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Abstract

The �-e¤ectivity function of a strategic game form G describes the
decision power of coalitions under G as contingent on the ability of
each coalition to predict the behaviour of the complementary coalition.
An e¤ectivity function E is �-playable if there exists a strategic game
form G such that E is the �-e¤ectivity function of G:
It is shown that whenever the player set and the outcome set are

�nite an e¤ectivity function E is �-playable if and only if E is both
outcome-monotonic and polar-superadditive. Moreover, the underly-
ing strategic game form only needs �small�strategy spaces, whose size
is linear in the size of the monotonic co-basis of E.
As a by-product of that result, a few new characterizations of tight

�nite e¤ectivity functions are also obtained.
JEL Classi�cation Numbers: C62, C70, D72.
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1 Introduction

Both strategic and coalitional game forms purport to describe the relevant
�rules of the game�, but to a di¤erent degree of detail. Strategic game forms
provide information about �who can do what and by which means/actions�,
while coalitional game forms just provide information about �who can do
what�. E¤ectivity functions are the main components of coalitional game
forms, describing the events in outcome space that coalitions are able to en-
force. An e¤ectivity function -and the associated coalitional game form- can
be attached to a strategic game form in several ways, but the two most widely
known and used are by far the �-rule and the �-rule. The �-rule -resulting
in the �-e¤ectivity function of the given strategic game form- declares an
event A enforceable by a certain coalition S if there exists a strategy pro�le
for its players that will invariably result in an outcome that is consistent
with event A, independently of the strategies chosen by other players. By
contrast, the �-rule �resulting in the �-e¤ectivity function of the given strate-
gic game form- declares an event A enforceable by a certain coalition S if
for each strategy pro�le chosen by members of the complementary coalition
there exists a strategy pro�le for players of S that will result in an outcome
that is consistent with event A.
That observation immediately raises the converse representation issue,

namely: what e¤ectivity functions are �-playable i.e. can be represented
as the �-e¤ectivity function of an underlying strategic game form? What
e¤ectivity functions are �-playable i.e. can be represented as the �-e¤ectivity
function of an underlying strategic game form? What e¤ectivity functions
are tight i.e. are both �-playable and �-playable with respect to the same
strategic game form?
Such a representation problem has been quite extensively studied and

solved for �nite �-playable EFFs (see e.g. Moulin (1983), Otten, Borm, Stor-
cken and Tijs (1995), Peleg (1998), Boros, Elbassioni, Gurvich and Makino
(2010)) and for �nite tight EFFs i.e. �-playable EFFs that are also �-playable
with respect to the same strategic game form (see Moulin (1983)), but it has
been virtually ignored for �nite �-playable EFFs (clearly, an EFF E may be
�-playable but not �-playable).
The main aim of the present note is to �ll this gap in the literature by

providing a simple characterization of the entire class of �nite �-playable
EFFs . We also obtain, as a by-product, a few alternative characterizations
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of tight �nite e¤ectivity functions.

2 Characterizing �-playable e¤ectivity func-
tions

A strategic game form is an array G = (I;X; (Si)i2I ; g) where I;X; Si are
nonempty sets denoting the player set, the outcome set, and the strategy
set of player i 2 I, respectively, and g 2 X�i2ISi denotes the (surjective)
strategic outcome function of G. A coalitional game form is an array
� = (I;X;E) where I;X are nonempty sets denoting the player set and the
outcome set, and E 2 22I�2X -with 2 := f0; 1g, E(K;X) = E(I; A) = 1 and
E(K; ;) = E(;; A) = 0 for any K � I and A � X- denotes the e¤ectivity
function (EFF) of � . Indeed, in view of the natural bijection between
2I � 2X and 2I[X , an e¤ectivity function E 2 22I�2X may be equivalently
regarded as a Boolean function E 2 22I[X (see Crama, Hammer (2011) for
a thorough, up-to-date treatment of Boolean functions). If E;E 0 2 22I[X we
also write E 6 E 0 whenever E(S) � E 0(S) for each S 2 2X .
Whenever I and X are clearly �xed, it is not uncommon -and totally

