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Abstract

This paper analyzes the dynamics of a small open economy characterized by two
sectors (a farming sector and an industrial sector), heterogeneous agents (work-
ers and entrepreneurs) and free inter-sectoral labor mobility. Labor productivity in
the farming sector is negatively affected by environmental pollution generated by
both sectors. Labor productivity in the industrial sector is positively affected by
physical capital accumulated by entrepreneurs. We show that, as in the seminal
contribution by Matsuyama (1992), low productivity of labor in the farming sector
can be an engine of the industrialization process. However, in contrast with Mat-
suyama’s results, our analysis shows that the accumulation of pollution may fuel a
self-enforcing process such that the expansion of the industrial sector generates a
decrease in workers’ revenues.
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1 Introduction

In recent years it has often been argued that industrialization and, more in
general, structural changes are both the cause and consequence of economic
development and growth (see, e.g., Lewis, 1955; Ranis and Fei, 1961; Lucas,
2004), exactly as happened in Europe in the nineteenth century due to the In-
dustrial Revolution (Bade, 2003). Whatever the cause of structural changes,
there is general agreement that they are an integral part of the economic
growth process in developing countries and that they produce improvements
in the welfare of economic agents. However, an increasing number of contribu-
tions in the field deals with the negative impact on welfare of environmental
pollution and depletion of free access-natural resources which, in some cases,
accompanies structural changes (see, e.g., Lopez, 2007).

The purpose of this paper is to make a contribution to a better understanding
of the interactions between environmental pollution, process of industrializa-
tion and workers’ welfare. To this end, we analyze the dynamics of a small
open economy where there are only two sectors (a farming sector, in short,
‘F-sector’, and an industrial sector, in short, ‘I-sector’), free labor mobility
and heterogeneous agents (farmers, ‘F-agents’, and industrial entrepreneurs,‘I-
agents’). The latter are characterized as follows. F-agents are endowed only
with their own working capacity and use it either in the F-sector, for the
production of farming goods, or as employees of I-agents in the I-sector. In
turn, only I-agents are able to accumulate physical capital, which is entirely
employed in the I-sector to produce, jointly with the labor force provided by
F-agents, industrial goods. In our formalization, the state of the economy is
described by three variables which are defined as follows. N ∈ [0, N̄ ] (N̄ −N ,
respectively) represents the labor force employed in the F-sector (in the I-
sector, respectively), P , the stock of accumulated pollution and K, the aggre-
gated stock of physical capital accumulated by I-agents. Finally, the dynamics
of the variables K, N and P are represented by a three-dimensional dynamic
system built on a Solow-type capital accumulation mechanism. Labor produc-
tivity in the F-sector is negatively affected by P , while in the I-sector it is
positively affected by K.

We show that, as in the seminal contribution by Matsuyama (1992), in such
a framework low productivity of labor in the resource-dependent sector can
be the engine of the industrialization process. However, differently from Mat-
suyama, we focus on negative externalities, rather than on positive externali-
ties. In particular, we assume that the production activities of both sectors con-
tribute to an increase in the stock of pollution P and, consequently, generate
(ceteris paribus) a reduction in labor productivity in the resource-dependent
sector (negative externalities). As a result, if the environmental impact of the
I-sector is high enough relative to that of the F-sector, a self-enforcing process
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of industrialization, driven by negative externalities, may be observed. The
expansion of the I-sector generates a reduction in labor productivity in the
F-sector via an increase in the stock of pollution and therefore leads workers
to move from the resource-dependent sector towards the industrial one. The
consequent further expansion of the I-sector generates an extra increase in the
pollution level from which follows a further reduction in labor productivity
in the F-sector, and so on. This expansion of the I-sector, at the expense of
the F-sector, may be associated with a decrease in workers’ revenues. When
this happens — which requires a sufficiently small labor force and a polluting
impact of the I-sector higher than that of the F-sector — the transition of la-
bor from the natural resource-dependent sector towards the industrial sector
can be classified as a perverse structural change, in the sense of López (2007);
namely, a structural change associated with growing problems of environmen-
tal degradation, declining or stagnant wages and perpetuation of poverty.

The setup of our model seems to be appropriate in order to describe what
happened during the process of industrialization in a number of developing
countries. A typical example is given by Haiti, a country which since the 1970s
has experimented a development strategy based on export zones for foreign-
financed manufacturing firms (Alscher, 2011; Antoci, Russu, Sordi and Ticci.
2014, p. 221; Collier, 2009). The consequent growing number of these firms and
in general of export-oriented apparel industry jointly with very low wages in
the agricultural sector has encouraged rural-urban migration, thus increasing
the urban population with an extra stress on the environment. As a result,
Haiti is now characterized by extreme inequality, low wages, environmental
crisis and growing industrialization. Moreover, in other regions which have
grown at high rates in recent years, such as small or medium size rural areas of
both India and China, environmental degradation is becoming a key issue and
citizens are forced to change their behavior to defend themselves against the
pollution effects of the industrialization process (see, for example, Economy,
2004; World Bank, 2007; Dhamodharam and Swaminathan, 2010; Boopathi
and Rameshkumar, 2011; Deng and Yang, 2013; Holdaway, 2013).

Our model is related to the literature on self-protection strategies adopted by
economic agents to defend themselves against the consequences of environ-
mental degradation (see, e.g., Hirsch, 1976; Hueting 1980; Shibata and Win-
rich, 1983; Bird, 1987; Leipert and Simonis, 1988; Shogren and Crocker, 1991;
Yongguan et al., 2001; López, 2003; Escofet and Bravo-Peña, 2007). In the
case in which there is no coordination among economic agents, self-protection
strategies may give rise to socially undesirable outcomes. The static model pro-
posed by Shogren and Crocker (1991) predicts a level of self-protection higher
than the socially optimal one, in the context in which self-protection choices of
each economic agent transfer environmental negative externalities to the other
agents. In Bartolini and Bonatti (2002, 2003), individuals defend themselves
by increasing the consumption of private goods that alleviate the negative
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effects of environmental degradation. In such a case, negative environmental
externalities may be an engine of welfare reducing economic growth. In the
present paper, workers can defend themselves from environmental degradation
by choosing to be employed in the industrial sector (I-sector), and their choices
may fuel a welfare reducing industrialization process. The common features
of the literature on the undesirable effects of self-protection strategies against
environmental degradation are contained in the following description of casual
nexuses: (a) environmental degradation stimulates (via self-protection behav-
ior) the expansion of a given sector X ; (b) the consequent expansion of this
sector generates further environmental degradation which, in turn, generates a
further expansion of the same sector, and so on; (c) the increase in the activity
level of sector X may be undesirable; i.e., it may be accompanied by a decrease
in welfare; (d) either an exogenous increase of the environmental impact of
sector X or an exogenous decrease in the endowment of natural resources have
the effect of stimulating the expansion of sector X. The feature (d) is shared
with the well-known theoretical literature on the curse of natural resources,
which has focused on various mechanisms through which the abundance of en-
vironmental resources may inhibit growth processes (for a review, see van der
Ploeg, 2011). Most current explanations for the curse of natural resources have
a crowding-out logic (see Sachs and Warner, 2001): natural resources crowd-
out the activity of sector X ; the activity of sector X drives growth; therefore,
natural resources harm growth. Sachs and Warner (1995, 1999) identify sector
X with traded-manufacturing activities; Matsuyama (1992) identifies X with
the industrial sector; in Gylfason, Herbertsson and Zoega (1999) and Gylfa-
son (2001), sector X represents education, and so on. In all this literature,
the expansion of sector X is always desirable. Indeed, given that it does not
generate negative externalities, it always fuels economic growth and leads to
an increase in the welfare of economic agents. On the contrary, in the model of
the present paper, the development of sector X (the I-sector) may be welfare
reducing.

