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Abstract

The B-effectivity function of a strategic game form G describes the
decision power of coalitions under G as contingent on the ability of
each coalition to predict the behaviour of the complementary coalition.
An effectivity function F is S-playable if there exists a strategic game
form G such that E is the S-effectivity function of G.

It is shown that whenever the player set and the outcome set are
finite an effectivity function E is §-playable if and only if F is both
outcome-monotonic and polar-superadditive. Moreover, the underly-
ing strategic game form only needs ‘small’ strategy spaces, whose size
is linear in the size of the monotonic co-basis of E.

As a by-product of that result, a few new characterizations of tight
finite effectivity functions are also obtained.

JEL Classification Numbers: C62, C70, D72.



1 Introduction

Both strategic and coalitional game forms purport to describe the relevant
‘rules of the game’, but to a different degree of detail. Strategic game forms
provide information about ‘who can do what and by which means/actions’,
while coalitional game forms just provide information about ‘who can do
what’. Effectivity functions are the main components of coalitional game
forms, describing the events in outcome space that coalitions are able to en-
force. An effectivity function -and the associated coalitional game form- can
be attached to a strategic game form in several ways, but the two most widely
known and used are by far the a-rule and the -rule. The a-rule -resulting
in the a-effectivity function of the given strategic game form- declares an
event A enforceable by a certain coalition S' if there exists a strategy profile
for its players that will invariably result in an outcome that is consistent
with event A, independently of the strategies chosen by other players. By
contrast, the S-rule —resulting in the S-effectivity function of the given strate-
gic game form- declares an event A enforceable by a certain coalition S if
for each strategy profile chosen by members of the complementary coalition
there exists a strategy profile for players of S that will result in an outcome
that is consistent with event A.

That observation immediately raises the converse representation issue,
namely: what effectivity functions are a-playable i.e. can be represented
as the a-effectivity function of an underlying strategic game form? What
effectivity functions are S-playable i.e. can be represented as the [S-effectivity
function of an underlying strategic game form? What effectivity functions
are tight i.e. are both a-playable and S-playable with respect to the same
strategic game form?

Such a representation problem has been quite extensively studied and
solved for finite a-playable EFFs (see e.g. Moulin (1983), Otten, Borm, Stor-
cken and Tijs (1995), Peleg (1998), Boros, Elbassioni, Gurvich and Makino
(2010)) and for finite tight EFFs i.e. S-playable EFFs that are also a-playable
with respect to the same strategic game form (see Moulin (1983)), but it has
been virtually ignored for finite B-playable EFFs (clearly, an EFF E may be
p-playable but not a-playable).

The main aim of the present note is to fill this gap in the literature by
providing a simple characterization of the entire class of finite [B-playable
EFFs . We also obtain, as a by-product, a few alternative characterizations



of tight finite effectivity functions.

2 Characterizing [-playable effectivity func-
tions

A strategic game form is an array G = (I, X, (S;)ier, g) where I, X, S; are
nonempty sets denoting the player set, the outcome set, and the strategy
set of player i € I, respectively, and g € X% denotes the (surjective)
strategic outcome function of G. A coalitional game form is an array
I'= (1, X, F) where I, X are nonempty sets denoting the player set and the
outcome set, and E € 222" _with 2 := {0,1}, E(K, X) = E(I, A) = 1 and
E(K,0) = E(®,A) =0 for any K C I and A C X- denotes the effectivity
function (EFF) of T' . Indeed, in view of the natural bijection between
2f % 2% and 2/9X | an effectivity function E € 22" *2" may be equivalently
regarded as a Boolean function E € 22" (see Crama, Hammer (2011) for
a thorough, up-to-date treatment of Boolean functions). If E, ' € 227 we
also write F < E’ whenever E(S) < E'(S) for each S € 2%.

Whenever [ and X are clearly fixed, it is not uncommon -and totally
innocent- to identify G and I with g and E.