innocent- to identify G and � with g and E.
While it turns out that e¤ectivity functions (and coalitional game forms)

can be attached to strategic game forms by several distinct rules, the two
following ones, �rst introduced by Moulin and Peleg (1982), have played a
prominent role in the extant literature:
(�-rule) for anyK � I; A � X, E�g (K;A) = 1 i¤there exists xK 2 �i2KSi

such that g(xK ; xInK) 2 A for each xInK 2 �i2InKSi: E�g is the �-EFF of g.
(�-rule) for anyK � I; A � X, E�g (K;A) = 1 i¤ for each xInK 2 �i2InKSi

there exists xK 2 �i2KSi such that g(xK ; xInK) 2 A: E�g is the �-EFF of g.
An e¤ectivity function E is �-playable i¤ there exists a strategic game

form G = (I;X; (Si)i2I ; g) such that E = E�g , and �-playable i¤ there exists
a strategic game form G = (I;X; (Si)i2I ; g) such that E = E�g . Furthermore,
an e¤ectivity function E is tight i¤ there exists a strategic game form G =
(I;X; (Si)i2I ; g) such that E = E�g = E

�
g .

The following properties of EFFs will play a crucial role in the ensuing
analysis: an EFF E 2 22I[X is
outcome-monotonic i¤ for each B � B0 � X,

E(K;B) = 1 implies E(K;B0) = 1;
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player-monotonic i¤ for each K � K 0 � I,
E(K;B) = 1 implies E(K 0; B) = 1;

monotonic i¤ it is both outcome-monotonic and player-monotonic;
superadditive i¤ for each B � B0 � X;K � K 0 � I: E(K;B) =

E(K 0; B0) = 1 and K \K 0 = ; imply E(K [K 0; B \B0) = 1;
polar-superadditive i¤ for each B � B0 � X;K � K 0 � I : E(K;B) =

E(K 0; B0) = 0 and K [K 0 = I imply E(K \K 0; B [B0) = 0;
k-superadditive (for any �nite integer k � 2) i¤ for each
f(Kj; Bj) : j 2 J 0g � E�1(1) such that jJ 0j � k, if Kj \Kj0 = ; for any

j; j0 2 J 0; j 6= j0, then E([j2J 0Kj;\j2J 0Bj) = 1;
fully superadditive i¤ it is k�superadditive for each k, 2 � k �

jE�1(1)j;
k-polar-superadditive (for any �nite integer k � 2) i¤ for each
f(Kh; Bh) : h 2 H 0g � E�1(0) such that jH 0j � k , if Kh [ Kh0 = I for

any h; h0 2 H 0; h 6= h0, then E(\h2H0Kh;[h2H0Bh) = 0;
fully polar-superadditive i¤ it is k�polar-superadditive for each k,

2 � k � jE�1(0)j;
upper acyclic i¤ for each f(Kj; Bj) : j 2 J 0g � E�1(1), if Kj \Kj0 = ;

for any j; j0 2 J 0; j 6= j0, then \j2J 0Bj 6= ;;
upper polar-acyclic i¤ for each f(Kh; Bh) : h 2 H 0g � E�1(0), if Kh [

Kh0 = I for any h; h0 2 H 0; h 6= h0, then [h2H0Bh 6= X;
regular i¤ for each A;B � X;K � I: E(K;A) = 1 and E(I nK;B) = 1

imply A \B 6= ;;
maximal i¤ for each A � X;K � I: E(K;A) = 0 implies that there

exists B � X such that E(I nK;B) = 1 and A \B = ;.