The topic of a structural change driven by low productivity of labor in the
resource-dependent sector was also treated in Antoci, Galeotti, Iannucci and
Russu (2015) and Antoci, Russu, Sordi and Ticci (2014), although in different
contexts. In particular, in both these contributions the labor productivity in
the resource-dependent sector was determined by the stock E of a renewable
natural resource and was not negatively affected by pollution. 1 Actually, the
assumptions of the present model lead to quite original results in the dynamic

1 In Antoci et al. (2015), for example, the production technology in the resource-
dependent sector was described by the function proposed by Schaefer (1957), widely
used in modeling production processes based on the exploitation of natural resources
such as fishery and forestry. In the present paper, we will assume a decreasing return
technology which in our opinion is more suited to describe production processes in
farming.

4



analysis, which will be highlighted in the Conclusions.

The structure of the paper is the following. Section 2 introduces the model;
Section 3 contains local analysis of the dynamic system; Section 4 investigates
global dynamics; Section 5 contains comments about the results of Section 4
and some concluding remarks. A mathematical appendix concludes the paper.

2 Set up of the model

In the small open economy with two sectors we model in this paper, the prices
of both goods are exogenously determined and, without loss of generality, we
assume that they are both equal to unity.

The aggregated production functions of the F- and I-sectors are given, respec-
tively, by:

YF =
αNβ

(1 + P )γ
1 > β > 0, α, γ > 0 (1)

YI =(N̄ −N)δK1−δ 1 > δ > 0, N̄ > 0 (2)

The dynamics of the variables K, N and P are assumed to be represented by
the three-dimensional dynamic system:

K̇ = s YI − w(N̄ −N) − dK (3)

Ṅ =λ
YF
N
− w (4)

Ṗ = εYF + ηYI − θP (5)

where a dot over a variable indicates the derivative with respect to time.

According to equation (3) — where the difference YI − w(N̄ − N) measures
the revenues of I-agents and the parameters s and d ∈ (0, 1), the propensity
to save of I-agents and the depreciation rate of K, respectively — physical
capital is accumulated via a Solow-type mechanism (Solow, 1956). According
to equation (4) — where the parameter λ > 0 measures the speed of inter-
sectoral mobility — labor allocation dynamics is determined by the difference
between the per capita output in the resource-dependent sector YF/N and
the wage rate w earned in the I-sector, which is assumed to coincide with the
marginal productivity of N̄ −N :

w = δ(N̄ −N)δ−1K1−δ (6)
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Finally, the parameters ε > 0 and η > 0 in equation (5) represent the effects,
on the accumulation of the pollution stock P , of the production activities
of the F- and I-sectors, respectively, whereas the parameter θ represents the
natural decay rate of P .

We assume that the two categories of economic agents take as exogenously
given the aggregate outputs YF and YI of the two sectors. Thus, in our model,
both sectors produce environmentally negative externalities that agents are
not able to internalize due to coordination problems. This assumption plays
a crucial role in determining the results of the model, much more than the
behavioral assumption about the accumulation process of physical capital. In
fact, environmental externalities play a crucial role in conditioning economic
growth dynamics, especially in developing countries, where environmental re-
sources tend to be less protected and more fragile than in developed countries
(López, 2003, 2007).

Given equations (1), (2) and (6), the dynamic system (3)-(5) can be re-written
as:

K̇ = s(1− δ)(N̄ −N)δK1−δ − dK

Ṅ =λ
αNβ−1

(1 + P )γ
− δ(N̄ −N)δ−1K1−δ (7)

Ṗ = ε
αNβ

(1 + P )γ
+ η(N̄ −N)δK1−δ − θP

In what follows, the dynamics system (7) will be studied in a positively in-
variant box B = (K,N, P ) ∈ 0, K̄ × 0, N̄ × 0, P̄ after a suitable re-
scaling. 2 First of all, we set K = aK such that s(1− δ) = daδ, implying, in
particular, by renaming K as K, K̄ = N̄ . Then, we pose K = bK ,N = bN ,
in such a way that αbβ−1 = δ. Finally we re-scale the time t so as to obtain
θ = 1. Hence, maintaining the original symbols for the variables, system (7)
becomes:

K̇ = lK1−δ N̄ −N
δ
−Kδ

Ṅ =m Nβ−1 (1 + P )−γ − N̄ −N
δ−1
K1−δ (8)

Ṗ = qNβ (1 + P )−γ + r N̄ −N
δ
K1−δ − P

where l,m, q, r, γ, N̄ > 0, 1 > β, δ > 0. In fact, in terms of the original

2 Positively invariant means that the trajectories starting in B cannot leave it.
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parameters, we have:

l =
d

θ
, m =

λδ

θ
, q =

εα
2

1−β

δ
β

1−β θ
, r =

ηα
1

1−β d
1−δ
δ

[ε (1− δ)]
1−δ
δ δ

1
1−β θ

(9)

while the new N̄ is equal to the former one multiplied by b−1 = (δ/α)1/(1−β).

Hence, in the box B, K̄ = N̄ . In order to determine P̄ , we proceed as follows.
Consider the equation Ṗ = f (K,N, P ) = 0. Then, as ∂f

∂P
< 0 for any positive

triad (K,N, P ), it follows that f (K,N, P ) = 0 defines an implicit function

P (K,N) on the open square 0, N̄
2
. But it is easily checked that P (K,N)

can be continuously extended to the closed square 0, N̄
2
. Therefore we define

P̄ = max
[0,N̄]

2
P (K,N)

In this way, it is easily seen that when (K,N) ∈ 0, N̄
2
, then f K,N, P̄ ≤

0 and f K,N, P̄ + ε < 0 for any arbitrarily small ε > 0. So the box

B = 0, N̄
2
× 0, P̄ satisfies our requirements.

3 Local analysis

Let us consider the function:

ϕ (K) = q N̄ −K + rK − N̄ −K
β−1
γ + 1 (10)

defined for K ∈ 0, N̄ . Then, the local analysis results are summed up in the
following theorem.

Theorem 1 Consider the above function ϕ (K). Then:

(1) If:

ϕ (0) = qN̄ − N̄
β−1
γ + 1 > 0 (11)

there exists exactly one stationary state in B, which is a sink.
(2) If ϕ (0) < 0, there may exist, generically, two or zero stationary states

in B. In the former case, named Q∗ = (K∗, N∗, P ∗) and Q̃ = K̃, Ñ , P̃ ,

0 < K∗ < K̃ < N̄ , the two stationary states, Q∗ is a saddle endowed with
a two-dimensional stable manifold and Q̃ is a sink. In the bifurcation case
Q∗ = Q̃, the stationary state is a saddle-node.
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(3) If ϕ (0) = 0 and ϕ (0) > 0, there exists exactly one sink in B; if, instead,
ϕ (0) = 0 and ϕ (0) ≤ 0, there is no stationary state in B.

PROOF. See Appendix A.1.

Remark 2 From the above theorem it follows that no Hopf bifurcation can
occur.

Remark 3 At an interior sink Q̃ = K̃, Ñ , P̃ we have Ñ = N̄ − K̃, P̃ =

N̄ − K̃
β−1
γ − 1, where K̃ is a solution of ϕ (K) = 0 with ϕ K̃ < 0.

Therefore, writing ϕ K̃, q, r = q N̄ − K̃ + rK̃ − N̄ − K̃
β−1
γ + 1 = 0,

0 < K̃ < N̄ , and assuming ∂ϕ

∂K̃
= −q + r − 1−β

γ
N̄ − K̃

β−1−γ
γ < 0, we

can obtain K̃ as an implicit function, i.e. K̃ = K̃ (q, r), with both ∂K̃
∂q
and ∂K̃

∂r

positive. So, at the sink Q̃, when existing, K̃ and P̃ increase, while Ñ decreases
with q and r. On the other hand, it is easily checked that the existence of two
stationary states (the saddle and the sink) implies q < r.

