while other convex geometries are just trees (e.g. trees with
branchpoints), just linear geometries (e.g. cliques i.e. complete graphs), or
neither (see e.g. the quasi-complete graph presented below under Example
2).

Occasionally, antisymmetric interval spaces will also be considered in the
sequel. Indeed, an interval space I = (X; I) is antisymmetric if I satis�es

(Antisymmetry): for all x; y; z 2 X, if x 2 I(y; z) and y 2 I(x; z) then
x = y.

It can be shown that an important subclass of convex geometries (but by
no means all of them) do satisfy antisymmetry (see Coppel (1998)).
Finally, we should also mention that an idempotent interval space I =

(X; I) is said to be a median space if I satis�es the following

(Median property): for all x; y; z 2 X, #(I(x; y)\I(y; z)\I(x; z)) = 1.

The common point of the three intervals de�ned by each pair of any three
points x; y; z in a median interval space (X; I) is said to be the median of
those points, that therefore de�nes a ternary operation on X.
It is well-known that e.g. the interval spaces induced by trees or me-

dian semilattices (including distributive lattices) are median (see Sholander
(1952), (1954)).
Let < denote a total preorder i.e. a re�exive, connected and transitive

binary relation on X (we shall denote by � and � its asymmetric and sym-
metric components, respectively). Then, < is said to be unimodal with
respect to interval space I = (X; I) - or I-unimodal - if and only if
U -(i) there exists a unique maximum of < in X, its top outcome -denoted

top(<)- and
U -(ii) for all x; y; z 2 X, if z 2 I(x; y) then fu 2 X : z < ug\fx; yg 6= ?.
We denote by UI the set of all I-unimodal total preorders on X. An

N -pro�le of I-unimodal total preorders is a mapping from N into UI . We
denote by UNI the set of all N -pro�les of I-unimodal total preorders.
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A voting rule for (N;X) is a function f : XN ! X . A voting
rule f is (simply) strategy-proof on UNI i¤ for all I-unimodal N -pro�les
(<i)i2N 2 UNI , and for all i 2 N , yi 2 X, and (xj)j2N 2 XN such that
xj = top(<j) for each j 2 N , f((xj)j2N) <i f((yi; (xj)j2Nrfig)). More-
over, a voting rule f is coalitionally strategy-proof on UNI i¤ for all
I-unimodal N -pro�les (<i)i2N 2 UNI , and for all C � N , (yi)i2C 2 XC ,
and (xj)j2N 2 XN such that xj = top(<j) for each j 2 N , there exists
i 2 C with f((xj)j2N) <i f((yi)i2C ; (xj)j2NrC)). Finally, a voting rule
f : XN ! X is I-monotonic i¤ for all i 2 N , yi 2 X, and (xj)j2N 2 XN ,
f((xj)j2N) 2 I(xi; f(yi; (xj)j2Nrfig)).
We are now ready to state the main results of this paper concerning the

equivalence of strategy-proofness and coalitional strategy-proofness of voting
rules on the domain of all unimodal pro�les. Our results rely on the following
lemma that establishes the equivalence between monotonicity with respect
to an arbitrary convex idempotent interval space I and strategy-proofness on
the corresponding (full) unimodal domain UNI .

Lemma 1 Let I = (X; I) be a convex idempotent interval space. Then, a
voting rule f : XN ! X is strategy-proof on the full unimodal domain UNI
i¤ it is I-monotonic.

Proof. Let us assume that f : XN ! X is not I-monotonic: thus,
there exist i 2 N , x0i 2 X and xN = (xi)i2N 2 XN such that f(xN) =2
I(xi; f(x

0
i; xNrfig)). Then, consider the total preorder <� on X de�ned as

follows: xi = top(<�) and for all y; z 2 X r fxig , y <� z i¤ (i) fy; zg �
I(xi; f(x

0
i; xNrfig)) r fxig or (ii) y 2 I(xi; f(x

0
i; xNrfig)) r fxig and z =2

I(xi; f(x
0
i; xNrfig)) or (iii) y =2 I(xi; f(x0i; xNrfig)) and z =2 I(xi; f(x0i; xNrfig)).

