
Estimating population size by means of mark-resighting counts: 
theoretical considerations and empirical results 

 
 

L. Fattorini ( , M. Marcheselli ( , A. Monaco (  and C. Pisani  )1 )1 )2 )1(

 
 

)1(  Dipartimento di Metodi Quantitativi, Università di Siena, Siena (Italy) 
)2(  Agenzia Regionale Parchi, Regione Lazio, Roma (Italy)  

 
 
 
Summary  
 

1. For many species and circumstances, mark-resighting procedures constitute valid 
alternatives to capture-recapture methods. Indeed, resightings are generally cheaper to 
acquire than physically recapturing and rehandling the animals, especially when 
radiotelemetry or other tracking devices are available.  
2. In order to estimate population abundance, the joint hypergeometric maximum likelihood 
estimator, the Minta-Mangel estimator and the Bowden estimator are implemented in 
NOREMARK, software which has become very popular with biologists in the past decade.  
3. In this paper, the basic assumptions regarding these widely applied procedures are 
delineated and discussed. Some shortcomings of the software are outlined, and a simulation 
study is performed in order to investigate the robustness of the estimators under failure of 
the assumptions.  
4. Theoretical considerations and simulation results motivate the use of the Bowden 
estimator, which when marks are quite evenly distributed among groups, constitutes the 
sole reliable method, offering computational simplicity and robustness. An application to a 
case study is considered. 
 
Keywords: Bowden estimator, Joint hypergeometric estimator, Minta-Mangel estimator,  
NOREMARK software, simulation studies. 
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1. Introduction 
 

The estimation of size for a geographically and demographically closed but free-ranging 
population is a common problem encountered by wildlife biologists. The earliest 
approaches to this problem were developed in the framework of capture-recapture 
techniques. For basic reviews on capture-recapture methods, see Otis et al. (1978).  
Mark-resighting methods constitute technologically advanced approaches to abundance 
estimation, usually involving radio transmitters or other tracking devices for marking 
animals. Arnason, Schwarz & Gerrard (1991) first adopted the terms marking and sighting 
experiments to identify techniques in which a sample of marked animals is formed in the 
population and subsequent resightings of marked and unmarked animals are used to 
estimate the population size.  
More in detail, in mark-resighting experiments, a sample of animals is captured and marked 
(usually with radios) and resightings (rather than recaptures) are performed during 
subsequent occasions. Obviously, the advantage of mark-resighting with respect to capture-
recapture procedures is that resightings are generally cheaper to acquire than physically 
recapturing and rehandling the animals and they are also less disruptive to the animals and 
their environment. Moreover, the use of radios allows for recognition of the marked 
animals that have died or emigrated from the study area, in such a way that the number of 
marked animals present in the study region is monitored throughout the survey period. 
Unfortunately, the decrease of field effort is accompanied by a considerable reduction of 
the collected information with respect to that obtained using capture-recapture methods. 
Indeed, mark-resighting methods only involve counting the animals spotted during the 
resighting occasions and identifying those that are marked. Hence, the huge list of capture-
recapture methodologies based on the capture histories of each captured animal cannot be 
adopted with mark-resighting data, in which only the resighting histories of the marked 
animals are available. 
Mark-resighting methods have been tested with a known population of mule deer (Bartman 
et al. 1987) and subsequently used with white-tailed deer (Rice & Harder 1977), mountain 
sheep (Furlow, Haderlie & Van den Berge 1981, Neal et al. 1993), desert bighorn sheep 
(Leslie & Douglas 1979 and Leslie & Douglas 1986), black and grizzly bears (Miller, 
Becker & Ballard 1987), coyotes (Hein & Andelt 1995) and harbour seals (Ries, Hiby & 
Reijnders 1998) among others. 
In order to estimate population abundance by means of mark-resighting data, the joint 
hypergeometric maximum likelihood estimator, the Minta-Mangel estimator and the 
Bowden estimator are implemented in NOREMARK (see White 1996), software which has 
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become very popular with biologists in the past decade. Even if widely applied, the 
assumptions underlying these estimators are not clearly delineated in literature and they are 
likely not well recognized by biologists. Moreover, no variance estimation is performed in 
NOREMARK for both joint hypergeometric maximum likelihood and Minta-Mangel 
estimators. In the first case, confidence intervals are constructed directly from the 
likelihood function by means of the Hudson (1971) criterion, while in the second case they 
are constructed from a Monte Carlo distribution. However, several simulation studies 
highlight the unreliability of these intervals, which usually show coverage levels much 
smaller than their nominal counterparts.  
The aim of this paper is to identify and discuss the basic assumptions actually needed for 
the three estimators adopted in NOREMARK. The Minta-Mangel procedure is also 
criticized from both computational and theoretical points of view and an alternative pseudo-
maximum likelihood estimator is proposed together with a conservative variance estimator. 
Moreover, since the assumptions underlying all the estimation criteria are very unrealistic, a 
simulation study is performed to investigate the robustness of these estimators when mark-
resighting data arises from more realistic scenarios. Finally, NOREMARK is checked in a 
practical application to estimate the size of a population of chamois Rupicapra rupicapra 
(Linnaeus, 1758) females in the Paneveggio - Pale di San Martino Natural Park (Trentino, 
eastern Italian Alps). The resulting estimates are then interpreted on the basis of the 
theoretical and empirical findings achieved in the work. 
Throughout the paper, N denotes the abundance of a closed population, say P, on a study 
area and constitutes the target parameter, M denotes the size of the initial portion, say M, of 
animals captured and marked, U MN −=  denotes the size of the unmarked portion, say 

M-PU = , and T denotes the number of resighting occasions performed in the 
experiment. Moreover, nt denotes the number of animals resighted at occasion t and mt 
denotes the number of marked animals resighted out of the nt , while Tnnn ++= K1  
represents the overall number of resightings and Tmmm ++= K1

n
 represents the overall 

number of resightings for marked animals, in such a way that m−  gives the overall 
number of resightings for unmarked animals. Finally,  denotes the total number of 
resightings for animal i in T occasions,  is the number of marked animals spotted x 
times ( ) while 

ix

xM
T,,1, Kx 0= x and  respectively denote the mean and the variance of 

the ’s for . It is worth noting that  will be referred to as the sampling variance 
when the sum of squared deviations is divided by M, while it is referred to as the unbiased 
sampling variance if 

2
xs

six M∈i 2
x

1−M  is adopted instead of M. 
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2. NOREMARK estimation procedures 
 

2.1 Joint hypergeometric maximum likelihood estimator  
 

The early estimator adopted in NOREMARK is the so-called joint hypergeometric 
maximum likelihood estimator (JHE), proposed first by Bartmann et al. (1987), and 
subsequently investigated by White & Garrot (1990), Neal et al. (1993) and White (1993). 
The JHE is the value  which maximizes the joint hypergeometric likelihood function of 

, say  
JHN̂
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For 1>T , the maximum likelihood estimate is obtained by means of an iterative numerical 
procedure. On the other hand, when 1=T , the estimate reduces to the well-known Lincoln-
Peterson index (Le Cren 1965). 
It is at once apparent that (1) represents the actual likelihood of  if and only if the 
following assumptions hold: 

Tmm ,,1 K

a) at occasion t a pre-fixed number of  animals is selected out of the N  by means of 
simple random sampling without replacement ( t

tn
T,,1K= );  

b) the T selections are performed independently. 
Indeed, under assumptions a) and b),  constitute T independent hypergeometric 
random variables each with parameters N, M and n , where M and  are known 
quantities established when planning the mark-resighting experiment and N is the sole 
unknown quantity to be estimated. Any violation of one or both these assumptions leads to 
likelihood deviating from (1). Practically speaking, assumptions a) and b) entail that, at 
each time, the animal resightings should be performed as if  balls were randomly drawn 
without replacement from an urn containing M  black balls (marked animals) and U white 
balls (unmarked animals) (on this topic, see also Seber, 1982, section 3.2.2). Moreover, 
after each sampling occasion, the selected balls would be replaced in the urn in order to 
make the subsequent selections independent from the previous ones. 