While it turns out that effectivity functions (and coalitional game forms)
can be attached to strategic game forms by several distinct rules, the two
following ones, first introduced by Moulin and Peleg (1982), have played a
prominent role in the extant literature:

(a-rule) forany K C I, A C X, Eg‘(K, A) = 1iff there exists xx € T;cxS;
such that g(zk,zn k) € A for each xpx € e xSi Ey is the a-EFF of g¢.

(B-rule) forany K C [, A C X, Eg(K, A) = 1iff for each zp\x € e\ xS
there exists rx € IL;cxS; such that g(zx,xn k) € A: Eg is the 8-EFF of g.

An effectivity function E is a-playable iff there exists a strategic game
form G = (I, X, (Si)ic1, g) such that £ = E, and -playable iff there exists
a strategic game form G = (I, X, (S;)e1, g) such that E = Egﬁ. Furthermore,
an effectivity function F is tight iff there exists a strategic game form G =
(I,X,(Si)ier, g) such that E = EY = EF.

The following properties of EFFs will play a crucial role in the ensuing
analysis: an EFF E € 22" is

outcome-monotonic iff for each B C B’ C X,

E(K,B) =1 implies E(K,B') = 1;



player-monotonic iff for each K C K’ C I,
E(K,B) =1implies E(K', B)=1;

monotonic iff it is both outcome-monotonic and player-monotonic;

superadditive iff for each B C B’ C X, K C K' C I: E(K,B) =
E(K',B')=1and KNK' = imply E(KUK', BN B') =1,

polar-superadditive iff foreach BC B'C X, K CK'C[: FE(K,B) =
E(K',B)=0and KUK’ = I imply E(K N K', BU B') = 0;

k-superadditive (for any finite integer & > 2) iff for each

{(K;,B;):j€J} C E 1) such that |J'| <k, if K; N K; = for any
J,J" € J',j # s then E(Ujer Kj, Njey Bj) = 1;

fully superadditive iff it is k—superadditive for each k, 2 < k <
[E7H1);

k-polar-superadditive (for any finite integer k > 2) iff for each

{(Ky,By) : h € H} C E7Y(0) such that |H'| < k , if K, UK}y = [ for
any h,h' € H',h # h/, then E(ﬂheHlKh, Uth/Bh) = 0;

fully polar-superadditive iff it is k—polar-superadditive for each k,
2< k< |ETY0);

upper acyclic iff for each {(K;,B;):j € J'} CE (1), f K;NK; =0
for any j,j' € J',j # j', then N;jep B; # 0;

upper polar-acyclic iff for each {(K}, By) : h € H'} C E~1(0), if K}, U
Ky =1 for any h,h' € H',h # I/, then Upcg B, # X;

regular iff foreach A BC X, K CI: E(K,A)=1and E(I]\K,B) =1
imply AN B # 0;

maximal iff for each A C X, K C I: E(K,A) = 0 implies that there
exists B C X such that F(I \ K,B) =1and AN B = .

Remark 1 Polar-superadditivity is also used by Abdou and Keiding (1991)
under the label ‘*-superadditivity’, and by Gurvich (1992) where it is also de-
noted as ‘transadditivity’. Upper acyclic effectivity functions are introduced
and used by Abdou and Keiding (1991), and by Otten et al.(1995). They
are also used by Boros et al. (2010) where they are denoted as ‘weakly su-
peradditive’ effectivity functions. Notice that in some of the literature either
EFFs are not defined over the empty set (see e.g. Gardenfors (1981), Peleg
(1984), Otten et al. (1995)) or the normalization E(D) = () is preferred (see
e.g. Moulin and Peleg (1982), Moulin (1983), Abdou and Keiding (1991),
Peleg and Peters (2010)). The normalization E(0) = {X} adopted here is
also used by Peleg (1998) and by Boros et al.(2010), and will be shown below



to be in fact very convenient. Both normalizations are explicitly considered
by Gurvich (1992).

The foregoing properties are not independent. In particular, it is easily
checked the following

Claim 2 (i) If EFF E is superadditive then it is also player-monotonic,
reqular and k-superadditive (for any finite integer k > 2) . If, moreover, the
player set I is finite, then a superadditive EFF E is also fully superadditive
and upper acyclic; (ii) if EFF E is polar-superadditive then it is also player-
monotonic, maximal and k-polar-superadditive (for any finite integer k > 2).
If, moreover, both the player set I and the outcome set X are finite, then a
polar-superadditive E is also fully polar-superadditive and upper polar-acyclic.