Clearly, by construction <�consists of three indi¤erence classes with fxig,
I(xi; f(x

0
i; xNrfig)) r fxig and X r I(xi; f(x0i; xNrfig)) as top, medium and

bottom indi¤erence classes, respectively.
Now, observe that <�2 UI . To check that statement, take any y; z; v 2 X

such that y 6= z and v 2 I(y; z) (if y = z then, by Idempotence of I, v = y = z
and there is in fact nothing to prove). Also, notice that fy; zg 6= fxig since
y 6= z, and assume without loss of generality that y 6= xi.
If fy; zg � I(xi; f(x0i; xNrfig)) then, by Convexity of (X; I),
v 2 I(xi; f(x0i; xNrfig)). Hence, v <� y by de�nition of <�.
If on the contrary fy; zg \ (X r I(xi; f(x0i; xNrfig))) 6= ? then take w 2

fy; zg \ (X r I(xi; f(x0i; xNrfig))).
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Clearly, by de�nition of <�again, v <� w. Since w 2 fy; zg, it follows
that the unimodality condition is satis�ed again and therefore <�2 UI as
claimed.
Also, by assumption f(xN) 2 XrI(xi; f(x0i; xNrfig)) while f(x0i; xNrfig) 2

I(xi; f(x
0
i; xNrfig)) by Extension, whence by construction f(x

0
i; xNrfig) ��

f(xN). But then, f is not strategy-proof on UNI .
Conversely, let f be monotonic with respect to I. Now, consider any

< = (<j)j2N 2 UNI and any i 2 N . By de�nition of monotonicity f(top(<i
); xNrfig) 2 I(top(<i); f(xi; xNrfig)) for all xNrfig 2 XNrfig and xi 2 X.
But then, since clearly by de�nition top(<i) <i f(top(<i); xNrfig), either
f(top(<i); xNrfig) = top(<i) or f(top(<i); xNrfig) <i f(xi; xNrfig) by uni-
modality of <i. Hence, f(top(<i); xNrfig) <i f(xi; xNrfig) in any case. It
follows that f is indeed strategy-proof on UNI .

The following property will play a key role in the ensuing analysis

(Interval Anti-Exchange (IAE)): for all x; y; v; z 2 X such that x 6= y,
if x 2 I(y; v) and y 2 I(x; z) then x 2 I(v; z).

Since one of the main results of the ensuing analysis will concern convex
idempotent interval spaces that satisfy Interval Anti-Exchange, it is worth
mentioning here that the class of such spaces is strictly larger than the class
of convex geometries that satisfy Interval Anti-Exchange, as made clear by
the following simple

Example 1 (A convex idempotent interval space that satis�es
Interval Anti-Exchange but is not a convex geometry)
Take I = (X; I) with X = fx; u; v; y; zg, #X = 5, and I as de�ned by

the following rule: I(x; u) = fx; u; yg, I(y; v) = fy; v; zg, and I(a; b) = fa; bg
otherwise. Observe that, by construction, I is a convex and idempotent
interval space. It is also quickly established that I does satisfy Interval Anti-
Exchange: indeed, it is immediately seen that a 2 I(b; c) and b 2 I(a; d)
with a 6= b only hold in I if one of the following clauses is satis�ed: (1)
a = c, (2) a = y,fb; cg = fx; ug, and b = d, (3) a = z , fb; cg = fy; vg,
and b = d. Now, if (1) holds then a 2 I(c; d) by Extension of I (i.e. by
de�nition of interval space). If (2) holds, fc; dg = fx; ug hence a = y 2
I(x; u) = I(c; d) by construction. If (3) holds, then fc; dg = fb; cg hence
a 2 I(b; c) = I(c; d) by hypothesis. Therefore, I satis�es Interval Anti-
Exchange as claimed. However, it can be quite easily shown that I fails to
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satisfy Peano Convexity as de�ned above (see e.g. Coppel (1998), chpt.2),
hence it is not a convex geometry. It should also be noticed that I is not
median (since e.g. I(x; y) \ I(y; z) \ I(x; z) = ?).