Remark 1 Polar-superadditivity is also used by Abdou and Keiding (1991)
under the label �*-superadditivity�, and by Gurvich (1992) where it is also de-
noted as �transadditivity�. Upper acyclic e¤ectivity functions are introduced
and used by Abdou and Keiding (1991), and by Otten et al.(1995). They
are also used by Boros et al. (2010) where they are denoted as �weakly su-
peradditive�e¤ectivity functions. Notice that in some of the literature either
EFFs are not de�ned over the empty set (see e.g. Gärdenfors (1981), Peleg
(1984), Otten et al. (1995)) or the normalization E(;) = ; is preferred (see
e.g. Moulin and Peleg (1982), Moulin (1983), Abdou and Keiding (1991),
Peleg and Peters (2010)). The normalization E(;) = fXg adopted here is
also used by Peleg (1998) and by Boros et al.(2010), and will be shown below
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to be in fact very convenient. Both normalizations are explicitly considered
by Gurvich (1992).

The foregoing properties are not independent. In particular, it is easily
checked the following

Claim 2 (i) If EFF E is superadditive then it is also player-monotonic,
regular and k-superadditive (for any �nite integer k � 2) . If, moreover, the
player set I is �nite, then a superadditive EFF E is also fully superadditive
and upper acyclic; (ii) if EFF E is polar-superadditive then it is also player-
monotonic, maximal and k-polar-superadditive (for any �nite integer k � 2).
If, moreover, both the player set I and the outcome set X are �nite, then a
polar-superadditive E is also fully polar-superadditive and upper polar-acyclic.

Proof. (i) Let E be superadditive. If E(K;A) = 1 and K � K 0 then K \
(K 0 rK) = ? while of course E(K 0 rK;X) = 1. Thus, by superadditivity,
E(K 0; A) = 1 hence player-monotonicity holds. Also, if A;B � X;K � I
are such that E(K;A) = 1 and E(I n K;B) = 1 then by superadditivity
E(I; A \ B) = 1 whence A \ B 6= ?, and regularity holds. Next, consider
any family f(Kh; Bh) : h 2 Hg � E�1(1) such that Kh \ Kh0 = ? for any
h; h0 2 H, h 6= h0. Therefore, by superadditivity E(Kh [ Kh0 ; Bh \ Bh0) =
1 for any h; h0 2 H. Then take any h

00 2 H n fh; h0g. Clearly, (Kh [
Kh0) \ Kh00 = (Kh \ Kh00) [ (Kh0 \ Kh00) = ?, hence by superadditivity
again E(Kh [Kh0 [Kh00 ; Bh \Bh0 \Bh00) = 1. It follows that, by induction,
E is k-superadditive for any �nite integer k � 2. If, moreover, I is �nite,
any family f(Kh; Bh) : h 2 H 0g � E�1(1) such that Kh \ Kh0 = ? for any
h; h0 2 H 0; h 6= h0 must be �nite. Thus, E is also fully superadditive. But
then, take any f(Kj; Bj) : j 2 J 0g � E�1(1), such that Kj \Kj0 = ; for any
j; j0 2 J 0; j 6= j0. Then, by full superadditivity of E, E([h2HKh;\h2HBh) =
1, whence \h2HBh 6= ?. It follows that E is upper acyclic.
(ii) Let EFF E be polar-superadditive. To see that player-monotonicity