Given the expressions for q and r in (9), it follows that their values are (ceteris
paribus) positively proportional to ε (the parameter measuring the environ-
mental impact of the F-sector) and η (the parameter measuring the envi-
ronmental impact of the I-sector), respectively. According to condition (11)
in Theorem 1, one (and only one) stationary state exists if (ceteris paribus)
either the size N̄ of the population of workers or the parameter q are high
enough. According to Remark 3, a necessary condition for the existence of
two stationary states (the saddle and the sink) is q < r; such a condition is
satisfied if (ceteris paribus) the parameter ε is low enough with respect to the
parameter η.

The parameters q and r play a crucial role also in determining the coordinates
of the sink Q̃, when it exists (see Remark 3). An increase either in the value
of parameter q or in the value of parameter r generates an increase in capital
accumulation K̃ and a decrease in the employment level Ñ in the F-sector.
The mechanism giving rise to such a result is rather intuitive: an increase in
either q or r increases (ceteris paribus) the pollution level P reducing labor
productivity in the F-sector; this, in turn, has the effect of increasing labor
employment and capital accumulation in the I-sector. In this sense, we can
say that, in our model, environmental degradation can be an engine of in-
dustrialization, i.e., of a structural change. In the next section we will give
a complete classification of the dynamic regimes that can be observed under
our three-dimensional dynamic system (8). The global analysis results which
are there contained will allow us, among other things, to illustrate the role
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played by the initial value of the pollution level P in determining the future
evolution of the economy.

4 Global analysis

In this section we will illustrate the whole global dynamics of (8) in B. First
of all we prove the following theorem.

Theorem 4 Assume ϕ (0) < 0. Let A ⊆ B be a positively invariant region
without stationary states and suppose Q̂ = (0, N̄ , P̂ ) ∈ ∂A, 3 where P̂ is the
solution of the equation qN̄−P (1 + P )γ = 0. Then all the trajectories starting
in A tend, as t → +∞, to Q̂. Moreover, if A ⊂ B, then the boundary of A
contains the two-dimensional stable manifold of the saddle Q∗.

PROOF. Given the assumptions of the theorem, if, by contradiction, a tra-
jectory Γ (t) = (K (t) , N (t) , P (t)) starting in A does not converge to Q̂,
then it keeps oscillating. In particular K (t) will reach a maximum, say, at t1.
Then K̈ (t1) ≤ 0 implies Ṅ (t1) ≥ 0. In fact, since the existence of oscillat-
ing trajectories is an open condition, we can assume Ṅ (t1) > 0. Hence N (t)
would, in turn, reach a maximum before K (t) reaches a minimum. Suppose
that this occurs at t2 > t1. Then, as K̇ (t2) < 0, N̈ (t2) ≤ 0 implies Ṗ (t2) > 0.
Therefore we can set t2 = 0, so that, in a right neighborhood of t = 0, K̇ (t) ,
Ṅ (t) < 0, Ṗ (t) > 0. Now, consider, as above, the function P (K,N) implicitly

defined by Ṗ = f (K,N, P ) = 0 when (K,N) ∈ 0, N̄
2
, which can be contin-

uously extended to the closed square 0, N̄
2
. Then it is easily checked that, for

any K0 ∈ 0, N̄ , the graph of P (K0, N), N ∈ 0, N̄ , has a parabolic shape,

with P (K0, 0) = N̄
δK1−δ

0 and P K0, N̂ = P̂ . The maximum value Pμ (K0) is

given by the solution of the system f (K0, N, P ) =
∂f
∂N
(K0, N, P ) = 0: hence it

is easily checked that Pμ (K0) is increasing with K0 and limK→0+ Pμ (K0) = P̂ .

On the other hand, set Pν (K0) = N̄ −K0

β−1
γ − 1, 0 < K0 < N̄ , i.e.,

Pν (K0) is the P -coordinate of the intersection K̇ = Ṅ = 0, K = K0 . Clearly
dPν
dK0

> 0. Since we assumed ϕ (0) < 0, it follows from straightforward com-

putations that limK→0+ Pv (K0) = Pv (0) = N̄
β−1
γ − 1 > P̂ . Hence, let us

go back to the trajectory Γ (t) ⊂ A for t ≥ 0. Then, if K0 is sufficiently
small, Pμ (K0) < Pν (0). It follows that, since K̇ (t) < 0 in a right neigh-
borhood of t = 0, a possible maximal value of P (t), say P (t∗), t∗ > 0, will

3 A positively invariant region is an open connected set such that all the trajectories
starting in it remain there for all t ≥ 0. By ∂A we denote the boundary of A.
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satisfy P (t∗) < Pν (0) < Pν (K
∗). Therefore K (t) keeps decreasing and in

fact this implies limt→+∞K (t) = 0. 4 Consequently limt→+∞N (t) = N̄ and
limt→+∞ Ṅ (t) = 0, so that, finally, limt→+∞ P (t) = P̂ . Therefore we have
proven that, if Q0 = (K0, N0, P0) ∈ A and K0 is small enough, then the
trajectory through Q0 converges, as t → +∞, to Q̂. Now, suppose that the
trajectory starting at some Q0 ∈ A, with, as above, K̇ (Q0) < 0, Ṅ (Q0) = 0,
Ṗ (Q0) > 0, reaches K̇ = 0 before Ṅ = 0. Then, by the continuous depen-
dence of the solutions from the initial conditions, there must be someQ0 whose
trajectory reaches a point Q∗ ∈ K̇ = 0 ∩ Ṅ = 0 . Moreover, again by a

continuity argument, 5 Ṗ (Q∗) ≤ 0. But if Q∗ ∈ A, then it cannot be a station-
ary state. Hence, if the trajectory reaches Q∗ in a finite time t∗, Ṗ (Q∗) < 0, so
that, as it is easily checked, in a right neighborhood of t∗, K (t) keeps decreas-
ing, and so on, implying that such a trajectory, and the nearby ones, converge
to Q̂. In fact, in order to have a trajectory not converging to Q̂, the above Q∗

had to be reached in infinite time. In other words, it had to be a stationary
state and, precisely, a saddle. This completes the proof of the theorem.

Remark 5 It can be shown that in case ϕ (0) > 0 (or ϕ (0) = 0 and ϕ (0) >
0) no trajectory in B can tend, as t→ +∞, to K = 0.

Remark 6 Assume two interior stationary states exist, the saddle Q∗ and the
sink Q̃, 0 < K∗ < K̃ < N̄ . Then it follows from straightforward computations
that P̂ < P ∗ < P̃ ; that is, the pollution level P in the boundary point Q̂ is
lower than in the internal stationary states, Q∗ and Q̃, when existing.

Note that the limit boundary point Q̂ = (0, N̄ , P̂ ), where P̂ is the solution
of the equation qN̄β − P (1 + P )γ = 0, coincides with the unique (globally
attractive) stationary state of the one-sector dynamics that would be observed
in the absence of the industrial sector. In this case, K = 0 and N = N̄ and
the time evolution of P would be described by the equation:

Ṗ = qN̄β (1 + P )−γ − P (12)

Along every trajectory of the three-dimensional system (8) approaching, as
t→ +∞, Q̂, the economy tends (asymptotically) to become specialized in the
resource-dependent sector.

Our next step will be to prove the following theorem.

Theorem 7 Let C ⊆ B be a positively invariant region containing exactly
one stationary state, that is, the sink Q̃ = K̃, Ñ , P̃ . Then all the trajectories

starting in C tend, as t→ +∞, to Q̃.
4 It can be checked that limt→T−K (t) = 0 implies T = +∞.
5 Q∗ can be considered the limit of a sequence of points Qn such that K̇ (Qn) > 0,
Ṅ (Qn) = 0, Ṗ (Qn) < 0.
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In order to prove the above theorem, we need, first of all, to stretch the box
where system (8) is studied. Precisely, we consider the box B = {K,N ∈
0, N̄ , P ∈ (0,+∞)}. Clearly B ⊃ B and is positively invariant as well, with
respect to (8). Hence we start by proving the following lemma.