Remark 2 An explanation concerning our terminology is in order here.
Recall that a convexity space (or aligned space, or convex closure system) is
a pair (X; C) where X is any set and C is a convexity (or alignment) on X
i.e. a family of subsets of X such that: (i) f?; Xg � C ; (ii) \D 2C for any
nonempty D � C ; (iii) [D 2C for any nonempty D � C which is nested i.e.
totally ordered by inclusion. The subsets in C are by de�nition the convex
sets of convexity space (X; C), while for any Y � X its convex hull coC(Y ) in
(X; C) is the smallest superset of Y that belongs to C (observe that coC(Y )
is well-de�ned for any Y � X thanks to properties (i) and (ii) of C). It is
quite easy to check that the set CI of I-convex sets of any interval space
I = (X; I) as de�ned above provides a particular instance of a convexity on
X, but generally speaking a convexity on X need not arise in that way (see
e.g. van de Vel (1993)).
Indeed, Anti-Exchange is a commonly used label denoting the following

property of a convexity space (X; C):

(Anti-Exchange (AE)): for all x; y 2 X and Y � X, if x 6= y, x 2
coC(Y [ fyg) and x =2 coC(Y ) then y =2 coC(Y [ fxg).

Clearly enough, Anti-Exchange can be in particular regarded as a possible
property of any interval space I = (X; I) by taking C = CI , and in that case
- by construction - coCI(Y ) = coI(Y ) as de�ned above, for all Y � X.
Now, it can be shown that any convex geometry I = (X; I) that satis�es

IAE does also satisfy AE while any interval space that satis�es AE must also
satisfy IAE (see e.g. Coppel (1998), where IAE is denoted as �axiom L2�).
It should also be noticed here that if an interval space I = (X; I) satis�es

AE and X is �nite then the set of its I-convex sets is an instance of an
antimatroid. Accordingly, let us denote as antimatroidal a �nite interval
space I = (X; I) that satis�es AE. Thus, clearly, Theorem 3 below also
applies in particular to the class of all antimatroidal convex and idempotent
interval spaces. It is easily checked that the �nite convex idempotent interval
space introduced above under Example 1 does also satisfy AE and is therefore
a representative of that subclass of antimatroidal interval spaces.
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The next condition is a considerably weakened version of IAE:

(Minimal Anti-Exchange (MAE)): for all x; y; v; z 2 X such that x 6=
y, and v 6= z at least one of the following clauses is satis�ed: (i) I(y; v) \
fx; zg 6= fx; zg, (ii) I(x; z) \ fy; vg 6= fy; vg, (iii) I(v; z) \ fx; yg 6= ?, (iv)
I(y; z) \ fx; vg 6= ?.

Remark 3 It is easily checked that, for an arbitrary interval space
I = (X; I), IAE does indeed entail MAE, while the reverse does not gen-
erally hold. To see this, observe that by de�nition IAE amounts to requiring
that for all x; y; v; z 2 X such that x 6= y, at least one of the following three
clauses is satis�ed: (i) x =2 I(y; v), (ii) y =2 I(x; z), (iii�) x 2 I(v; z). Clearly,
(iii�) entails (iii) whence MAE holds true whenever IAE does. On the other
hand, consider interval space I = (X; I) with X = fx; y; v; zg, #X = 4,
and I as de�ned by the following rule: I(x; z) = fx; y; zg, I(y; v) = fx; y; vg,
and I(a; b) = fa; bg otherwise. Notice that, by construction, I is convex
and idempotent. Moreover, I(x; z) \ fy; vg = fyg 6= fy; vg hence I satis�es
MAE. However, x 2 I(y; v), y 2 I(x; z), and x =2 I(v; z): therefore I fails to
satisfy IAE. Interval space I� = (X; I�) as de�ned in Remark 1 is another
simple example of a convex idempotent interval space that satis�es MAE
but fails to satisfy IAE. Indeed, it is easily checked that I� is antisymmetric:
hence, for any Y � X, its restriction to Y , denoted I�Y = (Y; I�Y ), is also
antisymmetric. It follows that (in view of the proof of Corollary 4 below,
establishing that antisymmetric idempotent spaces of cardinality not larger
than three must satisfy IAE) I�Y satis�es IAE (hence a fortiori MAE) when-
ever #Y � 3. Thus, it only remains to check for MAE with respect to four
distinct x; y; v; z 2 X: but then, since by construction #I�(a; b) � 3 for all
a; b 2 X, both clauses MAE(i) and MAE(ii) (that amount precisely to re-
quiring that I�(y; v) < 4 and I�(x; z) < 4) are clearly satis�ed, whence MAE
holds. On the other hand, recall that by de�nition c1 2 I�(a; b1) = I�(b1; a),
b1 2 I�(c1; b2), and c1 =2 I�(a; b2): therefore I� fails to satisfy IAE.