Tmm ,,1 K

t Tnn ,,1 K

tn

As to assumption a), animals are spread over the study area in such a way that there is no 
possibility of sampling them by means of SRSWOR. In most situations encounter schemes 
are adopted, in which the sampled animals are those sighted from T paths (transects or 
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observational points) thrown onto the study area in accordance with a planned design. As a 
consequence, the number of animals selected/resighted at each occasion cannot be pre-fixed 
but rather it constitutes a random variable. Thus, under encounter schemes, each  
invariably differs from the hypergeometric distribution in which n  is a fixed parameter.  

tm

t

Notwithstanding this, most of the literature regarding JHE claims that the crucial 
assumption underlying (1) is the use of schemes ensuring the same resighting probability 
for each animal at any occasion. White & Garrot (1990, p 263) state that “Each individual 
must have the same probability of capture or sighting as every other individual on a 
particular occasion”. Subsequently, Neal et al. (1993, p.437) emphasize that “all animals 
(both marked and unmarked) must have the same, independent probability of being 
captured on a trapping occasion or of being sighted during an individual sighting 
occasion” and White (1993, p.92) outlines the need for “… extensive simulations of the 
JHE, evaluating the robustness of the estimator to heterogeneity of sighting probabilities, 
and to lack of independence of sightings”, thus introducing the assumption of independence 
among animal sightings, which is unnecessary in this framework. Moreover, when 
introducing the NOREMARK software, White (1996, p.50) says that “This estimator 
assumes that each animal in the population has the same sighting probability on an 
occasion as every other animal (no individual heterogeneity), but sighting probabilities can 
vary across occasions” and that “Sighting probability is assumed the same for all animals 
on any particular survey, and animals are assumed to be sampled without replacement” 
and White & Shenk (2001, p. 336) state that JHE assumes “… equal sighting probabilities 
among animals on a particular occasion. In addition, animals are assumed to be sampled 
without replacement”, even if the without-replacement sampling is clearly in contrast with 
the independence previously claimed by White. 
These sentences may be highly misleading for a biologist who is not trained in sampling 
theory. Indeed, many encounter schemes can be constructed in which animals enter the 
sample without replacement and with the same inclusion/resighting probabilities (see e.g. 
the line transect scheme and the variable circular plot scheme described in Thompson 1992, 
Chapter 17). Notwithstanding this, all these schemes greatly differ from SRSWOR. Indeed, 
when SRSWOR is performed at any time t, each animal has a pre-fixed inclusion 
probability equal to n . On the other hand, in an encounter scheme ensuring the same 
inclusion/resighting probability for each animal, this probability turns out to be  
where  is unknown and depends on many factors (e.g. the nature of encounter scheme, 
detectability conditions, animal density and behaviour, observer ability and so on). 
Moreover under SRSWOR any couple of animals has a joint inclusion probability equal to 

, while in an encounter scheme these probabilities obviously depend 

Nt /

})1

NnE t /)( ,
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on the relative locations of the two animals (e.g. two animals very far apart cannot be 
jointly included/resighted from the same observational point). Accordingly, the distribution 
of  may greatly differ from the hypergeometric model even in the presence of schemes 
ensuring equal sighting probabilities.  

tm

1m

1m

As a very simple example, consider an artificial population of 10=N  turtles settled in a 
square region of size 10  (see Fig. 1) and suppose that the turtles labelled as 2,3,6 and 9 
are marked, for a total of 

10×
4=M  marked animals. Moreover, the population is supposed to 

be sampled during a single resighting occasion ( 1=T ) by means of strip sampling in which 
a point is randomly selected on the baseline, a transect starting from that point 
perpendicular to the baseline is travelled and all the turtles lying in the strip of width 2 
centred at the transect are selected. Suppose also that all the turtles in the strip are spotted 
and that their movements are so slow relative to the observer’s progression down the 
transect, that they can be considered as immobile units. Table 1a and 1b respectively show 
the design (all the possible samples with their corresponding probabilities) arising from this 
encounter scheme as well as the resulting distribution of . It is at once apparent from 
Table 1a that the inclusion probability of each turtle (obtained as the sum of the 
probabilities of samples containing that turtle) invariably equals 0.2, while the second-order 
inclusion probability of each couple of turtles (obtained as the sum of the probabilities of 
samples containing that couple) strictly depends on the distance between the two animals. 
For example, the probability of jointly resighting turtles 3 and 4 turns out to be 0.10 while 
the probability of jointly resighting turtles 1 and 10 turns out to be 0. On the other hand, if a 
sample of  turtles were selected from the population by SRSWOR, then any of the 

possible samples would have an equal probability of 1 , in such a way that each 
turtle had an inclusion probability of 0.3 and each couple of turtles had joint inclusion 
probabilities of 1 . In this case, the resulting distribution of m  would be hypergeometric 
with parameter 

1m

/
31 =n

/

240 240
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1

4,10,3 === MNn , i.e. 30/5)0Pr( 1 ==m , , 
 and 

30/15)1Pr( 1 ==m
30/9=)2=Pr( 30/1)3Pr( 1 ==m . These probabilities deviate from the actual 

distribution of  conditional to 1m 31 =n , which on the basis of Table 1b turn out to be 
 and . Accordingly, even if strip sampling ensures an 

equal inclusion probability for each turtle, it greatly differs from SRSWOR. 
4/3=)1=Pr( 4/1=)2=Pr( 1m
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Table 1a. Sampling design arising from the strip sampling performed on the artificial 
population in Fig. 1. 
 

selected turtles probability 1n 1m
1 0.10 1 0 
1,2 0.10 2 1 
2,3 0.05 2 2 
2,3,5 0.05 3 2 
3,4,5 0.10 3 1 
4,5,6 0.05 3 1 
4,6 0.05 2 1 
6,7 0.10 2 1 
7,8 0.10 2 0 
8 0.05 1 0 
8,9 0.05 2 1 
9,10 0.15 2 1 
10 0.05 1 0 

 
 
 
Table 1b. Probability distribution of  and  arising from the strip sampling performed 
on the artificial population in Fig. 1. 

1n 1m

 

1n 1m probability
1 0 0.20 
2 0 0.10 
2 1 0.45 
2 2 0.05 
3 1 0.15 
3 2 0.05 
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Fig. 1. Spatial distribution and labels for an artificial population of ten turtles spread over a 
square region of size 10 . 10×
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Finally, as to assumption b), the independence between the T occasions turns out to be quite 
unrealistic and/or difficult to obtain when encounter sampling schemes are adopted. Indeed, 
in any encounter scheme, the probability of selecting/resighting an animal at time t 
obviously depends on its closeness to the path (transects or observational points) travelled 
by the observer. In turn, the animal position at time t may depend on its positions at the 
previous  times. Accordingly, even if the resightings among occasions were 
independent, conditional on the animal positions (for example this may be ensured by using 
transects or points independently thrown on the study area at each occasions), they may not 
be independent with respect to the animal movements during the survey period. 