holds, take any K;K 0 � I; B � X such that E(K 0; B) = 0 and K � K 0,
and consider I n (K 0 n K). Since E is an EFF, E(I n (K 0 n K); ;) = 0.
Moreover, (I n (K 0 nK))[K 0 = I hence by polar superadditivity E(K;B) =
E(I n (K 0 n K)) \ K 0; B) = 0. To check maximality, suppose that on the
contrary there exist A � X;K � I such that E(K;A) = 0 and for all B � X,
if A\B = ; then E(I nK;B) = 0: thus, in particular, E(I nK;X rA) = 0
hence by polar-superadditivity E(?; X) = E(K \ (IrK); A[ (XrA)) = 0,
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a contradiction. Now, consider any family f(Kh; Bh) : h 2 Hg � E�1(0)
such that Kh [ Kh0 = I for any h; h0 2 H, h 6= h0. Therefore, by polar
superadditivity E(Kh \Kh0 ; Bh [Bh0) = 0 for any h; h0 2 H. Then take any
h
00 2 H n fh; h0g. Clearly, (Kh \Kh0)[Kh00 = (Kh [Kh00)\ (Kh0 [Kh00) = I,
hence by polar-superadditivity again E(Kh \Kh0 \Kh00 ; Bh [ Bh0 [ Bh00) =
0. It follows that, by induction, E is k-superadditive for any �nite integer
k � 2. Moreover, if I and X are �nite then for any f(Kh; Bh) : h 2 H 0g �
E�1(0), jH 0j = k for some �nite integer k is hence, by k-polar superadditivity,
E(\h2HKh;[h2HBh) = 0 i.e. E is fully polar-superadditive. It also follows
that [h2HBh 6= X hence E is upper polar-acyclic as well.

Remark 3 Notice that the normalization E(?; X) = 1 plays a key role in
the foregoing proof that polar-superadditivity implies maximality. In fact,
under the alternative choice of normalization E(?; X) = 0, maximality can
only hold in a weaker form, for K;A, ? 6= K � I, ? 6= A � X. Some parts
of the foregoing claim -and of Proposition 3 below- can be found in Gurvich
(1991), where they are stated without proof. Notice, however, that Gurvich
(1991) employs both a weaker notion of regularity and a stronger notion
of maximality than those adopted in the present paper: thus, some care is
needed when making comparisons between the content of Claim 2 above -and
Proposition 3 below- and their relevant counterparts in Gurvich (1991).

The following simple, useful proposition can also be easily established:

Proposition 4 (i) If EFF E is superadditive and maximal then it is also
polar-superadditive; (ii) if EFF E is polar-superadditive and regular then it
is also superadditive.

Proof. (i) SupposeE is superadditive and maximal but not polar-superadditive
i.e. there exist K1; K2 � I, A;B � X such that E(K1; A) = E(K2; B) = 0,
K1[K2 = I and E(K1\K2; A[B) = 1. Thus, by maximality, E(IrK1; Xr
A) = E(IrK2; XrB) = 1. Since (IrK1)\ (IrK2) = Ir (K1[K2) = ?,
it follows that superadditivity entails E(I r (K1 \ K2); X r (A [ B)) =
E((I rK1) [ (I rK2); (X r A) \ (X r B)) = 0. However, by regularity as
implied by superadditivity ofE (in view of Claim 2 (i)), E(K1\K2; A[B) = 1
entails E(I r (K1 \K2); X r (A [B)) = 0, a contradiction.
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(ii) Suppose E is polar-superadditive and regular but not superadditive
i.e. there exist K1; K2 � I, A;B � X such that E(K1; A) = E(K2; B) = 1,
K1\K2 = ? and E(K1[K2; A\B) = 0. Thus, by regularity, E(IrK1; Xr
A) = E(I rK2; X rB) = 0. Since (I rK1)[ (I rK2) = I \ (K1 \K2) = I,
it follows that polar-superadditivity entails E(Ir (K1[K2); Xr (A\B)) =
E((I rK1) \ (I rK2); (X r A) [ (X r B)) = 0. However, by maximality
as implied by polar-superadditivity of E (in view of Claim 2 (ii)), E(K1 [
K2; A \B) = 0 entails E(I r (K1 [K2); X r (A \B)) = 1, a contradiction.