Proof. (i) Let E be superadditive. If E(K,A) =1 and K C K’ then K N
(K’ K) = @ while of course F(K’ \ K, X) = 1. Thus, by superadditivity,
E(K',A) = 1 hence player-monotonicity holds. Also, if A,B C X, K C [
are such that F(K,A) = 1 and F(I \ K,B) = 1 then by superadditivity
E(I,ANn B) =1 whence AN B # &, and regularity holds. Next, consider
any family {(K}, B):h € H} C E~'(1) such that K, N K;y = & for any
h,h' € H, h # h'. Therefore, by superadditivity E(K, U Ky, B, N By) =
1 for any h,h' € H. Then take any h" € H \ {h,h'}. Clearly, (K, U
Kh/) N Kh// = (Kh N Kh//) U (Kh/ N Kh//) = @, hence by superadditivity
again E(Kh U Kh/ U Kh//, Bh N Bh/ N Bh//) = 1. It follows that, by induction,
E is k-superadditive for any finite integer k£ > 2. If, moreover, I is finite,
any family {(Kj, By) : h € H'} C E7'(1) such that K, N K}, = @ for any
h,h' € H' ) h # h' must be finite. Thus, F is also fully superadditive. But
then, take any {(Kj, B;) : j € J'} C E~'(1), such that K; N K; = () for any
J,j € J',j# 7. Then, by full superadditivity of F, E(Upeg Kpn, ey Br) =
1, whence Npeg By, # @. It follows that E is upper acyclic.

(ii) Let EFF E be polar-superadditive. To see that player-monotonicity
holds, take any K, K’ C I, B C X such that E(K',B) = 0 and K C K/,
and consider [ \ (K’ \ K). Since F is an EFF, E(I \ (K’ \ K),0) = 0.
Moreover, (I\ (K'\ K))UK' =1 hence by polar superadditivity E(K, B) =
E(I\(K'\K))NnK',B) = 0. To check maximality, suppose that on the
contrary there exist A C X, K C [ such that £(K,A) =0 and forall B C X,
if AN B =0 then E(I\ K, B) = 0: thus, in particular, E(I \ K, X N A) =0
hence by polar-superadditivity E(@, X) = E(KN(INK),AU(X N\ A)) =0,



a contradiction. Now, consider any family {(K}, B):he€ H} C E~(0)
such that K, U K, = [ for any h,h' € H, h # h’. Therefore, by polar
superadditivity E(Kj, N Ky, B, U By) = 0 for any h,h' € H. Then take any
h” S H\ {h, h/} Clearly, (Kh N Kh/) U Khll = (Kh U Kh//) N (Kh/ U Kh//) = I,
hence by polar—superadditivity again E(Kh N Kh/ N Kh//, Bh U Bh/ U Bh//) =
0. It follows that, by induction, E' is k-superadditive for any finite integer
k > 2. Moreover, if I and X are finite then for any {(K}, By):h € H'} C
E~=Y0), |H'| = k for some finite integer ¥ is hence, by k-polar superadditivity,
E(Nher Kn,Unen By) = 0 i.e. E is fully polar-superadditive. It also follows
that Upeg B, # X hence E is upper polar-acyclic as well. =

Remark 3 Notice that the normalization E(2,X) = 1 plays a key role in
the foregoing proof that polar-superadditivity implies maximality. In fact,
under the alternative choice of normalization E(2, X) = 0, mazimality can
only hold in a weaker form, for KA, @ #+# K C I, & # A C X. Some parts
of the foregoing claim -and of Proposition 3 below- can be found in Gurvich
(1991), where they are stated without proof. Notice, however, that Gurvich
(1991) employs both a weaker notion of regularity and a stronger notion
of maximality than those adopted in the present paper: thus, some care is
needed when making comparisons between the content of Claim 2 above -and
Proposition 3 below- and their relevant counterparts in Gurvich (1991).