1−t

Even this aspect is not clearly recognized in literature regarding JHE. For example, 
Bartman et al. (1987, p.42) say that “Because individual flights for each pasture were 
independent, the product of the hypergeometric likelihood function can be numerically 
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optimised to estimate N”. A very similar sentence is also contained in White & Garrot 
(1990, p.260).  
No estimation for the sampling variance of  is performed in NOREMARK software. 
Rather, as suggested by Bartman et al. (1987), a confidence interval for N is constructed 
directly from (1) by means of the Hudson (1971) procedure. The method is simply based on 
the fact that under assumptions a) and b), the quantity 

JHN̂

{ })()(2 JHN̂lNl −−
2

)1(χ
, where 

, is approximately distributed as a . Accordingly, if  
denotes the 

),,|(ln)( 1 TmmNLNl K=
)1(

2
1),1( αχ −

α− -quantile of the chi-square distribution with one degree of freedom, the 
set  
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constitutes a confidence region for N with approximate coverage )1( α− . Practically 
speaking, for unimodal likelihoods, (2) coincides with the interval obtained by drawing a 
line across the log-likelihood at the level 2)( 2

1)1( /N̂l ,JH αχ −−  and projecting the two 
intersections onto the x-axis. As pointed out by White & Garrot (1990, p.262), an advantage 
of this technique is that the lower bound of the resulting interval is never less than the 
minimum number of animals known to exist (i.e. the number of marked animals plus the 
largest number of unmarked animals resighted on any occasion). The obvious shortcoming 
is that the intervals are based on likelihoods of type (1) which do not constitute the actual 
likelihoods of mark-resighting data. 
 
2.2 Minta-Mangel estimator 
 

The other estimator adopted in NOREMARK is the so-called Minta-Mangel estimator 
(MME), proposed by Minta & Mangel (1989) and subsequently investigated by Neal et al. 
(1993) and White (1993). In order to introduce MME, denote by  the 
empirical resighting distribution observed for the M marked animals, where 

[ ]T
10 Tp,,p,p K=p

 

Tx
M
M

p x
x ,,1,0, K== . 

 
Then, a sequence of random variables  is sequentially generated from the discrete 
probability distribution defined by p until their sum (which in this framework constitutes a 
realization of the total number of resightings) equals or exceeds the actual number of 

K,X,X 21
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resightings  for unmarked animals in the T occasions. Obviously, the corresponding 
waiting time (i.e. the number of generated variables), say u, may be viewed as the number 
of unmarked animals giving rise to at least n-m resightings. Then, the procedure is repeated 
B times, obtaining , and the mode of the resulting Monte Carlo distribution, say 

mn −

Buu ,,K1
MMU~ , is taken as the estimate of U. Obviously, MMMM UMN ~~ +=  constitutes the final 

estimate of N. It is worth noting that in the implementation of the procedure adopted in 
NOREMARK, only the sequences whose sum is exactly equals to n-m are used (White, 
1996, p.51). 

NX,K

}mnX u −≥

mn )( −≥

}mnX u −=

1 ,X

K2,1

i

]T
T,πKπ=π

It is at once apparent that the Monte Carlo procedure leading to MME makes sense if and 
only if the following assumption holds:  

c) , constitute a set of iid random variables.  X ,1

Indeed, the primary aim of the Monte Carlo procedure proposed by Minta & Mangel (1989) 
is to determine empirically the probability distribution of the discrete random variable  
 

{ X:uU ++= K1inf     (3) 
 
with the support U . Alternatively, in the NOREMARK procedure, the random 
variable of interest is changed into  

T/

 
{ X:uU ++= K1inf     (4) 

 
However, when describing their Monte Carlo procedures, neither Minta & Mangel (1989, 
p.1751) nor White (1996, p.51) refer to any correlation structure adopted for sequentially 
generating the sequence  from p. Then, it is quite natural to deduce that these 
random variables are generated independently. However, since in this framework  
represent the number of resightings for the corresponding sequence of unmarked animals 

, then animal resightings are tacitly presumed to be independent events. Moreover, 
since the ’s are generated from the same distribution, then it is also tacitly assumed that 
they are equally distributed for all 

K2X
K21 , XX

X
U∈i . Finally, since the true common distribution, say 

is actually unknown, the empirical distribution p observed in the set of 
marked animals is adopted to generate the resightings of unmarked animals. Obviously, this 
makes sense only if the M marked animals have the same resighting distribution as the 
unmarked ones. Practically speaking, c) is assumed but never mentioned in both the works 
by Minta & Mangel (1989) and White (1996).  

[ 1 ,0 ,π

Moreover, it is worth noting that assumption c) also ensures that, for any sub-set M of M 
animals, the vector M constitutes a multinomial random vector with [ T

TMMM ,,, 10 K= ]
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parameters M and . Thus, assumption c) actually ensures that p turns out to be the 
minimum variance unbiased estimator of , irrespective of the sub-set M initially selected 
for capturing and marking the animals. 

π

π,

π

Any violation of assumption c) should lead to Monte-Carlo procedures less simple than the 
straightforward procedures proposed by Minta & Mangel (1989) or adopted in 
NOREMARK. Unfortunately, assumption c) turns out to be quite unrealistic when 
encounter sampling schemes are adopted to sample/resight animals. Indeed, even if the 
same resighting distribution for each animal in the population could be ensured (as already 
pointed out in section 2.1), the assumption of resighting independence is completely false 
in the presence of any tendency of the animals to aggregate, to defend territories or to be 
affected by a patchy environment. Indeed it is quite obvious that if a group is spotted, all 
the animals in the group are likely to be spotted. In this case the number of resightings for 
each animal cannot not be generated independently to obtain the empirical distribution of 
U. 
Surprisingly, the literature regarding MME completely neglects the need and the role of 
independence among resightings in the estimation criterion. For example, Minta & Mangel 
(1989, p.1741) assume that “The initial captures are a random sample of the population, 
and marked animals are identical to unmarked animals in detection or observability”, 
while it is apparent that if marked animals are identical to unmarked animals in detection 
or observability, then the (tacitly assumed) independence among animal resightings 
suffices to justify the use of p even if the M marked animals do not constitute a random 
sample from the population. No mention of the independence of resightings is contained in 
the subsequent articles regarding MME. 
Moreover, MME is often presented as a suitable alternative to JHE allowing for different 
resighting probabilities among animals. Neal et al. (1993) emphasize that MME “… should 
provide a method robust to heterogeneity of individual sighting probabilities” and White 
(1996) states that “The estimator does not assume that sighting probabilities are the same 
for each animal on a particular occasion …” (see also White & Shenk, 2001, p.333). These 
sentences may be highly misleading for a biologist not trained in statistical modelling. 
Indeed, they might be dangerously interpreted as if the Minta-Mangel and NOREMARK 
simulation procedures remain valid even when animals have different resighting 
distributions . Rather, these sentences must be correctly interpreted as 
generalizations of the well-known heterogeneity models (  models) which are widely 
applied in capture-recapture experiments (see e.g. Otis et al, 1978, p. 11).  Thus, 
generalizing Burnham & Overton (1978), suppose that the random vector 

, with  if animal i is spotted at time t and 

Nπ ,1 K

[ ]T
Ti

hM

1ii Z,,Z K=Z 1=tiZ 0=tiZ  otherwise, has a 
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probability generating function G );( iZ ϕs , where in turn [ ]TTiii ϕϕϕ ,,1 K=  is the vector of 
the resighting probabilities tiϕ  for animal i at occasion t. Moreover, suppose that the Z ’s 
are mutually independent for given 

i

Nϕϕ ,,1 K  and that Nϕϕ ,,1 K  are iid random vectors 
from a probability distribution );( θ⋅F . Accordingly, conditional on iϕ , each  
has the probability generating function 

iiX = Z1T

);( iZ sG)(siG ϕ1=  which varies with i. On the other 
hand, with respect to the possible realizations of iϕ , the probability generating function of 
each  turns out to be  iX

);θϕ();1 ϕ dF(sGZ);( θsXG ∫=

T
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Thus, even if the  may have heterogeneous distributions conditional on the resighting 
probability vectors, they have the same distribution when merged with respect to the 
random mechanism generating these probability vectors. 