The following notions will also play a key role in the ensuing analysis.
For any EFF E it can be de�ned its (monotonic) basis

B(E) := f(Kj; Bj) : j 2 Jg =

8<:
(K;B) : E(K;B) = 1 and E(K 0; B0) = 0
for each (K 0; B0) 6= (K;B) such that

K 0 � K and B0 � B

9=;
and its (monotonic) co-basis

B�(E) := f(Kh; Bh) : h 2 Hg =

8<:
(K;B) : E(K;B) = 0 and E(K 0; B0) = 1
for each (K 0; B0) 6= (K;B) such that

K � K 0 and B � B0

9=;.
Clearly, if E is monotonic then it is uniquely de�ned both by its basis

and by its co-basis, indeed
(i) E(K;B) = 1 if and only if there exists ( eK; eB) 2 B(E) such thateK � K and eB � B
and
(ii) E(K;B) = 0 if and only if there exists (K�; B�) 2 B�(E) such that

K � K� and B � B�
Therefore, one may safely represent any monotonic EFF E either by its

basis B(E) = f(Kj; Bj) : j 2 Jg as indexed by J = J(E) or equivalently by
its co-basis B�(E) = f(Kh; Bh) : h 2 Hg as indexed by H = H(E).
It is well-known and easily checked that both E�g and E

�
g are monotonic,

and E�g is also superadditive. Conversely, it was established by Moulin (1983)
that if E 2 22I�2X (with �nite I and X) is a monotonic and superadditive
EFF then there exists a strategic game form g such that E = E�g . Otten et
al. (1995) and Peleg (1998) subsequently extended that result to the case of
an in�nite A. Unfortunately, all the relevant proofs in the foregoing works
rely on a g with huge strategy spaces (namely, for each i 2 I; the size of Si is
doubly exponential in the size of B(E)). However, the following remarkable
result due to Boros et al. (2010) establishes that a strategic game form with
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a much smaller strategy space -linear in jB(E)j- is also su¢ cient to ensure
�-playability of an outcome-monotonic, superadditive e¤ectivity function,
namely

Theorem 5 (Boros et al. (2010)): An EFF E with �nite I;X is outcome-
monotonic and superadditive if and only if there exists a strategic game form
G = (I;X; (Si)i2I ; g) such that E = E�g and
jSij = j fj 2 J : E(Kj; Bj) = 1 and i 2 Kjg j+ jXj for each i 2 I.

Remark 6 Actually, Boros et al. (2010) do not distinguish between monotonic-
ity and the weaker outcome-monotonicity property, and state their result -in a
slightly redundant way- in terms of �monotonic and superadditive EFFs�. The
strategic game form G = (I;X; (Si)i2I ; g) with jB(E)j-linear strategy spaces
which does the job is de�ned as follows: �rst, take B(E) := f(Kj; Bj) : j 2 Jg
and for each i 2 I and j 2 J such that i 2 Kj posit y

j
i = (i;Kj), and

Y
B(E)
i =

�
yji : j 2 J

	
and ZX = f0; 1; 2; ::; zk; ::g such that jZX j = jXj, and

de�ne Si = Y
B(E)
i [ZX (the strategy set of player i). For any strategy pro�le

s = (si)i2I 2
Y
i2I

Si and any K � I, a strategy subpro�le (si)i2InK 2
Y
i2InK

Si

is said to be proper if there exists j 2 J such that K = Kj and si = yji 2
Y
B(E)
i for each i 2 K.
Next, take g :

Y
i2I

Si ! X such that for any s = (si)i2I 2
Y
i2I

Si and any

K � I,
if (si)i2K is proper and K = Kj then g((si)i2I) 2 Bj.
It should also be emphasized here that -in view of Claim 2 (i)- Theorem

3 above can be easily extended to the case of a countable outcome set.

