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Abstract

Our purpose in this paper is to expand Goodwin’s (1967) distributive cycle model to
an open economy framework in a way that incorporates the balance-of-payments con-
straint on growth. We do so by allowing technical change to be endogenous to the cyclical
dynamics of the system and by adopting an independent investment function. We show
that a Hopf-Bifurcation analysis establishes the possibility of persistent and bounded
cyclical paths both for a 3D and a 4D extension of the model. Some numerical simula-
tions are performed based on the analytical models developed. Motivational empirical
evidence is also provided for Thirlwall’s law and the respective adjustment mechanism
using a sample of 17 OECD countries.
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1 Introduction

|Goodwin’s (1967)| distributive cycle model has reached its fiftieth anniversary. In spite of its
vintage, the model continues to be a fruitful and powerful “system for doing macro-dynamics”.
In the last fifty years, more than one hundred contributions have tried to generalise its formu-
lation in all possible directions and the mathematical structure of the model has been used as
a basic framework to study different dimensions of capitalism’s structural instability. It must
be noted, however, that with the exception of the high-dimensional Keynes-Metzler-Goodwin
(KGM) system put forward by Asada, Chiarella, Flaschel and Franke (e.g. |[Asada et al, 2003)),
most existing efforts have been based on a closed economy set up. Needless to say, in the
real world, economies are open to international trade and there are complications in applying
analytical results based on the assumption of a closed economy.

When studying distributive dynamics in open economies, a particularly important problem
arises that has not been discussed in the KGM literature and that we consider to deserve a
careful analysis. The reason for this is that one of the most influential empirical regularities in
the Kaldorian growth literature — namely, Thirlwall’s rule (or law) — states that, in the long-
run, growth is subject to the balance-of-payments constraint (BoPC). Given that countries
cannot systematically finance increasing balance-of-payments imbalances it implies that there
is an adjustment in aggregate demand that constrains growth (Thirlwall, 1979} [2011]).

Our purpose is to investigate such adjustment mechanism and its distributive implications
over the cycle. In order to do so, we expand the original growth cycle set up to an open
economy framework in a way that incorporates the external constraint. Furthermore, it is our
aim to do this by allowing technical change to be endogenous to the cyclical dynamics of the
system.

The importance of our contribution lies in providing a base-line model to study distribu-
tive dynamics in open economies. In this sense, our exercise has some similarities with the
pioneering work of [Blecker (1989) and more recently [Sasaki et al (2013), among others. Still,
these contributions start from a Kaleckian framework which is different from the perspective
adopted here. We consider our approach preferable for at least three reasons. First, cycles are
rooted in the functioning of labour markets. This contrasts with traditional Kaleckian models
that give marginal attention to the labour market. Second, even though the growth cycle set
up does not explicitly differentiate between long and short run, its dynamics recall Kalecki
statement “the long run trend is but a slowly changing component of a chain of short run sit-
uations; it has no independent entity” , p. 5) — a statement frequently ignored
in latter formalizations of the Polish economist. Finally, we do not rely in the controversial
Keynesian stability condition.

Introducing demand constraints means that any assumption of a constant or full rate of
capacity utilisation cannot hold anymore. Hence, the basic motion of the system includes,
besides the employment rate and the wage-share, also the rate of capacity utilisation. We
show that without having to impose any special condition on the values of the parameters, a
Hopf-Bifurcation analysis establishes the possibility of persistent and bounded cyclical paths
for the resulting 3-dimensional non-linear dynamic system providing insights to enable better
understanding of the nature of real-world fluctuations.

While the hypothesis of equilibrium in the balance-of-payments is plausible for the long-run,
in the short-term growth might deviate from the external constraint. Therefore, we also allow
for such deviations by developing a 4-dimensional dynamic system that is fully embedded in
Goodwin’s fundamental insight that trend and cycle are indissolubly fused. In this second case,
disequilibrium in the goods market is further explored introducing an independent investment




function. Some numerical simulations are performed based on the analytical models.

The paper is organised as follows. In the next section we briefly review the original for-
mulation of Goodwin’s distributive cycle model. Section 3 presents our first extension of the
model in which we no longer have full capacity utilisation and the rate of growth of output
always follows the BoPC. In section 4 we allow growth to deviate from the external constraint
and, therefore, we are also able to introduce an independent investment function. Some final
considerations follow.