iX

As previously pointed out, the primary aim of the Minta-Mangel and NOREMARK 
simulation procedures is to derive empirically the probability distribution of the discrete 
random variables (3) and (4), respectively. However, under assumption c), these variables 
constitute trivial generalizations of the Pascal waiting time random variable. Thus, their 
probability distributions can be straightforwardly obtained with no need of simulations. 
To this purpose it may be convenient to rewrite the random variable Y  as 

, where , 
X +1

=Y [ ],1,0=c  and U  denotes the number of 
animals spotted t times out of the U. Owing to assumption c), U is a multinomial random 
vector with parameters U and . Accordingly, the probability generating function of Y  
turns out to be the polynomial of degree UT  
 

Y U;sL (  

 
in such a way that  
 

Pr(Y     (5) 

 
where  represents the coefficient of the l degree term in the 
polynomial . From a practical point of view, it is worth noting that the 
probability distribution (5) may be readily computed by means of an iterative procedure, 
starting from the T-degree polynomial  and adopting the recursive relation 

),( πUal

;(sLY ),πU
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),1;(),1;(),;( πππ sLUsLUsL YYY −=      (6) 
 

Moreover, as to the multinomial distribution with parameters U and , it is also worth 
noting that some 

π

tπ  may be allowed to be 0 providing that 0  is set to be 0. In this case, 
denote by  the maximum value of t for which 

0

TT ≤max 0>tπ . Thus, in accordance with the 
previous results, the probability distribution of the random variable (3) turns out to be  
 

∑
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for u  and 2≥ max/)( Tmnu −≥ , and 0 otherwise. 
In an analogous way, the probability distribution of the random variable (4) turns out to be 
 

mnmnf −=− π),;1( π  
 
for u  and ,  1= maxTmn ≤−
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uj ,uajmnXX,mn;uf ππ ππ K  

 
for  and u , and 0 otherwise. Note that (4) is not a proper random 
variable since it may happen that Pr(

2≥u max/)( Tmn −≥
0) >∞=U . 

In accordance with the previous results, MME may be straightforwardly obtained as the 
mode of the resulting waiting time distribution in which the nuisance parameter  is 
estimated by . In other words, U

π
p MM

~  may be analytically obtained as  
 

{ })(argmax p,mn;ufU~
u

MM −=     (7) 

 
where in the case of (4) the distribution of U conditional to ∞<U  must be considered. 
Estimators of type (7) were applied to the four sets of data reported in Minta and Mangel 
(1989). Both the random variables (3) and (4) were considered. The achieved results show 
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estimates equal or very close to the empirical values obtained by Minta & Mangel (1989) 
on the basis of  simulated samples (see Table 2).  10,000=B
Even if Minta & Mangel (1989, p. 1743, p.1745, p.1751) speak about their proposal as the 
maximum likelihood estimator of U, it is at once apparent that U MM

~  does not constitute a 
maximum likelihood estimator. This fact has also been recognized by White & Shenk 
(2001, p.333). Indeed, in the Minta-Mangel procedure the total number of resightings n-m 
for unmarked animals is held fixed while the random variable is the number U of 
independent trials (animals) generating that number of resightings (or more). Thus, the 
mode of the resulting waiting time distribution stopping at n-m resightings, being the most 
reliable number of animals generating n-m resightings, is taken as an estimate of U. 
However, in real situations, the number of unmarked animals is fixed and constitutes the 
unknown parameter of interest while the number Y of total resightings generated by these 
animals is the random variable containing U as an unknown parameter of its probability 
distribution. Thus, the actual maximum pseudo-likelihood estimator of U is the integer 

 maximizing the pseudo-likelihood function of  MMÛ mn − , say  
 

),()|( pUamnUL mn−=−     (8) 
 
in which the nuisance parameter  is replaced by p. It is worth noting that the 
maximization of (8) may be effectively performed by means of the recurrence relation (6). 
Accordingly, there is no reason, neither theoretical nor practical, to adopt U

π

MM
~  instead of 

the pseudo-maximum likelihood estimatorU  (for comprehensive treatment of pseudo-
likelihood methods see Gong & Samaniego 1981). Obviously, the final pseudo-maximum 
likelihood estimate of N is obtained by means of . 

MM
ˆ

MMMM UMN ˆˆ +=
Even if in most common situations the two estimation criteria give rise to very similar 
estimates (see e.g. Table 2), there may exist situations giving rise to different values. As a 
trivial example, consider the case in which 1=T , in such a way that p ,  where 

 denotes the portion of  marked animals resighted at the single occasion. In this case Y is 
a binomial random variable with parameter U and 

[ T
10 , pp= ]

1p

1π  and U  is the greatest integer not 
exceeding . On the other hand, the random variable (4) is negative binomial 
with parameter 

MM
ˆ

1p/)mn( −
mn −  and 1π  and U MM

~  is the greatest integer not exceeding 
. Thus, the two estimates may be quite different for small values of , as 

when, for example, 
11 +p/1−− )mn( 1p

3=− mn  and 11.01 =p , in which case U  and 27=ˆ
MM 19~ =MMU . 

~No estimator for the sampling variance of U MM  (or MMN~  equivalently) is proposed in 
Minta & Mangel (1989) nor in the NOREMARK software. Rather, in both cases the 
confidence intervals are obtained directly by means of the appropriate percentiles of the 

 14



Monte Carlo distribution. However, several simulation studies (Neal et al. 1993, White 
1993) show that the resulting coverage is far below the nominal level. As a consequence of 
this, the authors realize some problems related to the inference performed on the waiting 
time distribution rather than on the likelihood function. On this subject, Neal et al. (1993, 
p.449) say that “The procedure used to compute the CIs described by Minta and Mangel 
(1989) assumes that the variance of the number of sightings of unmarked animals is zero. 
This assumption is false in that duplications of the experiment would provide a range in the 
number of sightings of unmarked animals” while, in a similar way, White & Shenk (2001, 
p.335) point out that “the number of unmarked animals seen is taken as a fixed constant 
rather than a random variable”. Actually, the confidence intervals deriving from the 
Minta-Mangel estimation criterion arise from the variability of the waiting time distribution 
rather than from the variability of the total number of resightings. 
Moreover, another reason leading to the shortcoming of these intervals is probably due to 
the fact that the s are generated as independent random variables while they are actually 
dependent variables. Indeed, such a dependence is likely to entail a contagion of resightings 
which may increase the variance of Y over the level obtained in the case of independence. 
This fact is not recognised in literature since, as already pointed out, the independence of 
resightings is not perceived as a basic assumption of the Minta-Mangel model. For 
example, Neal et al. (1993) simulate aggregate populations, thus violating the assumption 
of independent resightings, but they conclude that the Minta-Mangel confidence intervals 
provide a coverage lower that the nominal level “even though the assumption of the 
estimator were not violated” (Neal et al. 1993, p.449). 

iX

On the other hand, if the pseudo-maximum likelihood estimator U  is adopted, an 
estimator of the variance of U  (or  equivalently) which tends to be conservative 
under assumption c) may be straightforwardly attempted. Indeed, as a trivial consequence 
of assumption c), it follows that 

MM
ˆ

MM
ˆ

MMN̂

xUY µ=)E(  and , where 2)V( xUY σ= xµ  and  denote 
expectation and variance of the s. If the moment criterion is adopted instead of the 
pseudo-maximum likelihood criterion, then, equating E(  to the observed value 

2
xσ

iX
)Y mn − , 

the moment estimator of U turns out to be  
 

x
mnU m

−
=ˆ . 