The next lemma provides a remarkable property of I-monotonic voting
rules when I satis�es Interval Anti-Exchange:

Lemma 2 Let I = (X; I) be an interval space that satis�es Interval Anti-
Exchange, and f : XN ! X an I-monotonic voting rule. Then, for all
xN ; yN 2 XN , f(xN) 6= f(yN) entails that f(xN) 2 I(xi; yi) for some i 2 N .
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Proof. Let xN ; yN 2 XN , and f(xN) 6= f(yN). Then, by I-monotonicity
of f , f(xN) 2 I(xi; f(yi; xNrfig)) and f(yi; xNrfig) 2 I(yi; f(xN)) for each
i 2 N . Then, take i = 1. If f(xN) 6= f(y1; xNrf1g) then, thanks to
Symmetry of I, Interval Anti-Exchange applies, whence f(xN) 2 I(x1; y1),
and the thesis immediately follows. Let us then suppose that, on the contrary,
f(xN) = f(y1; xNrf1g). Next, consider f(y1; y2; xNrf1;2g).
By I-monotonicity of f , f(y1; xNrf1g) 2 I(x2; f(y1; y2; xNrf1;2g)) and

f(y1; y2; xNrf1;2g) 2 I(y2; f(y1; xNrf1g)).
If f(xN) = f(y1; x2; xNrf1;2g) 6= f(y1; y2; xNrf1;2g) then again, by In-

terval Anti-Exchange of I, it follows that f(xN) = f(y1; x2; xNrf1;2g) 2
I(x2; y2) as required by the thesis. Thus, assume again that on the con-
trary f(xN) = f(y1; x2; xNrf1;2g) = f(y1; y2; xNrf1;2g). A suitable iteration
of the previous argument allows us to establish that either f(xN) 2 I(xi; yi)
for some i 2 f1; :::; n� 1g or f(xN) = f(yNrfng; xn). In the former case
the thesis holds. In the latter case, by I-monotonicity of f , f(xN) =
f(yNrfng; xn) 2 I(xn; f(yN)) and f(yN) 2 I(yn; f(yNrfng; xn)). Since by
hypothesis f(xN) 6= f(yN) it follows, by Interval Anti-Exchange of I, that
f(xN) = f(yNrfng; xn) 2 I(xn; yn) and the thesis is therefore established.

The next Theorem establishes that for convex idempotent interval spaces
Interval Anti-Exchange ensures that simple (or individual) strategy-proofness
and coalitional strategy-proofness of a voting rule on the full unimodal do-
main are equivalent properties.

Theorem 3 Let I = (X; I) be a convex idempotent interval space that sat-
is�es Interval Anti-Exchange (IAE), and f : XN ! X a voting rule that is
strategy-proof on the full unimodal domain UNI . Then, f is also coalitionally
strategy-proof on UNI .

Proof. Indeed, suppose that f is not coalitionally strategy-proof on UNI .
Then, there exist S � N , (<i)i2N 2 UNI , xN 2 XN and x0S 2 XS such that
for all i 2 S, top(<i) = xi and f(x0S; xNrS) �i f(xN) (where �idenotes the
asymmetric component of <i).
Notice that it may be assumed without loss of generality that S = N :

to see this, consider fxNrS : X
S ! X as de�ned by the rule fxNrS(yS) =

f(yS; xNrS) for all yS 2 XS and observe that, by construction, fxNrS is
both strategy-proof and not coalitionally strategy-proof. Let us then posit
f(xN) = f(xS) = u; and f(x0N) = f(x0S) = v: by construction, v �i u for
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all i 2 N . By Lemma 1 above, f is I-monotonic: therefore, f(v; x0Nrf1g) 2
I(v; f(x0N)) = I(v; v), whence f(v; x