2 The original formulation

In his growth cycle paper, (Goodwin (1967)| aimed at building a model capable of generating
cycles in the growth rate of output rooted in the functioning of the labour market and the
dynamics of distributive conflict. To concentrate on this point, he assumed full capacity
utilisation so that the Keynesian principle of effective demand plays no role. The model was
originally conceived for a closed economy without government. For expositional purposes
we can divide it into two blocks of equations: (7) supply conditions, and (ii) distributive
conditions.

2.1 Supply conditions

Consider the following production function:
Y = min{Ku;qNe}

where Y is output, K stands for capital, u in the absence of better nomenclature stands for
effective capacity utilisation, ¢ is labour productivity, N is total labour force, and e is the
employment rate. Effective capacity utilisation is given by (Y/Y™*)(Y*/K) with Y* as produc-
tion at full capacity. That is, effective capacity utilization equals actual capacity utilization
multiplied by capital productivity when all machines and equipment are employed. This is
the same as saying that u is given by actual capital productivity, Y/ K, or the inverse of the
actual capital-output ratio, (K/Y)~". Notice that in|Goodwin (1967), Y/Y* was supposed to
be equal to one so that effective and actual capacity are the same and u becomes simply the
inverse of the capital-output ratio. Moreover, the employment rate is given by L/N, where L
is the level of employment.
The Leontieff dynamic efficiency condition states that{]

Y K a4 ¢ N ¢
vy Kk Tu vt (1)
For a constant effective capacity utilisation, such that % = 0, and an exogenous labour force
growth rate, equal to n, from it follows that the rate of growth of output equals the rate
of capital accumulation:
Y K )
YK @)

'For any variable z, i indicates its time derivative (dz/dt), while & indicates its growth rate (i/z). Notice

that the Leontieff production function is in a sense an accounting identity because ¥ = K (i) (Y?) =
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i.e., variations in the employment rate are set by the difference between the economy’s growth
rate and the sum of labour productivity and labour force growth rates. This is equivalent
to saying that the employment rate adjusts to the difference between actual and (Harrod’s)
natural rate of growth.

2.2 Distributive conditions

In an economy with two factors of production and no government, the income identity is:
Y =wL+rK

where w and r are respectively real wages and the rate of return on capital.
Assuming that all savings come from profits and that all profits are reinvested we have
that: .
K
—=(1—-—wu 4
== (1-=) )

where w = wL/Y =1—rK/Y = w/q is the wage share. Given this assumption, there is no
room in the model for an independent investment function.
Variations of real wages are given by a generic Phillips curve of the type:
w / i
—=Fe), F'()>0, F"(:) =0 (5)
w
indicating that the bargaining power of workers increases at an increasing pace as employment
expands.
Finally, from the definition of wage-share we have that:

w W q

Z_Z_1 6

— = (6)
In other words, a constant functional income distribution is only possible if variations in

real wages follow variations in labour productivity. As a result, distribution depends on the
interaction between technology and distributive conflict.

2.3 The dynamic system
Substituting into and then the result into (3)), we have:

Cel-—wu-L-n (7)
e
Then, substituting into @ we obtain:
w q
2 = Fe)-2 ©
w q

For an exogenous growth rate of labour productivity and constant effective capacity util-
isation, equations and form the original growth cycle model. They contain the basic
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elements of a theory of economic fluctuations with the cycle emerging endogenously from the
dynamic interaction of deterministic variables and not as the outcome of exogenous aleatory
shocks.

The distributive cycle works as follows: an increase in the employment rate leads to an
increase in the wage share, which decreases the profit share and thus capital accumulation.
A reduction in capital accumulation decreases the rate of growth of output and consequently
the rate of employment, leading to a decrease in the wage share and an increase in the profit
share. The outcome of a higher profit share is faster capital accumulation because all profits
are reinvested, increasing the rate of growth of output and employment. At this point the
cycle restarts.