As mentioned above, the corresponding issue concerning general con-
ditions for �-playability of (�nite) e¤ectivity functions has been virtually
ignored. To be sure, Moulin (1983) has an early result characterizing -for
�nite I and X- the class of tight e¤ectivity functions by the combination of
monotonicity, superadditivity and maximality. However, generally speaking,
a �-playable e¤ectivity function need not be �-playable or tight (and con-
versely an �-playable e¤ectivity function need not be �-playable). To check
that statement, observe that (i) the �-e¤ectivity function of a strategic game
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form is -by construction- monotonic and regular, (ii) the �-e¤ectivity func-
tion of a strategic game form is -by construction- monotonic and maximal,
and consider the following

Example 7 Let jIj � 2; jXj � 2,and E 2 22
I[X

be de�ned as follows:
E(K; ;) = E(;; A) = 0 for each K � N and each A � X, and E(K;A) =
E(;; X) = 1 for each K;A such that ; 6= K � I, ; 6= A � X. It is im-
mediately checked that E is a well-de�ned e¤ectivity function that is not
regular (indeed, take x; y 2 X, x 6= y, and K;K 0 � I such that ; 6=
K 6= I 6= K 0 6= ; and K [ K 0 = I: then, E(K; fxg) = E(K 0; fyg) = 1).
Next, consider E 0 2 22I[X de�ned as follows: E 0(K;A) = 0 for each K � I
and A � X, and E 0(I; A) = E(K;X) = 1 for each K � I and ? 6= A � X.
Clearly, E 0 is a well-de�ned e¤ectivity function that is not maximal (in-
deed, E 0(K;A) = E 0(K 0; B) = 0 for any K;K 0 � I , A;B � X such
that ; 6= K 6= I 6= K 0 6= ;, K [ K 0 = I, ; 6= A 6= X 6= B 6= ; and
A [ B = X). Now, consider the strategic game form (I;X; (Si)i2N ; gpl)
modeling the �proportional lottery� (or �random dictatorship�) voting mech-
anism (see e.g. Danilov and Sotskov (2002), Vannucci (2008)), where for
all i 2 I, Si = X �

�
z 2 Z+ : z � 10k

	
for some positive integer k, and

gpl((si)i2I) = x(si�) with i� =
X
i2I
z(si)(mod jIj), for all (si)i2I 2 �i2ISi. It

is immediately checked that E�gpl = E
0 and E�gpl = E. Hence E

0 is �-playable
but not �-playable, while E is �-playable but not �-playable.

It turns out that the following �-counterpart to Theorem 5 holds:

Theorem 8 An EFF E with �nite I and X is outcome-monotonic and
polar-superadditive if and only if there exists a strategic game form g 2
X�i2ISi such that E = E�g and jSij = j fh 2 H : E(Kh; Bh) = 0 and i =2 Khg j+
jXj for each i 2 I.

Proof. First, notice again that if E = E�g for some strategic game form g
then E is obviously outcome-monotonic (indeed, monotonic) by construction.
To see that in that case E is also polar-superadditive, observe that for any
A;B � X and anyK;K 0 � I if E�g (K;A) = E�g (K 0; B) = 0 then by de�nition

there exist sInK 2
Y
i2InK

Si and tInK0 2
Y

i2InK0

Si such that for all sK 2
Y
i2K

Si and for all tK0 2
Y
i2K0

Si , g(s) =2 A and g(t) =2 B, whence by de�nition
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again E�g (I nK;X n A) = E�g (I nK 0; X n B) = 1. Moreover, if K [K 0 = I
then (I n K) \ (I n K 0) = I n (K [ K 0) = ?. But then, since E�g -as it
is well-known and immediately checked- is superadditive (for any strategic
game form g), it follows that E�g ((I nK)[ (I nK 0); (X n (A[B))) = E�g ((I n
(K\K 0); (X n (A[B))) = 1 thus by de�nition E�g (K\K 0; A[B) = 0, hence
polar superadditivity of E�g holds.
Conversely, assumeE is polar-superadditive and outcome-monotonic (hence

monotonic, in view of Claim 2 (ii)), and let
f(Kh; Bh) : h 2 Hg := B�(E) be the co-basis of E as de�ned above.
Now, for any i 2 I and any h 2 H such that i =2 Kh posit yhi = (i;Kh),

Y
B�(E)
i =

�
yhi : h 2 H

	
and ZX = f0; 1; 2; ::; zk; ::g such that jZX j = jXj, and

de�ne Si = Y
B�(E)
i [ ZX (the strategy set of player i).