 
Moreover, owing to assumption c), )( mn −  and x  are realizations of independent random 
variables. Thus, by means of the first-order Taylor series approximation, U  is 
approximately unbiased with approximate variance 

m
ˆ
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2

2

)V(
x

x
m M

NUÛ
µ
σ

=      (9) 

 
Accordingly, since U  constitutes the moment estimator of U, it should be less efficient 
than the pseudo-maximum likelihood estimator U . Thus, from (9), 

m
ˆ

MM
ˆ

 

2

2

)V(
x

x
MM M

NUÛ
µ
σ

≤  

 
in such a way that  
 

2

2

)(V
x
s

M
ÛN̂Ûˆ xMMMM

MM =  

 
should be a conservative estimator for .N̂MM )V(

MMN̂
 Assuming, as customary, the normality of 

the pseudo maximum likelihood estimator , the normality-based interval for N at the 
nominal level α−1  turns out to be  
 

)(V21 MM/MM ÛˆzN̂ α−±  
 
where denotes the 121 /z α− 2/α−  quantile of the standard normal distribution function. As 
shown in column 6 of Table 2, these confidence intervals tend to be much wider than the 
unreliable intervals arising from the waiting time distribution. 
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Table 2. Monte Carlo values of MMN~  derived by Minta and Mangel (1989) on four real 
data sets compared with the MMN~  values obtained from the analytical distributions of the 
waiting times of type (3) and (4) as well as with the pseudo-maximum likelihood estimates 

. MMN̂
 
Survey M Minta-Mangel 

(1989) 
analytical 

mode of (3) 
analytical 

mode of (4) 
maximum 
likelihood 
estimate 

badgers in 
Wyoming 

15 24 (21-28) 24 (20-29) 23 (19-29) 23 (18.2-27.9) 

bisons in Santa  
Catalina island 
(1976) 

16 172 (162-182) 172 (161-182) 171 (161-182) 171(137.7-204.3) 

bisons in Santa. 
Catalina island 
(1977) 

14 211 (203-221) 211 (201-222) 211(201-221) 211(173.9-248.1) 

porcupines on the 
Negev Desert 

7 28 (21-35) 26 (20-35) 26(20-34) 26 (12.8-39.2) 

 
 
2.3 Bowden estimator 
 

The more recent estimator adopted in NOREMARK is the estimator originally proposed by 
Bowden (1993) and subsequently investigated by Bowden & Kufeld (1995). The estimator 
will be referred to as BE and is given by  
 

2

2

2

2

1
xM

s
x
s

x
n

N̂
X

X

B

+

+
=      (10) 

 
where  now denotes the unbiased sampling variance of the ’s 2

xs ix )( M∈i . 
Bowden (1993) supposes that 

d) the total number of resightings for each animal constitutes a set of fixed values 
; Nxx ,,K1
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e) the M animals to be marked are selected from the population by means of 
SRSWOR. 

Under assumption d) the total number of resightings 
 

∑
=

=
N

i
ixn

1
 

 
constitutes a finite population total which is exactly known after the T occasions. On the 
other hand, the finite population mean, say NnX /= , and the finite population variance, 
say 
 

∑
=

−
−

=
N

i
ix Xx

N
S

1

22 )(
1

1  

 
are unknown parameters. Moreover, under assumption e), but also adopting other sampling 
schemes with inclusion probabilities equal to M  (e.g systematic sampling or stratified 
sampling with proportional allocation), 

N/
x constitutes a design-unbiased estimator of X . 

Accordingly, xn /  constitutes a very natural estimator for N. 
It is worth noting that, rewriting n as xMmn +− )( ,  x/n  is completely equivalent to . 
Thus, an alterative interpretation of the naïve estimator  arises in the framework of 
finite population sampling, when the marked animals are selected from the population 
using a sampling scheme in which the sample mean is an unbiased estimator of the 
population mean.  

mN̂

mN̂

Obviously, xn /  constitutes a biased estimator for N, since the expectation of x/1  does not 
equal X/1 . On the basis of the Taylor series expansion of x/n  around X up to the second 
order, it follows that 
 

21
VE

X
)x(NNx,,x|

x
n

N +≅







K  

 
which under SRSWOR reduces to 
 

2

2

2

2

1 1E
X
S

XM
SNx,,x|

x
n xx

N −







+≅








K .   (11) 

 
Accordingly,  is a bias-reduced estimator of N when marked animals are selected by 
means of SRSWOR. It must be noticed that in this framework  and 

BN̂
( )Nx,,x| K1E ⋅
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( Nx,,x| K1V ⋅ ) denote expectation and variance performed with respect to SRSWOR of the 
animals to be marked but conditional on the values of , which are assumed to be 
fixed values. 

Nx,,x K1

As to the basic assumption d), it seems far from being adequate in the framework of mark-
resighting surveys. In order to justify the fact that  is assumed to be a fixed characteristic 
of animal i, Bowden & Kufeld (1995, p.843) point out that “The sighting period and 
process should be predetermined, fixed and defined” and that “The area searched during 
the sighting period does not need to be the entire study area”. Probably, these two 
sentences have the purpose of excluding the use of any sampling design, such as encounter 
designs, which may be adopted to select/resight the animals after marking. Indeed, if the 
resightings arise from a random search, as when transects or observation points are 
randomly thrown onto the study area, the ’s necessarily constitute realizations of random 
variables and assumption d) has no statistical sense. However, even if no sampling plan is 
adopted and the paths to be travelled for observing animals are purposively selected, it is 
quite unrealistic to suppose that the number of resightings is a fixed characteristic of 
animals, such as their body weight, sex or age.  

ix

ix

As to assumption e), the use of  SRSWOR (as any other fixed-size scheme) for selecting 
the animals to be marked is unrealistic (see section 2.1). Accordingly, the bias reduction 
performed in (10) is likely to be poorly effective when the animals to be marked are 
selected from the population by a scheme which greatly differs from SRSWOR. Once 
again, some misleading sentences are present in literature regarding the selection of the 
animals to be marked. For example, Bowden & Kufeld (1995, p.842) state that “We assume 
each of the N animals had an equal chance of being selected for marking and the selection 
for marking were made independently of one another”, while (as already pointed out in 
section 2.1) many encounter schemes can ensure an equal selection probability for each 
animal, even if the sample mean no longer constitutes an unbiased estimator of the 
population mean. Indeed, from the well known Horvitz-Thompson theory, this property 
necessitates schemes with first-order inclusion probabilities invariably equal to . 
Moreover, without-replacement sampling adopted to select the animals to be marked 
(which clearly holds since no animal is marked twice) is in contrast with the independence 
claimed by the two authors. This is also in contrast with White & Shenk (2001, p.337) who 
state that when using BE “sampling can be with or without replacement” and that BE is 
suitable when “sampling is performed with replacement”. 

NM /

By using the Taylor series expansion of xn /  up to the first leading terms, it follows that 
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which under SRSWOR reduces to 
 

2

2

1V
X
S

M
NUx,,x|

x
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N ≅





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K .     (12) 

 
Note that expression (12) is analogous to expression (9) with X and  instead of 2

xS xµ  and 
. Obviously, a trivial estimator of (12) turns out to be  2

xσ
 

2

2

V
x
s

M
)MN̂(N̂

x
nˆ xBB −

=





      (13) 

 
Thus, in accordance with (13), Bowden (1993) suggests the use of  
 

( )
2

2

2

2

2

1

V









+

−

=

xM
s
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s

M
MN̂N̂

)N̂(ˆ
x

xBB

B  

 
as an estimator of the variance of . BN̂
Finally, since under SRSWOR, x converges to normality as N  grows along with M (see 
e.g. Thompson 1992, p.28), the author proposes the use of  
 

( )BM,/B N̂ˆtN̂ V121 −−± α  
 
as the confidence interval for N  at the nominal level  α−1 , where t  is the 1121 −− M,/α 2/α−  
quantile of a t-distribution with )1( −M degrees of freedom. 
Interestingly, assumption d) may be relaxed with no detrimental effects on estimation and it 
may be interpreted more realistically as if the estimation were performed conditional on the 
resulting values of the ’s. Indeed, if conditional to , iX Nx,,x K1 x is an approximately 
unbiased estimator of X  (as ensured by assumption e), then from the well known 
properties on conditional expectation and variance and from (11) and (12), it follows that 
 

( ) ( ){ } { } NNx,,x|N̂N̂
NN x,,xNBx,,xB =≅= KK K

11
EEEE 1     (14) 
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and  
 

( ) ( ){ } ( ){ }≅+= NBx,,xNBx,,xB x,,x|N̂x,,x|N̂N̂
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where now  and  denote expectation and variance performed with respect to both 
the SRSWOR of  the animals to be marked and the random variables . 