e 1 :>wT:>%l:>§l:>el

e | éwlé%Ti%TéeT

3 A first extension of the model

The original growth cycle representation we have just described has been extended in a number
of directions in the last fifty yearsP] However, little attention has been given to possible
applications to the case of an open economy. Furthermore, Post Keynesian models have
emphasised over the years the importance of demand constraints on growth. One of the
most successful empirical regularities among them is Thirlwall’s rule. It proposes that since
countries cannot systematically sustain increasing balance-of-payments imbalances, there is
an adjustment in aggregate demand that constrains growth

The introduction of aggregate demand issues in an open-economy set up leaves at least four
questions to be answered. First, it is not possible to assume full capacity utilisation. Second,
it is not clear how the rate of employment and income distribution interact with the external
constraint. Third, while the hypothesis of equilibrium in the balance-of-payments is plausible
for the long-run, in the short-term growth might deviate from the external constraint and it
is necessary to understand the mechanism behind this adjustment process. Finally, once we
allow the rate of growth of output to deviate from the BoPC we can go further and explore
the implications of using an independent investment function.

In the remainder of the paper we modify the original model in order to address these
issues. This section deals with the first two problems. We allow for variations in effective
capacity utilisation while the rate of growth of output follows Thirlwall’s rule. However, we
assume that the economy never deviates from the balance-of-payments equilibrium condition
and investment is still determined by savings. These two last assumptions are to be relaxed
in the next section. From now on the model can be divided into three blocks of equations.
Besides the original (i) supply conditions, and (i) distributive conditions, we now have (i)
the external constraint.

2For a very recent review of the literature on some of the main theoretical and empirical contributions in
this field, see Aratjo et al (2017). In particular emphasis must be given to the importance of recent extensions
of the model in explaining financial fluctuations and the great financial crisis based on Minsky’s financial
instability hypothesis (Keen, 2013; Sordi and Vercelli, 2012, 2014).

3The idea that growth is BoPC has been a crucial component of much demand-led growth theory since
at least Prebisch (1959). However, it is the role of demand in defining the nature of the constraint that
distinguishes the approach from other growth models (Razmi, 2016). For a literature review on some of the
main theoretical and empirical contributions, see Thirlwall (2011).



3.1 Supply conditions

Once effective capacity utilisation is allowed to vary, from the Leontieff efficiency condition
it follows that:

-2 (9
U

i.e., the rate of change in capacity utilisation now depends on the difference between the rate
of growth of output and capital accumulation.

Following the Kaldorian literature, labour productivity gains are endogenous to the perfor-
mance of the economy. Although the growth rate of labour supply is exogenous in our model,
the growth rate of labour productivity is endogenously determined through a Kaldor-Verdoorn
mechanism. This modification is necessary in order to change the nature of the model from
one that is supply-side determined to a more Keynesian demand-led model. Therefore, pro-
ductivity gains are supposed to be a function of effective capacity utilisationﬂ

g — G(u), G () >0 (10)
Kaldor in particular developed different ways to endogenise technological change (Kaldor,
(1957, 11961}, |1966)). For instance, in his technical progress function he anticipated some of
the basic insights behind Arrow’s learning-by-doing model. Traditional specifications assume
G (+) to be a linear function of the actual growth rate of the economy. We avoid this road for
at least two reasons. First, a linear specification is extremely arbitrary at this point in the
analysis. Second, the traditional interpretation of the linear coefficients has been convincingly
questioned by [McCombie and Spreafico (2016)| because it can be derived from a neoclassical
production functionﬂ
On the other hand, our specification still captures the concept of a learning-by-doing
process associated with the presence of economies of scale in the use of capital. The basic idea
is that to a great extent technical progress is labour saving and capital embodied. Nevertheless,
machines must be operating in order for productivity gains to be effectively incorporated.
Notice that since u = (YL) ( Yf) there are two possible channels for effective capacity utilisation
to influence labour productivity. The first one is through an increase in the degree of utilisation
of machines. Higher rates of idle capacity indicate that machinery has not been properly
used leaving little room for learning-by-doing. The second one is through an increase in the
productivity of machines. That is, the adoption of modern production techniques comes with
spillover effects on workers’ productivity.

“In his inaugural lecture at the University of Cambridge, Kaldor (1966, p. 10) considered the relation
between productivity and output to be “a dynamic rather than a static relationship — between the rates of
change of productivity and of output, rather than between the level of productivity and the scale of output”.
In this sense equation is somehow an hybrid since we are establishing a link between the rate of change
of productivity and the level of output.