The following simple, useful proposition can also be easily established:

Proposition 4 (i) If EFF E is superadditive and maximal then it is also
polar-superadditive; (ii) if EFF E is polar-superadditive and regular then it
18 also superadditive.

Proof. (i) Suppose F is superadditive and maximal but not polar-superadditive
i.e. there exist K1, Ky C I, A, B C X such that F(K;,A) = E(K,y,B) =0,
KUKy =1 and E(K1N Ky, AUB) = 1. Thus, by maximality, (I~ K, X \
A)=FE(I~NKy,X~\B)=1.Since (INK))N(INKy) =1\ (KiUK;) =,

it follows that superadditivity entails E(I ~ (K1 N K3), X N~ (AU B)) =
E(INK)U (I N Ky), (X NA)N(X N\ B)) =0. However, by regularity as
implied by superadditivity of £ (in view of Claim 2 (i)), E(K;NK,, AUB) =1
entails F(I ~ (K1 N K3), X \ (AU B)) =0, a contradiction.
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(ii) Suppose FE is polar-superadditive and regular but not superadditive
i.e. there exist K1, Ky C I, A, B C X such that F(K;,A) = E(K,, B) =1,
KiNKy; =@ and E(K;UK, ANB) = 0. Thus, by regularity, E(I~ K, X \
A) = E(I\K27X\B) = 0. Since (I\Kl)U(I\K2> = Iﬂ(KlﬂKQ) = I,
it follows that polar-superadditivity entails F(/ ~\ (K3 UKs), X N (ANB)) =
E(INK)N({INKs), (X NA)U(X N\ B)) =0. However, by maximality
as implied by polar-superadditivity of F (in view of Claim 2 (ii)), F(K; U
Ky, AN B) =0 entails E(I \ (K; U K3),X ~ (AN B)) =1, a contradiction.
[

The following notions will also play a key role in the ensuing analysis.
For any EFF E it can be defined its (monotonic) basis

(K,B): E(K,B)=1and E(K',B") =0
B(E) ={(K;,B;):jeJ} = for each (K', B") # (K, B) such that

K'CK and BCB
and its (monotonic) co-basis
(K,B): E(K,B)=0and E(K',B") =1
B*(E) :={(K,By):he H} = for each (K', B") # (K, B) such that
KCK and BC DB

Clearly, if E is monotonic then it is uniquely defined both by its basis
and by its co-basis, indeed o

(i) E(K,B) = 1 if and only if there exists (K, B) € B(FE) such that
KCKand BCB

and

(ii) E(K,B) = 0 if and only if there exists (K*, B*) € B*(F) such that
K C K*and B C B*

Therefore, one may safely represent any monotonic EFF E either by its
basis B(E) = {(K;, B;) : j € J} as indexed by J = J(E) or equivalently by
its co-basis B*(E) = {(Kp, Bp) : h € H} as indexed by H = H(E).

It is well-known and easily checked that both £’ and Eg are monotonic,
and EY is also superadditive. Conversely, it was established by Moulin (1983)
that if £ € 22"%2° (with finite I and X) is a monotonic and superadditive
EFF then there exists a strategic game form g such that F' = E’. Oftten et
al. (1995) and Peleg (1998) subsequently extended that result to the case of
an infinite A. Unfortunately, all the relevant proofs in the foregoing works
rely on a g with huge strategy spaces (namely, for each i € I, the size of S; is
doubly exponential in the size of B(E)). However, the following remarkable
result due to Boros et al. (2010) establishes that a strategic game form with
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a much smaller strategy space -linear in |B(FE)|- is also sufficient to ensure
a-playability of an outcome-monotonic, superadditive effectivity function,
namely

Theorem 5 (Boros et al. (2010)): An EFF E with finite I, X is outcome-

monotonic and superadditive if and only if there exists a strategic game form

G = (I, X,(Si)ie1,9) such that E = Ey and
1Si|=1{jeJ:E(K;,Bj)=1andic K;}|+ |X]| for eachi € I.