)( ⋅E )( ⋅V

NX,,X K1

Practically speaking, relations (14) and (15) ensure that  and BN̂ ( )BN̂V̂

Nx,
, being 

conditionally unbiased, turn out to be unbiased estimators even if  constitute 
realizations of  random variables rather than fixed values. Accordingly, if the marks are 
adequately apportioned among the animals as should be expected under SRSWOR, a good 
level of robustness should be expected for BE and the related confidence intervals.  

,x K1

 
 
3. Simulation results 
 

All the assumptions underlying the NOREMARK estimators turn out to be highly 
unrealistic. Assumptions a) and e) refer to a sampling scheme which cannot be performed 
in animal populations, assumptions b) and c) entail some forms of independence in time 
and space which never hold in real situations and assumption d) claims an unreliable 
absence of variability in the number of resightings for each animal. Accordingly, extended 
simulation studies are necessary to check the robustness of the NOREMARK estimators in 
more realistic situations in which all the assumptions are supposed to be jointly violated. 
The first simulation study was performed by Neal et al. (1993) to investigate the robustness 
of JHE. The authors supposed populations of size 500,200,100,50=N

5.0)
, a number of 

occasions , mark proportion 20)5(5=T 2.0(1.0=β  and a resighting probability 
7.0)2.0(1.0=π . In the first part of the study, for each combination of  N,T, β  and π , the 

number of marked animals M was generated from a binomial distribution with parameters 
N and β . Then, for each resulting population, the empirical distribution of JHE was 
determined on the basis of 1,000 independent replicates. At each replication,  and 

 were independently generated for any 
tm

tt mn − T,t ,1K=  from two binomial distributions 
with parameters M and π  and N-M and π , respectively. In the second part of the study, for 
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the some combinations of N, T and β , the population was randomly structured into groups 
by generating group sizes from an empirical distribution observed in a field study on 
mountain sheep at Trickle Mountain (Colorado). Subsequently, the number of marked 
animals in a group of size g was generated from a binomial distribution with parameters g 
and β . Then, for each resulting population the empirical distribution of JHE was 
determined on the basis of 1000 replications. At each replication, each animal in the 
population was randomly and independently detected at any occasion t  using four 
different schemes: 1) with probability 

T,,1K=
7.0)2.0(1.0=π ; 2) with probability increasing with 

group size; 3) with probability generated from a beta distribution with parameters 
; 4) with probability varying over the occasions from 0.05 to 0.95. A quite similar 

simulation study was also performed by White (1993) with the purpose of comparing the 
performance of MME vs JHE. The simulation study repeated exactly the procedures 
adopted by Neal et al. (1993) with the exception that in the second part of the study no 
group structure was considered and each animal was detected only using scheme 3). In both 
these studies, the first set of simulations was devoted to checking the performance of JHE 
in the case in which all assumptions

3=a =b

[ ]are  met, to be compared with the results obtained in 
the second set where the assumptions underlying JHE were violated. However, it is 
apparent from the considerations of section 2.1 that the JHE assumptions were always 
violated in these studies, since the sampling schemes adopted to select/resight the animals 
always differed from SRSWOR. Moreover, in both studies, it made no sense to adopt 
sampling scheme 3) to check the robustness of MME under the “heterogeneity of individual 
sighting probabilities”. Indeed, on the basis of the considerations in section 2.2, it is 
apparent that no violation of assumption c) occurred under scheme 3). Apart from these 
inaccuracies, the results of the simulations mainly delineated the possibility of significant if 
not serious bias together with sometimes poor coverage of the resulting confidence 
intervals. These turned out to be more marked for the Monte Carlo intervals adopted in 
MME than for the Hudson intervals adopted in JHE (White 1993, p.96). Finally, a 
simulation study performed by Bowden & Kufeld (1995) to check the statistical properties 
of BE should be noted for completeness. However, since assumptions d) and e) were both 
met when generating mark-resighting data, the study is of no help in checking the 
robustness of the method under the failure of assumptions. 
In accordance with the previous considerations, a more rigorous simulation study in which 
all the assumption, from a) to e) were jointly violated is necessary in order to give more 
insight into the robustness of mark-resighting estimators. The study was planned to take 
into consideration quite realistic sampling schemes, several group structures in order to 
generate several levels of dependence among animal detections, mark effort and mark 
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apportionment among groups in order to generate more-or-less representative marking of 
animals within populations, sequential movements of animals in order to generate various 
levels of dependence among resighting occasions and, finally, animal detection 
probabilities in order to consider more-or-less favourable field conditions. To this purpose, 
a population of  units was supposed to be spread onto a square region of size 1 and 
to be surveyed over the course of 

100=N
10=T  resighting occasions. Two group structures were 

supposed: the first structure involved 30 groups of size 2, 10 groups of size 1 and 10 groups 
of size 3 for a total of 50 groups with average size 2=g ; the second structure involved 4 
groups of size 10, 2 groups of size 9, 2 groups of size 11, 1 group of size 8 and 1 group of 
size 12 for a total of 10 groups with average size 10=g . For any population structure an 
even or aggregated allocation of marks among groups was supposed. More precisely, in the 
first group structure, the even distribution involved 1 marked animal in 10 groups of size 2 
when  and 1 marked animal in all the 30 groups of size 2 when  while, in 
the second group structure, the even distribution of marks involved 1 or 3 marked animals 
per group for a total of 

10=M 30=M

10=M ( )0.1=β  or 30=M ( )0.3=β  marked animals, 
respectively. On the other hand, in the first group structure, the aggregated distribution 
involved 2 marks in 5 groups of size 2 or 2 marks in 15 groups of size 2 when  or 

 respectively, while in the second group, the aggregated distribution of marks 
involved 5 marks in 2 groups of size 10 when 

10=M
30=M

10=M  and 5 marks in all the 4 groups of 
size 10, 5 marks in 1 group of size 9 and 5 marks in a group of size 11 when .  30=M
Then, in order to consider animal movements, at each replication of the sampling scheme, 
the groups were randomly located on the square region at 1=t , while in the 9 subsequent 
occasions, group movements were simulated by randomly changing the spatial location of 
each group inside a circle of radius 0.50.1,=ρ  centred at the previous location. Finally, at 
any occasion, a line transect census was simulated by using 4 fixed transects. The transects 
were constituted by 4 straight lines of length 1 starting on the lower side of the square 
region at the point 0.125, 0.375, 0.625 and 0.875, in such a way that the perpendicular 
distance of any group to the nearest transect was bounded by 1/8. As to the resighting 
process, a group of size g at distance y from the transect was spotted with probability 

 where ( ) ( ) 181 −−

−=
g

yyh θ θ  was determined in such a way that the final probability of 
spotting a group turned out to be 0.3,0.5=π . More precisely, since owing to the random 
placements of group, the probability of spotting a group of size g turned out to be 
 

gdyyg
g

θπ θ −=−= ∫ −−

1)8(1)(
8/1

0

1  
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then if  denotes the K distinct sizes of groups in the population and if  
denotes their relative frequencies, then, by elementary probabilistic considerations, 

Kg,,g K1 Kf,,f K1

θ  is 
obtained as the numerical solution of the equation 
 

πθ =− ∑
=

K

k
k

g fk

1
1 . 