Lemma 8 Consider system (8) defined in B . Then there exist trajectories
lying in B for all t ≤ 0 and tending, as t → −∞, to the boundary point
Q∞ = N̄ , 0,+∞ .

PROOF. See Appendix A.2.

Now we can move to proving Theorem 7. In fact, the full proof of the theorem
is given in Appendix A.3. Here we just mention the main idea behind the
proof. Assume, by contradiction, there exists in the region C described in the
theorem’s statement some ω-limit set Σ different from the sink Q̃. Then Σ is
a compact set both positively and negatively invariant, whose trajectories are
oscillating. Hence we reverse the time, i.e. we pose τ = −t, and we show that
we can choose Q0 = (K0, N0, P0) ∈ Σ such that, deriving with respect to τ ,
K̇ (Q0) > 0 and Ṅ (Q0) < 0. Hence the negative trajectory starting from Q0,
say α (τ) with τ = −t, should remain in C for all τ ∈ (0,+∞). Vice-versa,
we prove that, if α (τ), with the above assumptions, remains in B ⊃ C for all
τ ∈ (0,+∞), then limτ→+∞ α (τ) = Q∞ = N̄ , 0,+∞ , which doesn’t even
belong to the closure of C, thus reaching a contradiction.

Remark 9 It follows from the proof of Theorem 7 that, if C ⊂ B, then the
two-dimensional stable manifold of the saddle Q∗ is part of the boundary of C.

The previous results are summarized in the following theorem.

Theorem 10 System (8), defined in the open box B, can exhibit (generically)
at most three regimes. Precisely:

(1) There exists a positively invariant region A ⊆ B whose trajectories tend,
as t→ +∞, to the boundary point Q̂ = (0, N̄ , P̂ ).

(2) There exists a positively invariant region C ⊆ B whose trajectories tend,
as t→ +∞, to a sink Q̃ = K̃, Ñ , P̃ .

(3) There exists a positively invariant two-dimensional manifold T ⊂ B whose
trajectories tend, as t→ +∞, to a saddle Q∗ = (K∗, N∗, P ∗).

The numerical simulation in Fig. 1 illustrates the case in which only the regime
1 (of the above theorem) is observed in the box B. Analogously, the numerical
simulation in Fig. 2 illustrates the case in which only the regime 2 occurs in the
box B. Finally, the numerical simulation in Fig. 3 illustrates the case in which
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Fig. 1. Example of regime 1 (with l = 1, m = 1, β = 0.5, γ = 0.5, δ = 0.06, N̄ = 0.5,
q = 1.5 > r = 1.4 such that ϕ (0) = −0.25 < 0)

all regimes take place in B, depending on the initial values of the state variables
K, N , and P . In the case of Fig. 3, the two-dimensional stable manifold of the
saddle Q∗ (along which regime 3 occurs) separates the trajectories of regime
1 from those of regime 2. The phase portraits illustrated in Figs 1-3 represent
the only ones that can be generically observed in the box B under the dynamic
system (8).

Remark 11 It follows from the above theorems that a region A whose trajec-
tories tend to the boundary point Q̂ 6 exists if and only if ϕ (0) < 0 or ϕ (0) = 0

and ϕ (0) ≤ 0. In the former case, we have ϕ (0) = 1+ qN̄ − N̄
β−1
γ < 0, which

implies, as it is easily checked, P̂ > qN̄ , where P̂ is the solution of the equa-
tion qN̄β−P (1 + P )γ = 0. Hence, replacing in the previous equation the first
P by qN̄ , we get N̄β−1 − (1 + P̂ )γ > 0, i.e. N̄β−1/(1 + P̂ )γ > 1. In other
words, at the boundary attractor Q̂, the revenues of the workers employed in
the F-sector are higher than at the possible sink, where the wage rate is, by the
equilibrium conditions, equal to 1. Vice-versa, when Q̂ is not attracting, which
implies ϕ (0) ≥ 0, we get N̄β−1/(1 + P̂ )γ ≤ 1 (the strict inequality holding if
ϕ (0) > 0).

6 Remember that such point corresponds to the unique (globally attractive) sta-
tionary state of the one-sector dynamics (12) that would be observed in absence of
the industrial sector.
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Fig. 3. Example of regime 3 (with l = 1, m = 1, β = 0.5, γ = 0.5, δ = 0.06, N̄ = 0.5,
q = 1.5 < r = 9 such that ϕ (0) = −0.25 < 0)
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It follows from the above theorem that the three possible dynamic regimes of
system (A.2) coexist if and only if the system exhibits two stationary states
in B, i.e. the saddle Q∗ and the sink Q̃. In this case, the stable manifold of Q∗
separates the basins of attraction of Q̃ and the boundary attractor Q̂. Then,
it becomes interesting to know more about the shape of such stable manifold.
To this end we prove the following

Theorem 12 Assume system (A.2) has two stationary states in B, a saddle
Q∗ = (K∗, N∗, P ∗) and a sink Q̃ = K̃, Ñ , P̃ : then there exists a region S
in the plane (K,N), S = {K1 < K < K2, N1 (K) < N < N2 (K)}, having the
following properties.

(1) K1 < K
∗ < K2 ≤ K̃, N1 (K) < N̄ −K < N2 (K).

(2) For each (K0, N0) ∈ S, there exists exactly one value P T0 , i.e. P T0 =
ϕ (K0, N0), such that: a trajectory starting from (K0, N0, P0), with P0 <
P T0 , tends to the boundary point Q̂; a trajectory starting from (K0, N0, P0),
with P0 > P T0 , tends to the sink Q̃; the trajectory starting from K0, N0, P

T
0

tends to the saddle Q∗.

PROOF. Let us consider the plane π of equation N +K = N̄ , intersecting
the box B in a rectangle R, where we choose P and N as coordinates, so
that R = 0, P̄ × 0, N̄ . It follows from the proof of Theorem 4 that, when
N is sufficiently high (hence K is sufficiently low), the trajectories from the
corresponding strip of R tend to Q̂ . Hence the intersection of R with the
stable manifold of Q∗, which separates the above two regimes, is a curve Γ
contained in a strip {N1 < N < N2/0 < N1 < N

∗ < N2}. Moreover, it follows
again from the proof of Theorem 4 that, when N0 > N∗, a trajectory from

N̄ −N0, N0, P0 , with P0 ≤ N
β−1
γ

0 − 1, tends to Q̂. On the other hand, it is

easily computed that forN0 > N∗, K0 = N̄−N0,P0 > N
β−1
γ

0 −1, Ṅ (K0, N0, P0)
and Ṗ (K0, N0, P0) are < 0, while for Ñ < N0 < N∗, K0 = N̄ − N0,P0 <
N

β−1
γ

0 − 1, Ṅ (K0, N0, P0) and Ṗ (K0, N0, P0) are > 0.