Remark 6 Actually, Boros et al. (2010) do not distinguish between monotonic-
ity and the weaker outcome-monotonicity property, and state their result -in a
slightly redundant way- in terms of ‘monotonic and superadditive EFFs’. The
strategic game form G = (I, X, (S;)ier,9) with |B(E)|-linear strategy spaces
which does the job is defined as follows: first, take B(E) := {(K;,B;) : j € J}
and for each i € I and j € J such that i € K; posit Y = (i, K;), and
YiB(E) = {yf 1j€J} and Zy = {0,1,2, .., 2, ..} such that |Zx| = |X|, and
define S; = YZ-B(E) UZx (the strategy set of playeri). For any strategy profile
s =(8)ier € H Si and any K C I, a strategy subprofile (s;)icr\k € H S;
iel iel\K

is said to be proper if there exists j € J such that K = K; and s; = yf €
YiB(E) for eachi € K.

Next, take g : H S; — X such that for any s = (8;)ier € H S; and any

i€l iel

K Cl,

if (si)icx is proper and K = K then g((s;)ier) € Bj.

It should also be emphasized here that -in view of Claim 2 (i)- Theorem
3 above can be easily extended to the case of a countable outcome set.

As mentioned above, the corresponding issue concerning general con-
ditions for (-playability of (finite) effectivity functions has been virtually
ignored. To be sure, Moulin (1983) has an early result characterizing -for
finite I and X- the class of tight effectivity functions by the combination of
monotonicity, superadditivity and maximality. However, generally speaking,
a [-playable effectivity function need not be a-playable or tight (and con-
versely an a-playable effectivity function need not be S-playable). To check
that statement, observe that (i) the a-effectivity function of a strategic game



form is -by construction- monotonic and regular, (ii) the S-effectivity func-
tion of a strategic game form is -by construction- monotonic and maximal,
and consider the following

Example 7 Let |I| > 2,|X| > 2,and E € 2*"" be defined as follows:
E(K,0) = E(0,A) =0 for each K C N and each A C X, and E(K,A) =
E,X) =1 for each K, A such that ) # K C I, (0 # A C X. It is im-
mediately checked that E s a well-defined effectivity function that is not
reqular (indeed, take x,y € X, x # y, and K, K' C I such that ) #
K#1#K #0 and KUK' = I: then, E(K,{z}) = E(K',{y}) = 1).
Next, consider E' € 22" defined as follows: E'(K,A) =0 for each K C I
and AC X, and E'(I,A) = E(K,X) =1 foreach K CI and @ # A C X.
Clearly, E' is a well-defined effectivity function that is not mazimal (in-
deed, E'(K,A) = F'(K',B) = 0 for any K, K' C I , A/B C X such
that ) # K # 1 # K' # (0, KUK =1,0 # A # X # B # () and
AUB = X). Now, consider the strategic game form (I, X, (S;)ien:gpi)
modeling the ‘proportional lottery’ (or ‘random dictatorship’) voting mech-
anism (see e.g. Danilov and Sotskov (2002), Vannucci (2008)), where for
allv € I, 5 = X X {z €ly:z< 10’“} for some positive integer k, and
Gpi((Si)ier) = x(si+) with i* = Zz(si)(m0d|]|), for all (s;)icr € WierS;. It
i€l
18 immediately checked that EO‘ =FE and Eﬁ = E. Hence E' is a-playable

but not B-playable, while E is B -playable but not a-playable.
It turns out that the following [-counterpart to Theorem 5 holds:

Theorem 8 An EFF E with finite I and X is outcome-monotonic and

polar-superadditive if and only if there exists a strategic game form g €

XWerS such that E = E and|S;| = |[{h € H : E(Ky,By,) =0 and i ¢ K} |+
| X| for each i € I.