0
Nrf1g) = v, by idempotence of I. Simi-

larly, by I-monotonicity of f again, f(v; v; x0Nrf1;2g) 2 I(v; f(v; x02; x0Nrf1;2g)) =
I(v; v): thus, by idempotence of I again, f(v; v; x0Nrf1;2g) = v. A suitable
iteration of the same argument establishes that f(v; v; :::; v) = f(x0N) = v.
Now, suppose that there exists i 2 N , such that f(xN) = u 2 I(xi; v):

since xi = top(xi) and v �i u by assumption, then <i =2 UI , a contradiction.
Therefore, f(xN) =2 I(xi; v) for each i 2 N . By Lemma 2 above it follows
that f(xN) = f(v; :::; v) = f(x0N), a contradiction again, whence the thesis is
established.

It turns out that Theorem 3 implies at once that simple/individual and
coalitional strategy-proofness on the full I-unimodal domain are equivalent
if I = (X; I) is an antisymmetric idempotent interval space with at most
three points, as made precise by the following Corollary (see Barberà, Berga,
Moreno (2010) for a closely related but -strictly speaking- independent re-
sult):

Corollary 4 Let I = (X; I) be an antisymmetric idempotent interval space
such that #X � 3, and f : XN ! X a voting rule that is strategy-proof on
the full unimodal domain UNI . Then, f is also coalitionally strategy-proof on
UNI .

Proof. To begin with, notice that if #X � 3, then any interval space
(X; I) is convex: indeed, recall that in order to be not convex an interval
space has to include at least two points x; y and two points u; v such that
fu; vg � I(x; y) but I(u; v) * I(x; y) whence at least four points are needed.
It is also immediately checked that every antisymmetric idempotent interval
space I = (X; I) with #X � 3 does satisfy Interval Anti-Exchange: to
see that, take X = fx; y; zg and assume that on the contrary there exist
a; b; c; d 2 X such that a 6= b, a 2 I(b; c), b 2 I(a; d), and a =2 I(c; d). Now,
a =2 I(c; d) implies a =2 fc; dg hence either c = d or c = b or else d = b. If
c = d then by antisymmetry a = b, a contradiction. If c = b then a 2 I(b; b)
hence by idempotence a = b, a contradiction again. Then, it must be the
case that d = b whence a 2 I(d; c) = I(c; d), a contradiction again. But then,
Theorem 3 applies and the proof is complete.
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It should also be emphasized that Theorem 3 above amounts to a con-
siderable generalization of the previous results on equivalence of simple and
coalitional strategy-proofness due to Moulin (1980) and Danilov (1994), con-
cerning (bounded) chains and trees, respectively. Clearly, Theorem 3 applies
to all trees and linear geometries. However, its scope is much wider than
trees or linear geometries: it clearly includes interval spaces that are induced
by the geodesics of some graphs with cycles but are not linear geometries.
To check the latter statement just consider the following simple

Example 2 (A convex geometry that satis�es Interval Anti-
Exchange but is not a linear geometry)
Take an idempotent interval space I = (X; I) with X = fx; y; v; zg,

#X = 4, and I as de�ned by the following rule: I(x; z) = I(z; x) = X
and I(a; b) = fa; bg for any a; b 2 X such that fa; b1g 6= fx; zg (see Coppel
(1998)). Indeed, I is the interval space induced by the quasi-complete graph
with vertex set X obtained by removing edge xz from the complete graph
on X. It is readily checked that interval space I is convex (and, in fact, a
convex geometry: to con�rm the latter statement, suppose that c 2 I(a; b1),
d 2 I(c; b2); if fa; b1g 6= fx; zg then c 2 fa; b1g, whence c 2 I(a; b1); if
fa; b1g = fx; zg then c 2 I(a; b1) = X hence in any case Peano convexity
holds). Interval space I also satis�es the no-branchpoint property: if c =2
I(a; b) and b =2 I(a; c) then clearly b 6= c and fa; bg 6= fx; zg 6= fa; cg hence
I(a; b) \ I(a; c) = fag). However, I cannot possibly be induced by any
linear geometry or tree since I does not satisfy the additivity property: e.g.
y 2 I(x; z), while I(x; y) [ I(y; z) = fx; y; zg 6= X = I(x; z). Also, I is not
a median interval space (notice that e.g. I(x; y) \ I(x; v) \ I(y; v) = ?). On
the other hand, it is straightforward to verify that I satis�es IAE: suppose
a 6= b, a 2 I(b; c), b 2 I(a; d). If fa; dg 6= fx; zg then a 2 I(b; c) entails a = c:
therefore a 2 I(a; d) = I(c; d). If fb; cg 6= fx; zg, then b 2 I(a; d) entails
b = d hence a 2 I(b; c) = I(c; d). If on the contrary fa; dg = fx; zg = fb; cg
then it must be the case that a = c and b = d whence a 2 I(a; b) = I(c; d).
In any case a 2 I(c; d) and IAE is therefore satis�ed.