For any strategy pro�le s = (si)i2I 2
Y
i2I

Si and any K � I, a strategy

subpro�le (si)i2InK 2
Y
i2InK

Si is said to be co-proper if there exists h 2 H

such that K = Kh and si = yhi 2 Y
B�(E)
i for each i 2 I nK.

Next, take g :
Y
i2I

Si ! X such that for any s = (si)i2I 2
Y
i2I

Si and any

K � I,
if (si)i2InK is co-proper and K = Kh then g((si)i2I) =2 Bh.
To see that such a requirement is well-de�ned for any polar-superadditive

E, notice that for any s = (si)i2I 2
Y
i2I
Si and any K;K 0 � I such that

both (si)i2K and (si)i2K0 are co-proper, if K 6= K 0 then, by construction,
K \K 0 = ? i.e. (I nK) [ (I nK 0) = I.
Therefore, since E is polar-superadditive and outcome-monotonic hence

in particular upper polar-acyclic, it follows that for any s = (si)i2I 2
Y
i2I

Si,

if H 0(s) =
�
h 2 H : (si)i2InKh

is co-proper
	
, then [h2H0(s)Bh 6= X.

As a consequence, it must be the case that for each s 2
Y
i2I

Si, g(s) 2

X n [h2H0(s)Bh 6= ?.
In particular, let us denote IZX (s) = fi 2 I : si 2 ZXg. Then posit X n

[h2H0(s)Bh =
�
x�(0); ::::; x�(m)

	
where � is a suitable permutation of X and

m is a non-negative integer, and g(s) = x�(m�) withm� = (
X

i2IZX (s)

si)modm.
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Now, take any (Kh; Bh) such that E(Kh; Bh) = 0 and choose s�i = yhi
for each i 2 I n Kh. Thus, (s�i )i2InKh

is co-proper hence by construction

g(s) =2 Bh for any s 2
Y
i2I

Si with (si)i2InKh
= (s�i )i2InKh

. It follows that, by

de�nition, E�g (Kh; Bh) = 0 i.e. E�g 6 E.
To check the reverse inequality, letK � I; B � X be such thatE�g (K;B) =

0, namely there exists xInK 2 �i2InKSi such that g(xK ; xInK) =2 B for each
xK 2 �i2KSi. Let H 0(xInK) =

�
h 2 H : K � Kh and xInKh

is co-proper
	
.

We may assume without loss of generality that xInK itself is co-proper.
Clearly, by construction, g(xK ; xInK) =2 BKh

and therefore E�g (Kh; Bh) =
E(Kh; Bh) = 0 for any h 2 H 0(xInK). But then, polar-superadditivity of E
impliesE(K;[h2H0(xInK)BKh

) = 0. Since by constructionB � [h2H0(xInK)BKh
,

it follows that E(K;B) = 0 by monotonicity of E whence E 6 E�g as well.

It should also be emphasized that the proof of Theorem 8 relies heavily
on �niteness of I and X, and does not extend- say- to the case of a countable
outcome set.

Remark 9 Observe that outcome-monotonicity is in fact independent of both
superadditivity and polar-superadditivity. To see this, take I = f1; 2; 3g, X
with jXj � 3 and suppose X is endowed with a total order �. Then consider
the strategic game form G� = (I;X; (Si = X)i2I ; �) where � : X3 ! X
denotes the median (ternary) operation on X: Then, de�ne the function
Eex(�) : 2

I[X ! 2 as de�ned by the following rule: for all K � I; A � X,
Eex(�)(K;A) = 1 i¤ there exists xK 2 XK such that