®Needless to say that the problems of such production functions are well known. For a comprehensive
discussion see Petri (2004) and Felipe and McCombie (2013). Moreover, it is easy to see that using G as a

linear function of output’s growth rate makes the model completely supply side again. Suppose é =agt+ay %,
where ag and 0 < a3 < 1 are parameters that capture a combination of increasing returns to scale, induced
and exogenous technical change, greater efficiency in the use of resources, and the inter-sectoral reallocation of
resources. From the Leontieff efficiency condition we have g =(1- oq)% — ap — n. In steady-state g =0,

hence, % = % and growth becomes supply-side. Setterfield (2006) and Gabriel et al (2016) among others

have argued that the so called Verdoorn coefficient («;) could be endogenised. But then we go back to the
traditional interpretation of G which has been shown to be invalid by McCombie and Spreafico (2016).



has recently argued that making G a function of e would capture the view that
technological change is driven by inter-class conflict. An increase in the employment rate is
supposed to increase the bargaining power of workers and generate upward pressure on wages,
leading capitalists to adopt labour saving technical changes. Different versions of the argument
have been put forward by several authors (e.g. [Naastepad, 2006} [Dutt, 2006; [Flaschel, 2015}
for a review of endogenous technical change in alternative growth theories see
[Zamparelli, 2017). Even though we do not deny the plausibility of such a mechanism, we are,
in particular, more interested in incorporating endogenous technical progress as a learning
process than as a result of inter-class conflict. [Hein and Tarassow (2010)| and [Rezai (2012)| are
examples of contributions suggesting that the two formulations might not be incompatibleﬂ

3.2 Distributive conditions

Keeping the income identity, once we allow the level of capacity utilisation to change, if all
savings come from profits and a constant share s of those profits is reinvested we have that:

K

= s(1 —w)u (11)

Furthermore, we keep the same Phillips curve (j5)) for the real wage dynamics, and variations
of the wage-share continue to be given by the difference between the rate of growth of wages
and the rate of growth of labour productivity .

3.3 The external constraint

Suppose the following traditional functions for exports and imports:
X = X(2),X'()>0 (12)
M = M), M'(-)>0 (13)

where X are exports, M corresponds to imports, and Z is the rest of the world’s output. Since
we are abstracting from any price considerations, the real exchange rate is supposed to be
constant and does not influence trade. For simplicity, it is also assumed that all trade consists
in the exchanges of final goods. Equilibrium in trade, which in this framework approximates
equilibrium in the balance-of-payments, implies:

X(Z)y=M(Y)
Thus, we can easily show that:
Y 7
=2 = 14
v =Py =P (14)

dX Z jdM Y

where p = = £ /%5 17 is the ratio between foreign income elasticities of exports and imports,

and ygp is the BoPC growth rate. Notice that is nothing other than Thirlwall’s lawﬂ

%One should note that Sasaki et al (2013) in an open economy Kaleckian model uses G(u) but maintains
the inter-class conflict interpretation making reference to Okun’s law.
"From the equilibrium in trade condition we have X (Z) = M (Y). Taking time derivatives this means

dX 7 _ dM~ . N : dX Z X _ dMY My : dX Z Z v _
7L =4y Y. This last expression is equivalent to 7> % - 272 = 7 +Y. Rearrang_mg we hav_e X ZX =
AM Y Y : ‘o R i . iXZZ _ dMYY Y _  Z
v iy M. But if trade is in equilibrium and is different from zero it follows %7 % 7 = 95743 or ¢ = p%.

Moreover, it is straightforward from Fuler’s homogeneity theorem that if X and M are homogeneous functions,
then p is constant.



Foreign trade income elasticities are dependent upon the level of diversification of the econ-
omy’s productive structure. A low level of diversification is associated with a high propensity
to import which in turn implies a high income elasticity of imports. It is also associated with a
low elasticity of exports because the economy will have few different types of goods to export
in the face of increasing demand.

An extensive literature on complexity has stressed the positive relation between economic
complexity and productive diversification (Hidalgo et al, 2007; [Hausmann et al, 2014)). There-
fore, p can also be understood as a structural variable that captures the non-price competi-
tiveness of an economy. |Gouvea and Lima (2010} [2013)), [Romero and McCombie (2016 )| and
Martins Neto and Porcile (2017)| provide empirical evidence of such an interpretation.