Concerning linear geometries, that fall entirely under the scope of The-
orem 3, it should be emphasized that they cover a wealth of interesting
structures. To begin with, it should be recalled here that Euclidean convex
sets can be shown to reduce to linear geometries with three special proper-
ties namely denseness, unendingness, and completeness (see Coppel (1998)).
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Moreover, both chains and trees with the no-branchpoint property are special
instances of linear geometries. But, as a matter of fact, the class of linear
geometries is much wider than that. To mention just a pair of very simple
interesting examples, consider the interval space I 0 = (X; I 0) induced by the
clique or complete graph on X (i.e. with I 0(x; y) = fx; yg for all x; y 2 X),
and the interval space I 00 = (Y; I 00) induced by the join or linear sum of a
clique and a chain (see Section 2 above): it is readily checked that both of
them are indeed linear geometries (and neither of them is a median interval
space). Interval space I 00 is particularly interesting in the present connection,
since the results provided by Schummer, Vohra (2002) imply the existence of
nontrivial nondictatorial voting rules on the full unimodal domain UNI00(e.g.
those resulting from the combination of a clique-related, locally-dictatorial
rule that applies whenever the top outcome of the appointed �clique-dictator�
lies on the clique, and a median rule as restricted to the subset of outcomes
lying between the top outcome of the �clique-dictator�and the outcome that
is closest to the clique, that applies otherwise). Then, Theorem 3 above does
indeed imply in turn that even all such nontrivial nondictatorial strategy-
proof voting rules are also coalitionally strategy-proof on UNI00.

We conclude with a partial converse result. Namely, a convex idempo-
tent interval space I ensures equivalence of simple and coalitional strategy-
proofness on the full unimodal domain only if it also satis�es Minimal Anti-
Exchange, as established by the following:

Theorem 5 Let I = (X; I) be a convex and idempotent interval space such
that every voting rule f : XN ! X which is strategy-proof on the full uni-
modal domain UNI is also coalitionally strategy-proof on UNI . Then, I =
(X; I) satis�es Minimal Anti-Exchange (MAE).

Proof. Indeed, suppose I does not satisfy MAE. Then, there exist x; y; v; z 2
X such that x 6= y, v 6= z, x 2 I(y; v), y 2 I(x; z), v 2 I(x; z), z 2 I(y; v),
I(v; z) \ fx; yg = ? and I(y; z) \ fx; vg = ? (notice that by de�nition of
I it follows at once that #X � 4). But then, consider the following total
preorder <� on fx; y; v; zg:
<�= f(v; z); (v; x); (v; y); (z; x); (z; y); (x; y); (y; x); (x; x); (y; y); (v; v); (z; z)g,
namely v �� z �� x �� y.
Notice that by construction I-unimodality of <� only requires that both

x =2 I(v; z) and y =2 I(v; z). Thus, <� is I-unimodal (and it can be extended
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to an I-unimodal total preorder <0on X with the same top element as <�:
as any new element w is introduced one should just consider the join Y of
all intervals I(a; b) such that w 2 I(a; b), and make sure that w is indi¤erent
to the lowest-ranked element(s) of Y ; therefore, we can assume without loss
of generality that X = fx; y; v; zg).
Next, consider another total preorder <0

on fx; y; v; zg:
<0
= f(y; z); (y; x); (y; v); (z; x); (z; v); (x; v); (v; x); (x; x); (y; y); (v; v); (z; z)g,