 
Finally, when a group was spotted, all the animals in the group were presumed to be 
spotted, in such a way that π also represented the probability of spotting an animal. 
For each of the 32 scenarios resulting from combining the values of πρβ ,,,g and the two 
types of mark distribution, 10,000 replications were performed. For each replication, the 
estimates , JHN̂ MMN~ ,  and  were computed. The values of MMN̂ BN̂ MMN~  were analytically 
computed as the mode of the waiting time distribution (4), avoiding any Monte Carlo 
procedures. Accordingly, the confidence intervals were constructed via the appropriate 
quantiles of the same analytical distribution. For each estimator, the empirical values of the 
relative bias (RB= bias divided by N), relative mean error (RME=square root of mean 
squared error divided by N), coverage (C=probability that the 0.95 confidence interval 
contains N) and relative mean interval length (RMIL= expected 0.95 interval length divided 
by N) were computed on the basis of the resulting distributions. The simulation results are 
reported in Tables 3 to 6. 
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Table 3. Empirical values of the relative bias (RB),  relative mean error (RME), interval 
coverage (C) and relative mean interval length (RMIL) for the joint hypergeometric 
maximum likelihood estimator . JHN̂
 

Simulation parameters RB RME C (RMIL) RB RME C (RMIL) 

Mark distribution EVEN AGGREGATED 
2=g  10.=β  30.=π  05.0=ρ  .128 .308 .816 (.780) .223 .609 .637 (.959) 

   5.0=ρ  .095 .193 .941 (.719) .131 .312 .808 (.775) 
  50.=π  05.0=ρ  .077 .199 .770 (.459) .123 .353 .585 (.513) 
   5.0=ρ  .057 .118 .933 (.434) .077 .182 .79 (.453) 
 30.=β  30.=π  05.0=ρ  .078 .134 .796 (.347) .103 .222 .606 (.366) 
   5.0=ρ  .074 .103 .898 (.341) .091 .156 .736 (.352) 
  50.=π  05.0=ρ  .051 .088 .771 (.216) .070 .153 .551 (.25) 
   5.0=ρ  .047 .063 .912 (.213) .058 .096 .729 (.217) 

    
10=g  10.=β  30.=π  05.0=ρ  .005 .025 1.000 (.599) .432 .186 .479 (1.567)

   5.0=ρ  .005 .018 1.000 (.581) .184 .602 .642 (.903) 
  50.=π  05.0=ρ  .003 .018 1.000 (.367) .276 .852 .476 (.743) 
   5.0=ρ  .003 .011 1.000 (.355) .088 .287 .640 (.444) 
 30.=β  30.=π  05.0=ρ  .005 .025 1.000 (.295) .060 .251 .556 (.336) 
   5.0=ρ  .005 .018 1.000 (.287) .039 .149 .739 (.308) 
  50.=π  05.0=ρ  .003 .018 1.000 (.183) .039 .157 .536 (.200) 
   5.0=ρ  .004 .011 1.000 (.178) .027 .085 .753 (.188) 
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Table 4. Empirical values of the relative bias (RB),  relative mean error (RME), interval 
coverage (C) and relative mean interval length (RMIL) for the Minta-Mangel estimator 

MMN~ . 
 

Simulation parameters RB RME C (RMIL) RB RME C (RMIL) 

Mark distribution EVEN AGGREGATED 
2=g  10.=β  30.=π  50.=ρ  .127 .308 .459 (.298) .214 .605 .309(.297) 

   5.0=ρ  .095 .194 .453 (.200) .123 .309 .321(.196) 
  50.=π  05.0=ρ  .079 .201 .478 (.219) .119 .354 .323(.216) 
   5.0=ρ  .061 .121 .471(.132) .075 .182 .324(.128) 
 30.=β  30.=π  05.0=ρ  .079 .135 .705(.264) .098 .221 .520(.268) 
   5.0=ρ  .076 .104 .627(.183) .086 .154 .485(.328) 
  50.=π  05.0=ρ  .055 .092 .744(.195) .068 .154 .526(.199) 
   5.0=ρ  .052 .067 .655(.122) .057 .097 .515(.121) 

    
10=g  10.=β  30.=π  05.0=ρ  .007 .043 1.000 (.287) .424 1.187 .165(.228) 

   5.0=ρ  .009 .034 1.000 (.186) .174 .602 .176(.147) 
  50.=π  05.0=ρ  .008 .027 1.000 (.214) .275 .858 .223(.178) 
   5.0=ρ  .010 .022 1.000 (.134) .085 .291 .199(.104) 
 30.=β  30.=π  05.0=ρ  .007 .037 1000(.255) .049 .254 .462(.253) 
   5.0=ρ  .009 .031 1.000(.178) .030 .151 .493 (.174) 
  50.=π  05.0=ρ  .008 .027 1.000(.192) .032 .167 .502(.194) 
   5.0=ρ  .010 .022 .415(.214) .022 .090 .546(.121) 
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Table 5. Empirical values of the relative bias (RB),  relative mean error (RME), interval 
coverage (C) and relative mean interval length (RMIL) for the Minta-Mangel pseudo 
maximum likelihood estimator . MMN̂
 

 Simulation parameters RB RME C (RMIL) RB RME C (RMIL) 

Mark distribution EVEN AGGREGATED 
2=g  10.=β  30.=π  05.0=ρ  .128 .309 .942 (.979) .218 .608 .779(1.042) 

   5.0=ρ  .093 .193 .935 (.631) .124 .310 .750(.622) 
  5.0=π  05.0=ρ  .078 .201 .944 (.693) .121 .354 .769(.699) 
   5.0=ρ  .058 .119 .927(.398) .073 .181 .737(.380) 
 30.=β  30.=π  05.0=ρ  .079 .135 .972(.480) .104 .217 .852(.493) 
   5.0=ρ  .074 .103 .939(.329) .086 .152 .779 (.328) 
  50.=π  05.0=ρ  .073 .093 .983(.355) .104 .149 .875 (.365) 
   5.0=ρ  .065 .073 .905(.213) .083 .100 .731(.213) 

    
10=g  10.=β  30.=π  05.0=ρ  .008 .027 1.000 (.825) .433 1.189 .420(.933) 

   5.0=ρ  .009 .020 1.000 (.199) .178 .603 .417(.483) 
  50.=π  05.0=ρ  .008 .023 1.000 (.614) .293 .858 .549(.632) 
   5.0=ρ  .009 .017 .999 (.370) .095 .286 .481(.295) 
 30.=β  30.=π  05.0=ρ  .022 .044 .992(.426) .098 .239 .833(.456) 
   5.0=ρ  .024 .042 .978(.289) .065 .141 .784 (.291) 
  50.=π  05.0=ρ  .108 .127 .766(.346) .147 .185 .0639(.357) 
   5.0=ρ  .122 .136 .415(.214) .136 .149 .326(.211) 
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Table 6. Empirical values of the relative bias (RB),  relative mean error (RME), interval 
coverage (C) and relative mean interval length (RMIL) for the Bowden estimator . BN̂
 

Simulation parameters RB RME C (RMIL) RB RME C (RMIL) 

Mark distribution EVEN AGGREGATED 
2=g  10.=β  30.=π  050.=ρ  .068 .256 .939 (.904) .152 .530 .775 (.951) 