Suppose, now, that, near Q∗, Γ is the graph of a decreasing function N (P ),
so that dN

dP
< 0 as P lies in a left neighborhood of P ∗. Consider a closed

tract Γ of Γ where that occurs, Q∗ /∈ Γ . Pose H = N + K and take Q0 =
(H0, N0, P0) ∈ Γ (hence H0 = N̄). To fix the ideas, we can assume Q0 is the
end-point of Γ with the higher N . Recalling that on π K̇ = 0 and therefore
Ṅ < 0 implies Ḣ < 0, consider a sufficiently small box B = [H0 − a,H0] ×
[N0 − b,N0]× [P0, P0 + c], a, b, c > 0. The intersection of the side {P = P0} of
B with the stable manifold ofQ∗, T , is a curve α which can be parametrized by
N ∈ [N0 − b,N0]. In fact, being T invariant (i.e., constituted by trajectories),
along such a curve α dH

dN
= Ḣ(H,N,P0)

Ṅ(H,N,P0)
. Moreover, if B is small enough, there
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exist r1 > r2 > 0 such that , in B , −r1 ≤ Ṅ ,
·

P ≤ −r2. Take now Q0 =
(H0, N0, P0), with P0 = P0 + δ, δ > 0 being sufficiently small (so that Q0
belongs to the basin of Q̃). Then the trajectory from Q0 stays for a certain
time in B , and in fact we can parametrize it too by N , so that it is represented
by a curve γ (N) = (H(N), N, P (N)), N0 − b ≤ N ≤ N0. Then, along γ (N),
dP
dN
≥ r2

r1
> 0. Moreover, being Ṅ < 0, it is easily computed that, for given

H and N , dH
dN
= 1 + K̇

Ṅ
is higher for a higher P . So, if δ is sufficiently small,

the trajectory γ will reach the side {P = P0} of B for some pair (H1, N1) ∈
(H0 − a,H0) × (N0 − b,N0). Should the trajectory remain “to the right” of
T , then, for what we have noticed, the corresponding pair (H1, N̂1) on α =
T ∩ {P = P0} would satisfy N̂1 > N1. It follows that, for our choice of a
sufficiently small B , we would have a point (H1, N1, P1) on T with P1 > P0,
leading to a contradiction, since we have supposed that γ lies “to the right”
of T . Hence γ reaches the side {P = P0} of B by intersecting the invariant
manifold T , which again leads to a contradiction.

It follows that, for P lying in a right neighborhood of P ∗, the points in R of
the curve C = {N = (1 + P )

γ
β−1 , N ≥ Ñ} (which is the graph of a decreasing

function) lie to the right of Γ, and thus belong to the basin of attraction of
Q̃. If it happened that Γ crossed again the curve C for some P > P ∗, then
there should exist, as it is easily observed, a tract of Γ where dN

dP
< 0 with

P > P ∗. Again, by an argument analogous to the previous one, we are led to
a contradiction, considering the trajectory from a point Q0 sufficiently close
to this tract and lying to the left of Γ (so that Ṅ (Q0) , Ṗ (Q0) > 0). Hence
the curve C, for P > P ∗, belongs to the basin of Q̃.

Suppose, now, that there exists a tract Γ of Γ such that, for P ∈ [P1, P2],
P1 > P

∗, Γ is the graph of a function N (P ) satisfying dN
dP
< 0. 7 Hence, along

Γ , Ṅ , Ṗ < 0 and, as above, −r1 ≤ Ṅ ,
·

P ≤ −r2 for suitable r1 > r2 > 0. Then
we can consider a point Q0 sufficiently close to Γ lying to the right of Γ (i.e.,
for our assumption, in the basin of attraction of Q̂). Again, it follows that the
trajectory from Q0 would reach the stable manifold of Q

∗ within a finite time,
leading to a contradiction.

The same argument can be can be applied to rule out the existence of a tract
Γ of Γ where dN

dP
< 0 as P < P ∗ and Ñ < N < N∗(in this case Q0 can be

chosen as lying to the left of Γ , so that Ṅ (Q0) , Ṗ (Q0) > 0).

In conclusion, Γ is the graph of an increasing function N (P ), hence P (N),
in a strip (N1, N2) ⊂ R, where N1 ≤ Ñ < N∗ < N2, which implies that for

7 Observe that, since q < r (as the existence of two stationary states implies), the
curve {Ṗ = 0} ∩R is represented, near Q∗, by the graph of a function N(P ) such
that dNdP (P

∗) < 0.
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Fig. 4. Two examples illustrating Theorem 12: (a) the blue trajec-
tory starts from (K0, N0, P0) = K∗ − 0.01, N̄ −K0, N−1

0 − 1 , whereas
the red trajectory from (K0, N0, 28); (b) the red trajectory starts from

(K0, N0, P0) = K∗ + 0.01, N̄ −K0, N −1
0 − 1 , whereas the blue trajectory from

(K0, N0, 0)

(K,N) belonging to a suitable region S, as the one described in the statement
of the theorem, the stable manifold of Q∗ can be represented as the graph of
a function P (K,N).

Fig. 4 shows trajectories starting from the same initial values of K and N ,
but different initial values of P , approaching either the boundary point Q̂ or
the sink Q̃.

Remark 13 The above theorem implies that in a neighborhood of Q∗ the
stable manifold of the saddle can be interpreted as the graph of a function
P = ϕ (K,N). Moreover, it follows from the proof of the theorem that such a
manifold, in a neighborhood of Q∗, can also be seen as the graph of a function
N = ψ (K,P ). Hence, if (K0, P0) is sufficiently close to (K∗, P ∗), there exist
a δ > 0 and a function NT

0 = ψ (K0, P0) such that: a trajectory starting from
(K0, N0, P0), with NT

0 < N0 < N
T
0 + δ, tends to the boundary point Q̂; a tra-

jectory starting from (K0, N0, P0), with NT
0 − δ < N0 < NT

0 , tends to the sink
Q̃; the trajectory starting from K0, N

T
0 , P0 tends to the saddle Q∗.
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5 Interpretation of the main results and concluding remarks

In this paper we have analyzed the dynamics of a small open economy with
two sectors (a farming sector and an industrial sector), free inter-sectoral labor
mobility and heterogeneous agents (farmers and industrial entrepreneurs). We
studied the dynamics of the three crucial variables of the model (N , K and
P ) and gave a complete classification of the dynamic regimes that can be ob-
served. More specifically, we showed that the three-dimensional dynamic sys-
tem of the model, defined (after a suitable rescaling) in a positively invariant
box B = (K,N, P ) ∈ 0, K̄ × 0, N̄ × 0, P̄ , can (generically) exhibit at
most three regimes. More precisely:

(1) There exists a positively invariant region A ⊆ B whose trajectories tend,
as t → +∞, to the boundary point Q̂ = (0, N̄ , P̂ ), where K = 0 and
therefore the economy “specializes” in the production of the F-sector.

(2) There exists a positively invariant region C ⊆ B whose trajectories tend,
as t → +∞, to a sink Q̃ = K̃, Ñ , P̃ , with K̃ > 0 and Ñ ∈ (0, N̄),
where the two sectors coexist.

(3) There exists a positively invariant two-dimensional manifold T ⊂ B whose
trajectories tend, as t → +∞, to a saddle Q∗ = (K∗, N∗, P ∗), with
K∗ > 0 and N∗ ∈ (0, N̄).

We showed (Theorem 1) that the presence and possible coexistence of the
three regimes depend on the features of a function ϕ (K) = q N̄ −K +

rK − N̄ −K
β−1
γ + 1.

In particular, regimes 1, 2, and 3 exist simultaneously if and only if: a) ϕ (0) =

qN̄ − N̄
β−1
γ + 1 < 0; b) ϕ (K) has exactly one maximum KM ∈ 0, N̄ ; c)

ϕ (KM) > 0.

This implies q < r , i.e., that the environmental impact of the F-sector is lower,
after a suitable rescaling, than the environmental impact of the I-sector, and
that the rescaled population size N̄ is low enough, as 1 > qN̄ + 1 N̄

1−β
γ .

When this is the case, the two attractors Q̃ and Q̂ coexist and their basins of
attraction are separated by the two-dimensional stable manifold of the saddle
Q∗. Furthermore, we noticed that:

(1) The boundary point Q̂ coincides with the unique (globally attractive)
stationary state of the one-sector dynamics (12) that would be observed
in absence of the industrial sector (in such an economy, K = 0 and
N = N̄ always hold). Along every trajectory of the three-dimensional
system (8) approaching Q̂, the economy tends (asymptotically) to become
specialized in the resource-dependent sector.
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(2) When the two interior stationary states Q∗ and Q̃ exist, then 0 < K∗ <
K̃ < N̄ and P̂ < P ∗ < P̃ hold (see Remark 6), where P̂ is the pollution
level P evaluated at the boundary point Q̂.