Proof. First, notice again that if £ = Egﬁ for some strategic game form g
then F is obviously outcome-monotonic (indeed, monotonic) by construction.
To see that in that case F is also polar-superadditive, observe that for any
A,BC X andany K, K' C I'if E(K, A) = EY(K', B) = 0 then by definition

there exist sp\x € H S; and tp g € H S; such that for all sx € H

e\ K i€\ K' €K
S; and for all tx € H Si , g(s) ¢ A and ¢(t) ¢ B, whence by definition
€K'



again E(I\ K, X \ A) = EX(I \ K', X \ B) = 1. Moreover, if K UK' =1
then (I \ K)N(I\ K') = I\ (KUK') = @. But then, since Ey -as it
is well-known and immediately checked- is superadditive (for any strategic
game form g), it follows that E5((1\ K)U (I \ K'), (X \ (AUB))) = Eg((I\
(KNK'),(X\(AUB))) = 1 thus by definition Ef(KNK', AUB) = 0, hence
polar superadditivity of Eg holds.

Conversely, assume E is polar-superadditive and outcome-monotonic (hence
monotonic, in view of Claim 2 (ii)), and let

{(Kpn,By) : h € H} := B*(E) be the co-basis of £ as defined above.

Now, for any i € I and any h € H such that i ¢ K}, posit y? = (i, Kj),
VP =Lyl h e H) and Zx = {0,1,2, ., 2, ..} such that |Zyx| = | X|, and
define S; = YiB*(E) UZx (the strategy set of player 7).

For any strategy profile s = (s;)ies € H S; and any K C I, a strategy

i€l
subprofile (s;)icnkx € H S; is said to be co-proper if there exists h € H
i€l\K

such that K = K} and s; =y € YiB*(E) foreachi e I\ K.

Next, take ¢ : H S; — X such that for any s = (s;)ies € H S; and any

iel iel

K Cl,

if (si)icr\k is co-proper and K = Kj, then g((si)icr) ¢ Ba-

To see that such a requirement is well-defined for any polar-superadditive
E, notice that for any s = (s;)ie; € HSi and any K, K’ C I such that

iel

both (s;)icx and (s;);ex are co-proper, if K # K’ then, by construction,
KNK' =gie. I\K)U(I\K')=1.

Therefore, since F is polar-superadditive and outcome-monotonic hence
in particular upper polar-acyclic, it follows that for any s = (s;);es € H Si,

iel

if H'(s) = {h € H : (si)ienk, is co—proper}, then Upepr(s)Br # X.

As a consequence, it must be the case that for each s € H Si, g(s) €

icl

X\ Unenr(s)Bn # @.

In particular, let us denote Iz, (s) = {i € I : s; € Zx}. Then posit X \
Unen'(s)Brn = {l’o(o), ....,xo(m)} where o is a suitable permutation of X and

m is a non-negative integer, and g(s) = y(m+) with m* = ( Z s;) mod m.

’iGIZX (S)
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Now, take any (K}, By) such that E(Kj, B,) = 0 and choose sf = y
for each i € I\ Kj,. Thus, (s})icnk, is co-proper hence by construction
g(s) ¢ By, for any s € H S; with (s;)ienk, = (57)ienk,- It follows that, by

icl
definition, Egﬂ(Kh, Bp) =0 i.e. Egﬂ < E.

To check the reverse inequality, let X C I, B C X be such that Eg (K,B) =
0, namely there exists xpx € Iicp\ xS such that g(xk,xnx) ¢ B for each
rg € ILicxS;. Let H'(xpg) = {h € H: K C Ky, and z\g, is co—proper}.
We may assume without loss of generality that xp g itself is co-proper.

Clearly, by construction, g(xxk,zn k) ¢ Bk, and therefore Eg(Kh, By) =
E(Ky,By) = 0 for any h € H'(xp k). But then, polar-superadditivity of £
implies F(K, UheH:(II\K)BKh) = 0. Since by construction B C Unep(uy, ) Br,»
it follows that E(K,B) = 0 by monotonicity of E whence E < EF as well.
[

It should also be emphasized that the proof of Theorem 8 relies heavily
on finiteness of I and X, and does not extend- say- to the case of a countable
outcome set.