�
�(xK ; yIrK) : yIrK 2 XIrK

	
=

A. Clearly, by construction, Eex(�)(K;A) = 1 i¤ jKj � 2 and jAj = 1, or
jKj � 1 and A = X . Thus, E is not outcome-monotonic. However, it is
easily checked that E is both superadditive and polar-superadditive: indeed,
suppose that Eex(�)(K;A) = Eex(�)(K

0; B) = 1. Then -by construction of
Eex(�)- K \K 0 6= ?, hence superadditivity trivially holds. Moreover, suppose
that Eex(�)(K;A) = Eex(�)(K 0; B) = 0 and K [K 0 = I. Then, either jKj � 2
or jK 0j � 2 (or both). If jKj � 2 and jK 0j � 2 then it must be the case that
A = B = ?: therefore Eex(�)(K \ K 0; A [ B) = Eex(�)(K \ K 0;?) = 0. If
jKj � 2 and jK 0j � 1 (jK 0j � 2 and jKj � 1, respectively) then A = ? and
B 6= X (A 6= X and B = ?, respectively), hence in any case A[B 6= X and
jK \K 0j � 1: thus, Eex(�)(K \K 0; A[B) = 0, and polar-superadditivity also
holds.
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As a straightforward corollary to Theorems 5 and 8, a few characteriza-
tions of tight e¤ectivity functions with �nite player and outcome set are also
obtained, namely

Corollary 10 Let E be an e¤ectivity function with �nite I and X. Then,
the following statements are equivalent:
(i) E is outcome-monotonic, superadditive and polar-superadditive;
(ii) E is outcome-monotonic, polar-superadditive and regular;
(iii) E is outcome-monotonic, superadditive and maximal;
(iv) E is tight.

Proof. (i) =) (ii) It follows immediately from Claim 2-(i).
(ii) =) (iii) It follows immediately from Claim 2-(ii) and Proposition

3-(ii).
(iii) =) (ii) It follows immediately from Claim 2-(i) and Proposition

3-(i).
(iii) =) (iv) If E is outcome-monotonic, superadditive and maximal then

it is also monotonic (in view of Claim 2-(i)), hence by Theorem 5 above it
is �-playable i.e. there exists a strategic game form (with outcome function)
g such that E = E�g . Now, let K � I; A � X be such that E�g (K;A) = 1,
namely for each yIrK 2 XIrK there exists xK 2 XK such that g(xK ; yIrK) 2
A: thus, by de�nition of E�g , E

�
g (I rK;X r A) = 0 whence, by maximality

and monotonicity, E�g (K;A) = 1: Since obviously E
�
g 6 E�g for any strategic

outcome function g, it follows that E�g = E
�
g . Therefore, E = E

�
g = E

�
g i.e.

E is tight.
(iv) =) (i) Trivial: indeed, if there exists a strategic game form such that

E = E�g = E�g then E is obviously monotonic. Moreover, let E(K;A) =
E(K 0; B) = 1 with K \K 0 = ?. Then, since E = E�g there exist xK 2 XK

and xK0 2 XK0
such that for each yIrK 2 XIrK and each yIrK0 2 XIrK0

:
g(xK ; yIrK) 2 A and g(xK0 ; yIrK0) 2 B. Therefore, g(xK ; xK0 ; yIr(K[K0)) 2
A \ B i.e. E(K [K 0; A \ B) = 1 and superadditivity follows. Also E = E�g
entails polar-superadditivity of E as established by the �rst part of the proof
of Theorem 8 above.
Notice that the equivalence between statements (iii) and (iv) is essentially

due to Moulin (1983) (see also Otten et al. (1995)).
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3 Concluding remarks

A characterization of �nite �-playable e¤ectivity functions has been provided.
That characterization parallels to a considerable extent the recent character-
ization of �nite �-playable e¤ectivity functions due to Boros et al (2010),
with polar-superadditivity (as opposed to superadditivity) and a particular
normalization condition for the empty coalition jointly playing a pivotal role
in it. However, the present characterization of �-playable �nite e¤ectivity
functions does not apply to countable outcome sets.
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