(3) If the boundary point Q̂ is attractive, then in such state the revenues of
the workers employed in the F-sector are higher than in the sink Q̃. The
opposite holds when the boundary point Q̂ is not attractive (see Remark
11). In the former context, we can say that a perverse structural change
occurs (in the sense of Lopez, 2007; see the Introduction of this paper)
when the economy converges to the sink Q̃, where both sectors coexist.
The opposite holds when the boundary point Q̂ is not attractive (see
Remark 11).

According to Theorem 12, when two interior stationary states exist, the initial
pollution level P (0) may play a crucial role, given the initial values K(0)
and N(0) of the other two variables, in determining equilibrium selection.
In fact, if K(0) and N(0) satisfy the conditions of the theorem, then there
exists a threshold value P T such that, starting from (K(0), N(0), P (0)), the
economy converges to Q̂ (where it becomes specialized in the F-sector) if
P (0) < P T , while it converges to Q̃ (where the economy gets industrialized)
if P (0) > P T . A higher initial level P (0) of pollution implies lower labor
productivity in the F-sector; therefore, as in the seminal work by Matsuyama
(1992), in our model low productivity of labor in the resource-dependent sector
is the engine of the industrialization process. However, the self-re-enforcing
process of industrialization driving the economy towards the stationary state
Q̃ is always associated with a decrease in workers’ revenues (in the context
in which the boundary point Q̂ is attractive), differently from Matsuyama’s
work.

Analogously, also the initial value N(0) of N may play a role in equilibrium
selection, as pointed out in Remark 13. So, in the case in which the boundary
point Q̂ is attractive, the convergence to the interior sink from a point close to
the saddle Q∗ can be considered as the consequence of a coordination failure
of workers.

Clearly, our result on workers’ revenues is strictly linked to our assumption
that the industrialization process generates negative environmental external-
ities, but not positive ones, as is assumed, on the contrary, by Matsuyama.
In the case in which both types of externalities condition the dynamics of the
economy, it may happen that negative externalities — through the mechanism
analyzed in our paper — lead economic agents towards a better exploitation
of positive externalities. Obviously, in such a context, the effect of positive
externalities may counterbalance the effect of negative externalities.

Although our conceptual framework is too simple fully to catch all dynamic
aspects of the growth paths of developing countries, we believe that some of the
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latter are consistent with the narratives behind the model we have proposed
and this encourages further research along the lines suggested in this paper.

A Appendix

A.1 Proof of Theorem 1

Let Q0 = (K0, N0, P0) ∈ B be a stationary state of system (A.2). Then it
is easily computed that ϕ (K0) = 0. Moreover, limK→N̄ ϕ (K) = −∞ and
ϕ (K) < 0 as K ∈ 0, N̄ . It follows that the stationary states in B are at
most two, according to the conditions stated in the theorem. Furthermore, the
Jacobian matrix J (Q0) is given by

J (Q0) =

⎛⎜⎜⎜⎜⎜⎝
−lδ −lδ 0

−m(1−δ)
K0

−m(1−δ)
K0

− m(1−β)
N0

−mγ
1+P0

r (1− δ) −rδ + qβ −qγN0
1+P0

− 1

⎞⎟⎟⎟⎟⎟⎠

It follows, by easy computations, that sign [det (J (Q0))] = sign [ϕ (K0)] and
tr(J (Q0)) < 0. Therefore, if ϕ (K0) > 0,Q0 is a saddle with a two-dimensional
stable manifold. If, instead, ϕ (K0) < 0, then the characteristic polynomial of
J (Q0) is given by

−λ3 + tr (J)λ2 − σ (J)λ+ det (J)

and it is easily calculated that

|tr (J)| · σ (J) > |det (J)|

Therefore, the Routh-Hurwicz conditions yield that Q0 is a sink. This com-
pletes the proof of the theorem.

A.2 Proof of Lemma 8

We consider the change of time τ = −t and continue to denote the derivatives
with respect to τ by K̇, Ṅ , Ṗ . Hence the system, to be studied in B , becomes
(A.2).

19



In order to simplify the notations we can pose P = P +1, renaming P as P .
Then, writing Ṗ = P − f(K,N, P ), Ṗ > 1

2
P if P ≥ P0 is sufficiently large and

it is easily checked that P → +∞ iff τ → +∞. Therefore for P ≥ P0 we can
replace τ by P and consider, in the plane (K,N), the non-autonomous system

dK
dP
=

lK1−δ Kδ−(N̄−N)δ

P−f(K,N,P )

dN
dP
=

m (N̄−N)δ−1K1−δ−Nβ−1P−γ

P−f(K,N,P )

(A.1)

Now, set K = N̄ −H, we consider, for each P ≥ P0, the trajectories starting,
respectively, at Q1 (P ) = (H,N, P ) satisfying N = P−

γ
1−β − aP−

2γ
1−β , dN

dP
= 0

and at Q2 (P ) = (H,N, P ) satisfying H = N = P−
γ

1−β − aP−
2γ
1−β , with a > 0

being sufficiently small.

Hence the former trajectories start from a minimum value of N and the
latter ones from a minimum value of H. In the plane (H,N) the points
Q1 (P ) fill a curve C1, the points Q2 (P ) a curve C2 (in fact, a segment on
the line N = H), which, together with the segment C3 = [Q01, Q

0
2] lying on

N = N0 = P
− γ
1−β

0 − aP
− 2γ
1−β

0 , are the sides of a curvilinear triangle T . Now,
it is easily checked that a trajectory starting, at P = P0, from a point of C3
may reach in T at most a minimum (and not a maximum) value of N (while
in T − C2 dH

dP
< 0). In fact, dN

dP
= 0 corresponds to Ṅ = 0 in system (A.2), so

that N̈ = K̇

(N̄−N)1−δKδ
+ γ Ṗ

N1−βP 1+γ > 0, as K̇ and Ṗ are both positive inside

T . Moreover, it follows from the continuous dependence on initial conditions
that trajectories starting at P = P0 from a suitable right neighborhood of Q01
on C3 cross the side C1 of T , while trajectories starting at P = P0 from a
suitable left neighborhood of Q02 on C3 cross the side C2. In fact, the same
argument yields, as it is easily seen, that all the points both of C1 and C2
are reached by trajectories starting at P = P0 from C3. Therefore there exists
some trajectory Γ, lying in T , starting from C3 at P = P0 and tending to
H = N = 0. Then along Γ dH

dP
< 0 (i.e., dK

dP
> 0) and dN

dP
< 0, implying

Nβ−1P−γ > N̄ −N
δ−1
K1−δ > 1, that is H < N < P−

γ
1−β . It follows that

H(P ) decreases not faster than P−
γ

1−β and thus H → 0 implies P → +∞.

This concludes the proof of the Lemma.