Remark 9 Observe that outcome-monotonicity is in fact independent of both
superadditivity and polar-superadditivity. To see this, take I = {1,2,3}, X
with | X| > 3 and suppose X is endowed with a total order <. Then consider
the strategic game form G, = (I, X,(S; = X)ier, ) where p @ X? — X
denotes the median (ternary) operation on X. Then, define the function
Eepuy : 2"°% — 2 as defined by the following rule: for all K C I,A C X,
Eewu (K, A) = 1 iff there exists v € X such that {,u(xK, YIK) YK € XI\K} =
A. Clearly, by construction, FEey)(K,A) = 1 4ff |[K| > 2 and |A| =1, or
|K| <1 and A =X . Thus, E is not outcome-monotonic. However, it is
easily checked that E is both superadditive and polar-superadditive: indeed,
suppose that Eey)(K,A) = Eepuy(K',B) = 1. Then -by construction of
Eewuy- KNK' # @, hence superadditivity trivially holds. Moreover, suppose
that Eepu)(K, A) = Eepuy)(K', B) = 0 and KUK’ = I. Then, either K| > 2
or |K'| > 2 (or both). If |K| > 2 and |K'| > 2 then it must be the case that
A = B = @: therefore Epy(KNK',AUB) = Eepy(KNK', @) =0. If
|K|>2 and |[K'| <1 (|K'| > 2 and |K| < 1, respectively) then A = & and
B # X (A+# X and B = &, respectively), hence in any case AUB # X and
|KNK'| < 1: thus, By (KNK', AUB) = 0, and polar-superadditivity also
holds.
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As a straightforward corollary to Theorems 5 and 8, a few characteriza-
tions of tight effectivity functions with finite player and outcome set are also
obtained, namely

Corollary 10 Let E be an effectivity function with finite I and X. Then,
the following statements are equivalent:

(i) E is outcome-monotonic, superadditive and polar-superadditive;

(i) E is outcome-monotonic, polar-superadditive and regular;

(iii) E is outcome-monotonic, superadditive and mazimal;
(iv) E is tight.

Proof. (i) = (i7) It follows immediately from Claim 2-(i).

(i1) = (dit) It follows immediately from Claim 2-(ii) and Proposition
3-(ii).

(1i1) = (ii) It follows immediately from Claim 2-(i) and Proposition
3-(i).

(131) => (iv) If F is outcome-monotonic, superadditive and maximal then
it is also monotonic (in view of Claim 2-(i)), hence by Theorem 5 above it
is a-playable i.e. there exists a strategic game form (with outcome function)
g such that E = EZ. Now, let K C I,A C X be such that Eg(K,A) =1,
namely for each y; x € XK there exists zr € XX such that g(zx, yr k) €
A: thus, by definition of E, (I \ K, X \ A) = 0 whence, by maximality
and monotonicity, £§ (K, A) = 1. Since obviously E < Egﬁ for any strategic
outcome function g, it follows that Ej = Eg . Therefore, £ = EJ = Eg ie.
E is tight.

(1v) = (i) Trivial: indeed, if there exists a strategic game form such that
E = EY = EP then E is obviously monotonic. Moreover, let E(K, A) =
E(K',B) =1 with K N K" = @. Then, since E = E{ there exist x5 € X*
and 25 € X&' such that for each y; x € XK and each y; g € XK
9(rx,yr k) € A and g(xkr,yr k) € B. Therefore, g(vx, vk, Y1 (kukn) €
ANBie E(KUK',ANB) =1 and superadditivity follows. Also E = EJ
entails polar-superadditivity of F as established by the first part of the proof
of Theorem 8 above. m

Notice that the equivalence between statements (iii) and (iv) is essentially
due to Moulin (1983) (see also Otten et al. (1995)).
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3 Concluding remarks

A characterization of finite S-playable effectivity functions has been provided.
That characterization parallels to a considerable extent the recent character-
ization of finite a-playable effectivity functions due to Boros et al (2010),
with polar-superadditivity (as opposed to superadditivity) and a particular
normalization condition for the empty coalition jointly playing a pivotal role
in it. However, the present characterization of §-playable finite effectivity
functions does not apply to countable outcome sets.
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