namely y �0 z �0 x �0 v. Clearly, I-unimodality of <0 only requires that
x =2 I(y; z) and v =2 I(y; z). Thus, <0is also I-unimodal.
Then, consider the class of all voting rules f 0 : XN ! X such that for all

u =uNrf1;2g 2 XNrf1;2g

f 0(v; y;u) = x, and f 0(z; z;u) = z.
Let us now show that there exists a voting rule f in that class which is I-

monotonic. To see that, observe that I-monotonicity of f amounts precisely
to conditions (a)-(l) as listed below: for all u 2 XNrf1;2g;
(a) f(x; x;u) 2 I(x; f(y; x;u)) \ I(x; f(v; x;u)) \ I(x; f(z; x;u))\
\I(x; f(x; y;u))\I(x; f(x; v;u))\I(x; f(x; z;u)) hence positing f(x; x;u) =

x is clearly consistent with (a);
(b) f(y; y;u) 2 I(y; f(x; y;u)) \ I(y; f(v; y;u)) \ I(y; f(z; y;u))\
\ I(y; f(y; x;u))\I(y; f(y; v;u))\I(y; f(z; y;u)) hence positing f(y; y;u) =

y is clearly consistent with (b) (and (a));
(c) f(v; v;u) 2 I(v; f(x; v;u)) \ I(v; f(y; v;u)) \ I(v; f(z; v;u))\
\ I(v; f(v; x;u))\I(v; f(y; v;u))\I(y; f(z; y;u)) hence positing f(v; v;u) =

v is similarly consistent with the whole of (a),(b) and (c);
(d) f(x; y;u) 2 I(x; f(y; y;u)) \ I(x; f(v; y;u)) \ I(x; f(z; y;u))\
\ I(y; f(x; x;u)) \ I(y; f(x; v;u)) \ I(y; f(x; z;u)) hence it must be the

case that f(x; y;u) = x since by construction I(x; f(v; y;u)) = I(x; x) = fxg
(also notice that since by construction x 2 I(y; v) that value is certainly
consistent with the whole of (a),(b),(c),(d) if ff(x; v;u); f(x; z;u)g � fx; vg:
so let us assume the latter inclusion as well);
(e) f(v; x;u) 2 I(v; f(x; x;u)) \ I(v; f(y; x;u)) \ I(v; f(z; x;u))\
\ I(x; f(v; y;u)) \ I(x; f(v; v;u)) \ I(x; f(v; z;u)) hence f(v; x;u) = x

since I(x; f(v; y;u)) = I(x; x) = fxg (notice that that value is certainly con-
sistent with the whole of (a),(b),(c)(d),(e) if ff(y; x;u); f(z; x;u)g � fx; yg
as well: then, let us also assume that inclusion);
(f) f(y; v;u) 2 I(y; f(x; v;u)) \ I(y; f(v; v;u)) \ I(y; f(z; v;u))\
\ I(v; f(y; x;u)) \ I(v; f(y; y;u)) \ I(v; f(y; z;u)) (notice that, there-

fore, positing f(y; v;u) = f(x; v;u) = f(z; v;u) = v is consistent with
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(a),(b),(c),(d),(e),(f) as introduced above);
(g) f(y; z;u) 2 I(y; f(x; z;u)) \ I(y; f(v; z;u)) \ I(y; f(z; z;u))\
\ I(z; f(y; x;u)) \ I(z; f(y; y;u)) \ I(z; f(y; v;u)) hence, f(y; z;u) = z

and f(x; z;u) = v are jointly consistent with (a),(b),(c),(d),(e),(f),(g) since
by assumption z 2 I(y; v).
(h) f(v; z;u) 2 I(v; f(x; z;u)) \ I(v; f(y; z;u)) \ I(v; f(z; z;u))\
\ I(z; f(v; x;u))\I(z; f(v; y;u))\I(z; f(v; v;u)): observe that, since v 2