A.3 Proof of Theorem 7

We will proceed by contradiction. Recalling Remark 5, assume there exists
in C some ω-limit set Σ different from the sink Q̃. Then every trajectory
Γ ⊆ Σ stays in C and therefore in B for all t ∈ (−∞,+∞) and moreover is
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oscillating (i.e., along Γ, K (t) , N (t) , P (t) reach relative minima and maxima
at infinitely many positive and negative times). Hence, consider the change of
time τ = −t and, continuing to denote the derivatives with respect to τ by
K̇, Ṅ , Ṗ , the system:

K̇ = lK1−δ Kδ − N̄ −N
δ

Ṅ = m N̄ −N
δ−1
K1−δ −Nβ−1 (1 + P )−γ

Ṗ = P − qNβ (1 + P )−γ − r N̄ −N
δ
K1−δ

(A.2)

defined in B . Along a trajectory α (τ) lying in B for all τ ≥ 0 and oscillating,
K (τ) will have a minimum, say, at τ 1, implying Ṅ (τ 1) ≥ 0 and Ṅ (τ) > 0
in a right neighborhood of τ 1. Then there will exist τ 2 > τ 1, where N (τ) has
a maximum. Since K̇ (τ 2) > 0, this is easily seen to imply Ṗ (τ 2) < 0. Let us
set τ 2 = 0 and examine α (τ) for τ > 0. As in the proof of Theorem 4, we can
consider, for anyK∗ ∈ 0, N̄ , two curves on the planeK = K∗, i.e., the graph

of a decreasing function N = ϕ∗ (P ) corresponding to Ṅ = 0 (with ϕ∗ (−1) =
N̄ , limP→+∞ ϕ∗ (P ) = 0) and the graph of a function P = ψ

∗ (N) exhibiting
exactly one maximum as N ∈ 0, N̄ and such that ψ∗ (0) = rN̄ δ (K∗)1−δ,

ψ∗ N̄ = P̂ (satisfying P̂ (1+P̂ )γ = qN̄β). Moreover, in the positive quadrant

of the plane K = K∗, Ṅ > 0 at points (P,N) such that N > ϕ∗ (P ) and Ṗ
> 0 at points (P,N) such that P > ψ∗ (N). Finally, we observe that K̇ > 0 at
points where N > N̄ −K∗, while the intersection between K̇ = 0 and Ṅ = 0

takes place at R∗ = N̄ −K∗, N̄ −K∗ − 1−β
γ − 1 .

Therefore, take K∗ sufficiently close to N̄ , say 0 < N̄ −K∗ < ε, ε being suf-
ficiently small. Consider the previous trajectory α (τ) and recall we assumed
K̇ (τ) > 0 and Ṅ (τ) < 0 in a right neighborhood of τ = 0 (in fact, we
can assume K̇ (0) > 0 and Ṅ (0) < 0). Set α (0) = (K0, N0, P0) and suppose

N̄−K0 < ε. If ε > 0 is sufficiently small, then P ∗0 = N̄ −K0

− 1−β
γ −1 is such

that, for P ≥ P ∗0 , Ṗ > 1
2
P , implying, as it is easily checked, that along the

trajectory starting at Q∗0 = K0, N̄ −K0, P
∗
0 P (τ)→ +∞ as τ → +∞. First

of all, we prove that in this case, if α (τ) remains in B for all τ ≥ 0, then it
cannot cross at any positive time τ a line K = K∗, N = N̄ −K∗ , K∗ > K0.
In fact, assume that to be the case, i.e., K (τ 1) = N̄ −N (τ 1) at some τ 1 > 0
with K1 > K0. We observe that along the trajectory starting from Q∗1 =

K1, N̄ −K1, N̄ −K1

− 1−β
γ − 1 P increases, as P ∗1 = N̄ −K1

− 1−β
γ − 1 >

P ∗0 , and so does K (in fact, K̇ (0) = K̈ (0) = 0, but
...
K (0) > 0). Therefore,

by the continuous dependence on initial conditions, along trajectories leav-
ing from the line K = K1, N = N̄ −K1 at points lying in a suitable left
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neighborhood of Q∗1, K and N will be also increasing after some time τ̄ > 0.
Now, let us go back to our trajectory α (τ) 8 , which will intersect Ṅ = 0 at

a point Q2 = (K2, N2, P2), such that (1 + P2)
γ = Nβ−1

2
N̄−N2
K2

1−δ
> Nβ−1

2 >

N̄ −K1

β−1
(since K̇ < 0 impliesK < N̄−N). If α (τ) should not cross again

K̇ = 0, i.e. the plane K = N̄ −N , then, following the previous considerations,
there should be a trajectory starting from the line K = K1, N = N̄ −K1

tangent to a line K = K3, N = N̄ −K3 at a point Q3 = (K3, N̄ −K3, P3)

with K3 < K1. However, dNdP (Q3) = 0 is equivalent to Ṅ (Q3) = 0, so that

P3 = N̄ −K3

− 1−β
γ − 1 On the other hand that trajectory would have pre-

viously crossed Ṅ = 0 at a point Q̃2 = K̃2, Ñ2, P̃2 , such that, as above,

1 + P̃2
γ
= Ñβ−1

2
N̄−Ñ2
K̃2

1−δ
> Ñβ−1

2 , implying that P increases between Q̃2

and Q3. But (1 + P3)
γ = Nβ−1

3 < Ñβ−1
2 < 1 + P̃2

γ
, leading to a contradic-

tion. It follows that α (τ) must cross again K̇ = 0 at a time, say, τ̄ > τ 1.
Consequently, as P (τ)→ +∞, Ṅ (τ) > c > 0 for τ > τ̄ , implying that N (τ)
reaches the value N̄ within a finite time, contradicting the assumption that
α (τ) remains in B for all τ ≥ 0. Hence, along α (τ), K (τ) keeps increasing.
It follows: limτ→+∞ K (τ) = N̄ and limτ→+∞ K̇ (τ) = 0, implying limτ→+∞
N (τ) = limτ→+∞ Ṅ (τ) = 0 and consequently limτ→+∞ Nβ−1

(1+P )γ
= 1, so that,

finally, limτ→+∞ P (τ) = +∞.

Summarizing, so far we have proven the following. Suppose a trajectory α (τ),
remaining in B for all τ ≥ 0, starts at a point Q0 = (K0, N0, P0) such that
K̇ (Q0) > 0, Ṅ (Q0) < 0 and K0 ∈ N̄ − ε, N̄ with ε > 0 sufficiently small.

Then limτ→+∞ α (τ) = Q∞ = N̄ , 0,+∞ . On the other hand, Lemma 8 states
that actually there exist trajectories α (τ), lying in B for all τ ≥ 0, such that
limτ→+∞ α (τ) = Q∞. We also observe that, by the continuous dependence
on initial conditions, if a trajectory λ (τ) leaves B within a finite time τ̄ , so
do trajectories starting from points sufficiently close to λ (0). Hence, on the
basis of the previous arguments, if an oscillating trajectory α (τ) stays in B
for all τ ≥ 0, it follows 9 that there must exist some separatrix trajectory, say
α̂ (τ) , starting at some point Q̂0 = (K̂0, N̂0, P̂0) and lying in B for τ ≥ 0,

8 It is easily checked that, if K (τ) and N (τ) should both decrease for τ > τ1„ the
trajectory would reach K = 0 within a finite time. Just set Kδ = H.
9 In fact, suppose, by contradiction, there exists an interval I = (K1,K2) such that,
if K0 ∈ I and Q0 = (K0, N0, P0) satisfies K̇ (Q0) > 0 and Ṅ (Q0) < 0, then the
trajectory Γ (τ) through Q0 leaves B within a finite time. However, when K0 = K1,
there exists Q1 = (K1, N1, P1) satisfying K̇ (Q1) > 0 and Ṅ (Q1) < 0, such that
the trajectory, say Γ1 (τ), through Q1 remains in B for all τ ∈ [0,+∞). Then,
for a small τ̄ > 0, Γ1 passes through Q̄1 = K̄1, N̄1, P̄1 , with K̄1 ∈ (K1,K2), K̇
Q̄1 > 0, Ṅ Q̄1 < 0, therefore leading to a contradiction.
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with K̇(Q̂0) > 0, Ṅ(Q̂0) < 0, reaching at a time τ 1 > 0 a point Q1 =

K1, N̄ −K1, N̄ −K1

− 1−β
γ − 1 . Then, as τ 1 is finite, Q1 is not a stationary

point, which implies, being K̇ (Q1) = Ṅ (Q1) = 0, Ṗ (Q1) = 0. Moreover, since
Ṅ (τ) < 0 for 0 < τ < τ 1, N (τ 1) must be a minimum, i.e., Ṗ (Q1) > 0. It
follows, as observed above, that in a right neighborhood of τ 1 K (τ) keeps
increasing, so that eventually limτ→+∞ α̂ (τ) = Q∞ = N̄ , 0,+∞ , and so do
nearby trajectories satisfying analogous conditions, in particular starting from
points Q0 close to Q̂0 with K0 < K̂0. Then the argument can be repeated, like
in the proof of Theorem 4. Therefore the only possibility for a separatrix α̂ (τ)
is to reach a pointQ1 as above in an infinite time, that is to tend to a stationary
point, which cannot be the sink Q̃, becoming a source for the inverted time
τ = −t, but the saddle Q∗, possibly lying in the boundary of the region C.
In fact, inverting again the time, i.e. posing t = −τ , the supposed separatrix
α̂ (t) should point, as t > 0, toward values K (t) < K∗ and N (t) > N∗: hence,
recalling the proof of Theorem 4, outside the region C.