Several methodologies have been used over the years to estimate Thirlwall’s rule — which
range from Ordinary Least Squares (OLS) in first differences to Vector Error Correction (VEC)
models, Fixed Effects (FE) models, panel Autoregressive Distributive Lag (pARDL) and Gen-
eralized Method of Moments (GMM) (for a review see [Romero and McCombie, 2016)). Here
we provide some empirical evidence of our own using the ARDL cointegration technique from
a sample of 17 OECD countries between 1960 and 2016. Details of the estimation procedure
and the innovative aspects of our exercise are presented in the Econometric Appendix at the
end of the paper.

Figure 1 shows that actual and estimated growth rates are indeed very close, thus sup-
porting the hypothesis that for those economies growth in the long-run follows the external
constraint.

3
Actual growth rate

I © Thirlwall's predicted growth rate 45 degree line |

Figure 1: Actual and estimated growth rates

The Kaldorian roots of the rule derive not only from the fact that Thirlwall himself is
the biographer and literary executor of the Cambridge economist but also because in his last
writings Kaldor gave special attention to the role of exports in economic development. In his
own words, “the rate of economic development of a region is fundamentally governed by the
rate of its exports” (Kaldor, 1970, p. 342). Assuming for simplicity that X (-) and M (-) in
and are homogenous functions, we have from Euler’s theorem that p is constant. In
the absence of the ability to attract a permanent net inflow of capital from abroad, the rate
of growth of the economy is constrained by the requirement that it achieves current account
balance.



3.4 The dynamic system
Substituting and into we have:

é
g:pr—G(u)—n
or

¢=lysp — G(u) —nle = fi(e,m,u) (15)

Variations in the rate of employment are entirely determined by aggregate demand dynamics.
On the one hand, the external constraint rules the rate of growth of output. Thus, a relaxation
of the BoPC increases employment. On the other hand, labour productivity follows our
learning-by-doing mechanism. Therefore, an increase in the rate of effective capacity utilisation
actually reduces employment through an increase in productivity. This of course is a partial
effect since w itself is an endogenous variable.

Making use of , @ and , distributive dynamics become:

or

w=[F(e) — Gu)|w= f(e,w,u) (16)

Equation is basically the same as and states that variations in functional income
distribution follow the difference between the rate of growth of real wages and labour pro-
ductivity. A stable wage-share can only be obtained if real wages grow at the same pace as
productivity gains. Moreover, employment and effective capacity utilisation have opposite
effects on the wage-share. An increase in the employment rate increases worker’s bargaining
power allowing a rise in wages which in turn has a positive impact on the wage-share. On
the other hand, an increase in the rate of capacity utilisation increases labour productivity
through the Kaldor-Verdoorn mechanism reducing the share of wages in income.

Finally, substituting and into (9) we obtain the equation for the dynamics of
capacity utilisation: '

w
—=ypp —s(1 — w)u
u
or
u=lypp —s(1 —@)uju=fs(e, @, u) (17)

The effect of the rate of growth of output on effective capacity utilisation is straightforward.
Higher demand increases capacity utilisation. Nevertheless, an increase in capacity utilisation
or a reduction in the wage-share decrease u. This is because both have a positive impact on
capital accumulation through savings.

The dynamic system of the modified model is formed by equations ([L5)-(17).

3.5 Equilibrium points, local stability analysis and Hopf bifurcation

In steady state ¢/e = w/w = u/u = 0. This gives us the following equilibrium conditions:

ypp = G(u)+n (18)
F(e) = G(u) (19)
ypp = s(l—w)u (20)



Equation shows that in equilibrium the sum of labour productivity and labour force
growth rates must equal the BoPC growth rate. Nevertheless, the so called “natural rate
of growth” is endogenous, pro-cyclical and determined by the external constraint as several
empirical studies have shown to be the case ( |[Leén-Ledesma and Thirlwall, 2002; [Libénio,
[2009; [Le6n-Ledesma and Lanzafame, 2010, [Lanzafame, 2014]). The equilibrium condition ((19)
simply states that real wages and labour productivity must grow at the same rate in order
for the wage share to be constant. Finally, condition implies that the rate of growth of
output must equal the rate of growth of the capital stock so as not to generate permanently
increasing or decreasing idle capacity.