   5.0=ρ  .067 .173 .946 (.626) .098 .283 .769 (.613) 
  50.=π  05.0=ρ  .046 .175 .945 (.679) .086 .319 .779 (.678) 
   5.0=ρ  .047 .112 .943 (.409) .062 .172 .760 (.390) 
 30.=β  30.=π  05.0=ρ  .065 .124 .976 (.472) .084 .209 .822 (.481) 
   5.0=ρ  .068 .098 .952 (.329) .078 .148 .782 (.328) 
  50.=π  05.0=ρ  .046 .085 .984 (.347) .059 .147 .820 (.352) 
   5.0=ρ  .047 .063 .943 (.212) .051 .093 .771 (.209) 
    

10=g  10.=β  30.=π  05.0=ρ  .038 .049 1.000 (.773) .369 1.074 .409 (.852) 
   5.0=ρ  .013 .022 1.000 (.558) .154 .560 .424 (.471) 
  50.=π  05.0=ρ  .019 .028 1.000 (.605) .246 .801 .500 (.617) 
   0.5ρ =  .001 .010 1.000 (.380) .076 .280 .447 (.298) 
 30.=β  30.=π  05.0=ρ  .002 .024 1.000 (.413) .040 .243 .685 (.428) 
   5.0=ρ  .004 .017 1.000 (.285) .025 .147 .684 (.281) 
  50.=π  05.0=ρ  .001 .018 1.000 (.312) .026 .160 .714 (.319) 
   5.0=ρ  .006 .012 1.000 (.191) .019 .086 .724 (.188) 
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4. Discussion with a case study 
 

The analysis of the tables motivates the use of the  as the method giving rise to the best 
accuracy results together with the best coverage of the confidence intervals. As 
theoretically asserted in section 2.3, under an even distribution of marks among groups, the 
bias level achieved by  turns out to be very satisfactory, being always less than 7%. 
Moreover, the interval coverage of the method is very near to or greater than 95% in all the 
situations. On the other hand, an uneven distribution of marks among groups heavily 
deteriorates the performance of BE, which however remains the best when compared with 
the performance of the other estimators. 

BN̂

BN̂

The presence of large groups exacerbated the accuracy losses even if the main reason for 
failure remains by far the uneven distribution of marks. The presence of dependence among 
occasions also has a (less marked) detrimental effect on the accuracy of the estimators. 
Under the worst conditions, such as the uneven distribution of marks, 0.1=β , 0.3=π and 
a high level of dependence among occasions ( )0.05=ρ , the bias of BE increases from 
15% with a relative mean error of 53% when 2=g  to 37% with a relative mean error of 
100% when 10=g . The aggregated distribution of marks heavily impacts also on the 
coverage of the confidence intervals constructed around BE, which even if no worse than 
the coverage of the other methods, falls from 77% to 41% under the above-mentioned less-
favourable conditions.  
In accordance with these results, there does not seem to be any reason to adopt the most 
complex NOREMARK procedures, i.e. JHE or MME. Indeed, as to JHE, the Hudson 
method gives rise to confidence intervals with coverage always lower than those provided 
by BE. Moreover, as to MME, the confidence intervals constructed around MMN~  by using 
the quantiles of the waiting time distribution turn out to be completely unreliable with a 
coverage which turns out to be much smaller than the nominal level even when the marks 
are evenly distributed among groups (these results confirm the theoretical consideration 
made in section 2.2). Finally, even if the use of  with the related confidence intervals 
greatly improves the coverage over the Minta-Mangel procedure, and even if  is in 
some cases comparable with , its use involves greater computational complexities 
without offering substantial gains in precision. 

MMN̂

MMN̂

BN̂

Accordingly, providing that the marks are evenly distributed among groups, the Bowden 
criterion constitutes a valid procedure for estimating population size from mark-resighting 
data, accomplishing robustness and computational simplicity. On the other hand, if the 
marks are unevenly distributed, no mark-resighting procedure seems to be reliable. 
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These findings may be of some help to interpret the less-than-obvious results obtained in a 
case study in which NOREMARK methods were adopted to estimate the size of a 
population of chamois Rupicapra rupicapra (Linneaus, 1758) females on a study area 
(12°.00’ E – 46°.30’ N) located in the Paneveggio - Pale di San Martino Natural Park 
(Trentino, eastern Italian Alps). The area size was of about 7 km2, with altitudes ranging 
from 1600 to 2200 m a.s.l. and vegetation mainly consisting of alpine grassland, coniferous 
(larch and spruce) forest and shrubs (knee pine, alder, juniper, and rhododendron trees). 
Chamois detection was almost complete in alpine grassland and rocky slopes (36,4% of 
total surface), heterogeneous but generally poor in larch forest (34,5%) and very low or null 
in other forest and shrubs habitats. 
Animal radio-tracking was conducted since the end of the 90’s, funded by “Paneveggio-
Pale di San Martino” Natural Park. As a consequence, from 20=M to 14=M  radio-
tagged females were available from 2000 to 2003, which were yearly used to estimate the 
female population size by means of mark-resight surveys. Marks were quite evenly 
distributed between groups, in the sense that the greatest group, referred to by the 
researchers as group 3, and the second one, referred to as group 1, contained the greatest 
number of marked animals (from 11 to 7 in group 3, from 4 to 4 in group 1) while few or 
no marked animals were contained in the smaller groups, referred to as groups 2, 4 and 5 
(from 3 to 1 in group 2, 1 in group 4 and from 0 to 1 in group 5). 
In the summer of each year, in the month of July or August, counts were performed over 4 
or 5 consecutive days. The study area was partitioned into 4 spatial units which were 
searched simultaneously. The surveys were conducted in all weather conditions and 
observations were made from purposively-selected fixed points and transects in the early 
morning (06.00-10.00 AM) by at least 2 observers for each unit. Observers were equipped 
with binoculars (7x42 or 10x40) and spotting scopes (20-60x75). 
Table 7 reports the values of , JHN̂ MMN~ , and  as well as the resulting 0.95 
confidence intervals of the population size. While a drastic and highly significant decrease 
of female abundance (from about 200 to 80 individuals) is deduced using JHE and MME 
from 2000 to 2001, with the lower ends of the 2000 confidence intervals much greater than 
the upper ends of the 2001 intervals (more than 80 individuals in both cases), a similar but 
less significant reduction is deduced using BE, with the lower end of the 2000 confidence 
interval very close to the upper end of the 2001 interval. Results akin to those obtained 
using BE are also obtained by means of the pseudo-maximum likelihood estimates. The 
presence of such clashing results achieved using NOREMARK could be justified only on 
the basis of the unreliability of JHE and MME, which has been theoretically and 
empirically emphasized throughout this work. On the other hand, owing to the even 

MMN̂ BN̂
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distribution of marks performed among the five groups partitioning the population, the 
results based on BE should be the most reliable. Accordingly, even if a clear reduction of 
the female population from 2000 to 2001 should be deduced ( as can also be asserted from 
the 2000-01 high mortality rate caused by dramatic winter climatic conditions) such a 
reduction might not be as substantial as that which arises from two of the three estimation 
procedures adopted in NOREMARK.  
 
Table 7. Mark-resighting size estimates and 0.95 confidence intervals (in brackets) for the 
female community of chamois on Paneveggio - Pale di San Martino Natural Park in the 
years 2000-03. 
 

year JHN̂  MMN~  MMN̂  BN̂  
2000 202 (156-279) 205 (176-240) 206 (104.4-307.6) 193.4 (102.6-284.2) 
2001 85 (76-102) 83 (76-92) 83 (65.9-100.1) 82.6 (65.3-100.0) 
2002 103 (87-129) 95( 86-105) 95 (72.5-117.5) 93.75 (71.3-116.2) 
2003 95 (79-123) 96 (85-108) 96 (67.2-124.8) 93.8 (65.5-122.2) 
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