In any case, we have proven that C cannot contain oscillating trajectories lying
in B , and therefore in C, for all t ∈ (−∞,+∞). It follows that the only ω-limit
set for trajectories of C is the sink Q̃.

References

[1] Alscher, S. 2011. Environmental degradation and migration on Hispaniola
Island. Int. Migr. 49, Supplement s1, e164 -e188.
http://dx.doi.org/10.1111/j.1468-2435.2010.00664.x.

[2] Antoci, A., Galeotti, M., Iannucci, G., Russu, P., 2015. Structural change and
inter-sectoral mobility in a two-sector economy. Chaos Soliton Fract. 79, 18-29.
http://dx.doi.org/10.1016/j.chaos.2015.05.015.

[3] Antoci, A., Russu, P., Sordi, S., Ticci, E., 2014. Industrialization and
environmental externalities in a Solow-type model, J. Econ. Dyn. Control 47,
211—224. http://dx.doi.org/10.1016/j.jedc.2014.08.009.

[4] Bade K., 2003. Migration in European History, Wiley-Blackwell, Hoboken, N.J.,
USA.

[5] Bartolini, S., Bonatti, L., 2002. Environmental and social degradation as the
engine of economic growth. Ecol. Econ. 43, 1-16.
http://dx.doi.org/10.1016/S0921-8009(02)00176-3.

[6] Bartolini, S., Bonatti, L., 2003. Undesirable growth in a model with capital
accumulation and environmental assets. Environ. Dev. Econ. 8, 11-30.
http://dx.doi.org/10.1017/S1355770X03000020.

23



[7] Bird, J., 1987. The transferability and depletability of externalities. J. Environ.
Econ. Manag. 14, 54-57. http://dx.doi.org/10.1016/0095-0696(87)90005-2.

[8] Boopathi, S., Rameshkumar, M., 2011. Economic and environmental
consequences of the impact of industrial pollution: A case experience of domestic
rural water supply. Int. J. Ecol. Econ. Stat. 20, 75-94.

[9] Collier, P., 2009. Haiti: from natural catastrophe to economic security. A report
for the Secretary-General of the United Nations. Oxford University, Oxford.
Available at http://www.securitycouncilreport.org.

[10] Deng, Y., Yang, G., 2013. Pollution and protest in China: environmental
mobilization in context. China Quart. 214, 321-336.
http://dx.doi.org/10.1017/S0305741013000659.

[11] Dhamodharam, R., Swaminathan, A., 2010. Over-abstraction of ground water
and increasing threat of pollution: is farmers’ livelihood at stake? A case study
in India. Paper presented at world water week in Stockholm, September 2010.

[12] Economy, E. C., 2004. The river runs black: the environmental challenge to
China’s future. Cornell University Press, Ithaca & London.

[13] Escofet, A., Bravo-Peña, L. C., 2007. Overcoming environmental deterioration
through defensive expenditures: field evidence from Bahía del Tóbari (Sonora,
México) and implications for coastal impact assessment. Journal Environ.
Manage. 84, 266-273. http://dx.doi.org/10.1016/j.jenvman.2006.06.005.

[14] Gylfason, T., 2001. Natural resources, education, and economic development.
Eur. Econ. Rev. 45, 847-859.

[15] Gylfason, T., Herbertsson, T., Zoega, G., 1999. A mixed blessing: natural
resources and economic growth. Macroecon. Dyn. 3, 204-225.

[16] Hirsch, F., 1976. The Social Limits to Growth. Harvard University Press,
Cambridge, Mass.

[17] Holdaway, J., 2013. Environment and health research in China: The state of the
field. China Quart. 214, 255—282.
http://dx.doi.org/10.1017/S0305741013000337.

[18] Hueting, R., 1980. New Scarcity and Economic Growth. More Welfare Through
Less Production? North Holland, Amsterdam.

[19] Leipert, C., Simonis, U. E., 1988. Environmental damage — environmental
expenditures: Statistical evidence on the Federal Republic of Germany. Int.
J. Soc. Econ. 15(7), 37-52. http://dx.doi.org/10.1108/eb014111.

[20] Lewis, W. A., 1955. The theory of economic growth, Allen & Unwin, London.

[21] López, R. E., 2003. The policy roots of socioeconomic stagnation and
environmental implosion: Latin America 1950-2000. World Dev. 31, 259-280.

24



[22] López, R. E., 2007. Structural change, poverty and natural resource
degradation. In: Atkinson, G., Dietz, S., Neumayer, E. (Eds.), Handbook of
Sustainable Development. Edward Elgar, Cheltenham, UK.

[23] Lucas R. E., 2004. Life earnings and rural-urban migration, J. Polit. Econ.
112(S1), s29-s59. http://dx.doi.org/10.1086/379942.

[24] Matsuyama, K., 1992. Agricultural productivity, comparative advantage, and
economic growth. J. Econ. Theory 58, 317-334. http://dx.doi.org/10.1016/0022-
0531(92)90057-O.

[25] Ranis, G., Fei, J. C., 1961. A theory of economic development. Am. Econ. Rev.
51, 533-565.

[26] Sachs, J. D., Warner, A. M., 1995. Natural resources abundance and
economic growth. National Bureau of Economic Research working paper 5398,
Cambridge, MA.

[27] Sachs, J. D., Warner, A. M., 1999. The big push, natural resource booms and
growth. J. Dev. Econ. 59, 43-76. http://10.1016/S0304-3878(99)00005-X.

[28] Sachs, J. D., Warner, A. M., 2001. The curse of natural resources. Eur. Econ.
Rev. 45, 827-838.

[29] Schaefer, M., 1957. Some considerations of population dynamics and economics
in relation to the commercial marine fisheries. J. Fish. Res. Board. Can. 14,
669-681.

[30] Shibata, H., Winrich, J. S., 1983. Control of pollution when the offended defend
themselves. Economica 50, 425-37. htto://dx.doi.org/10.2307/2554304.

[31] Shogren, J. F., Crocker, T. D., 1991. Cooperative and noncooperative protection
against transferable and filterable externalities. Environ. Resour. Econ. 1, 195-
213.

[32] Solow, R. M., 1956. A contribution to the theory of economic growth. Q. J.
Econ. 70, 65-94.

[33] van der Ploeg, F., 2011. Natural resources: curse or blessing? J. Econ. Lit. 49,
366-420. http://dx.doi.org/10.1257/jel.49.2.366.

[34] Yongguan, C., Seip, H. M.,Vennemo, H., 2001. The environmental costs
of water pollution in Chongqing, China Environ. Dev. Econ. 6, 313—333.
http://dx.doi.org/10.1017/S1355770X01000183.

[35] World Bank, 2007. Cost of pollution in China. Economic estimates of physical
damages. Washington DC, USA.

25