I(x; z), f(v; z;u) = v is indeed consistent with (a),(b),(c),(d),(e),(f),(g),(h)
as introduced above;
(i) f(z; y;u) 2 I(z; f(x; y;u)) \ I(z; f(y; y;u)) \ I(z; f(v; y;u))\
\ I(y; f(z; x;u))\ I(y; f(z; v;u))\ I(y; f(z; z;u)) hence f(z; y;u) = y is

consistent with (a),(b),(c),(d),(e),(f),(g),(h),(i)
since y 2 I(x; z) = I(z; f(x; y;u)) = I(z; f(v; y;u));
(l) f(z; v;u) 2 I(z; f(x; v;u)) \ I(z; f(y; v;u)) \ I(z; f(v; v;u))\
\ I(v; f(z; x;u)) \ I(v; f(z; y;u)) \ I(v; f(z; z;u)) hence in view of (e)

f(z; v;u) = z and f(z; x;u) = y are jointly consistent with (a),(b),(c),(d),(e),
(f),(g),(h),(i),(l) since z 2 I(y; v) = I(v; f(z; x;u)) = I(v; f(z; y;u));
Thus, we have just shown that there indeed exists a voting rule f that

satis�es all of the requirements (a)-(l) above, and is therefore I-monotonic,
while at the same time being such that for all u =uNrf1;2g 2 XNrf1;2g

f(v; y;u) = x, and f(z; z;u) = z.
Now, take any pro�le (<i)i2N 2 UNI of I-unimodal total preorders on X

such that <1=<�and <2=<0.
Then, by construction, top(<1) = v, top(<2) = y, z �1 x, z �2 x,

f(v; y; (top(<i)i2Nrf1;2g)) = x, and f(z; z; (top(<i)i2Nrf1;2g)) = z. It follows
that f is not coalitionally strategy-proof, yet in view of Lemma 1 f is (indi-
vidually) strategy-proof, a statement that contradicts our general hypothesis.

One of the simplest examples of a convex idempotent space that fails
to satisfy MAE is the interval space (X; I) induced by the Boolean lattice
22 = (f0; 1; x; yg ;_;^) by taking X = f0; 1; x; yg and de�ning I by the rule
I(a; b) = fc 2 X : a ^ b 6 c 6 a _ bg where u 6 v if and only if u = u ^ v.
Indeed, the results of Savaglio, Vannucci (2012) imply equivalence failure in
such an interval space (and, more generally, in any interval space induced
by a bounded median semilattice that is not a chain). Now, as it is well-
known, the interval spaces thus induced by distributive lattices are another
prominent class of median interval spaces (along with the interval spaces of
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trees). Notice however that since both Hamming graphs and partial cubes
typically include cubes, their (non-median) interval spaces also violate MAE
and therefore -precisely as the interval space of a Boolean distributive lattice
2K with K >1- admit nontrivial nondictatorial strategy-proof voting rules
(such as rule f as de�ned in the proof of Theorem 5) that are not coalition-
ally strategy-proof. Indeed, in view of the proof of Theorem 5 (and as also
suggested by Corollary 4 above), if a given convex idempotent interval space
fails to satisfy MAE then there exists a nontrivial nondictatorial strategy-
proof voting rule on the full unimodal domain of that space that admits at
least four distinct outcomes, and is manipulable by some coalitions. There-
fore Theorem 5 con�rms that, generally speaking, �unimodal�equivalence of
simple and coalitional strategy-proofness fails to hold in certain important
classes of interval spaces, both median and non-median.

4 Concluding remarks

It should be emphasized that the su¢ cient condition for equivalence of simple
and coalitional strategy-proofness of voting rules on full unimodal domains
that has been established in the present paper is in fact quite general. As
repeatedly mentioned above, Interval Anti-Exchange (IAE) is shared by all
trees and indeed by all linear geometries but is characteristic of a much larger
class of convex idempotent interval spaces. Therefore, our results provide
signi�cant information concerning problems of strategy-proof location in a
vast class of networks.
We have also established that any convex idempotent interval space where

the foregoing �unimodal� equivalence obtains must satisfy Minimal Anti-
Exchange (MAE), which in turn implies that such equivalence fails to hold in
certain convex idempotent interval spaces, both median and non-median (and
that such spaces admit the existence of nontrivial nondictatorial strategy-
proof voting rules with at least four distinct outcomes on their full unimodal
domains). It remains to be seen whether or not some convex, idempotent
interval spaces that satisfy MAE while violating IAE do also support such
an equivalence of simple and coalitional strategy-proofness of voting rules on
full unimodal domains.
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