This last result is particularly compelling because it represents a simple and elegant for-
mulation of “Say’s Law in reverse”. Still, we further improve it in the next section when an
independent investment function is introduced. A broader discussion of the relation between
ygp and capital accumulation as well as a solution with similar characteristics can be found
in [Davila-Fernandez et al (2017)|

Given the equilibrium conditions — we can state and prove the following Proposition
regarding the existence and uniqueness of an internal equilibrium.

Proposition 1 The dynamic system - has a unique internal equilibrium point given

by:
et = F'(ypp—n) (21)
* N YBp
e YT (22)
u' = G (ysp —n) (23)

Proof. See Mathematical Appendix [A.T] m

Looking at equations and it is interesting to note that an increase in the rate
of growth of output (which is determined by the external constraint) increases both the rate
of employment and the rate of effective utilisation. This relation resembles Okun’s rule. The
result is also in line with recent developments of the so called “utilisation controversy” where
INikiforos (2013} [2016)) in particular has demonstrated that firms tend to utilise their capital
more as output grows, conditional on the behaviour of increasing returns to scale. Moreover,
a higher growth rate of the labour force is also associated with a lower rate of employment
and effective capacity.

Lastly, the relation between the BoPC growth rate and the wage-share is not univocal.

du* yBp _u*

Notice that (22) can be written as w* = 1 — 3%’ and therefore ddyip = Bp —2 LIt
ou* ypp

Bypp wi > S, an increase in ypp increases the wage share. This is because income distribution
is the adjustment variable that guarantees a constant rate of capacity utilisation. Higher
growth increases u* and if this effect is too strong (above s) the wage share must be reduced
in order to keep capital accumulation equal to the rate of growth of output. On the contrary,
for 8%;% < s a relaxation of the external constraint harms the wage share. In other words,
for a propensity to save larger than the sensibility of u* to the rate of growth of output, the
wage share required to keep capacity utilization constant will be lower.

Next, we turn to the investigation of the local stability properties of the equilibrium points

defined by equations —.
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Proposition 2 If the sensitivity of real wages to changes in the employment rate is sufficiently
low and such that
s(1 —w*)u* YBp

e* ~ F'(ysp —n)
the internal equilibrium (e*,w*, u*) of the dynamic system (@- 18 locally asymptotically
stable.

F'(e*) <

Proof. See Mathematical Appendix m

However, for higher values of F” (e*), it may happen that F'(e*) > s(1 — w*)u*/e*. Thus,
the dynamic behaviour of the model may drastically change, from the qualitative point of
view, as the sensitivity of real wages to changes in e increases, with all the other parameters
remaining constant. Using F” (e*) as a bifurcation parameter, our purpose is now to apply the
Hopf Bifurcation Theorem (HBT) for 3D systems (see|Gandolfo, 2009)) to show that persistent
cyclical behaviour of the variables can emerge as F”(e*) is increased.

Proposition 3 For values of F' (e*) in the neighbourhood of the critical value

. s(1—w*)u*
F () = ST 4
the dynamic system (15)-(17) has a family of periodic solutions.

Proof. See Mathematical Appendix m

This result is in line with |Goodwin’s (1967)| aim of generating cycles rooted in the function-
ing of the labour market and the dynamics of distributive conflict. Periodic solutions emerge
as a result of an increase in the sensitivity of workers’ wage demands to the employment rate.

3.6 Numerical Simulations

In this section, we present numerical simulations to show that the Hopf bifurcation occurring
for values in the neighbourhood of F’(e*) defined in (24]) is supercritical so that the emerging
limit cycle is stable. The exercise also illustrates that, under plausible settings, the internal
equilibrium and oscillations have economic meaning. To this end, we must first of all choose
functional forms for the two behavioural equations of the model, namely, F'(-) and G (-). We
specify these functions as follows:

F(e) = a(e—e) (25)
Gu) = bu’ (26)

where € is the rate of employment above which workers are able to obtain real wage increases.
The functional form we have chosen in captures the Marxian reserve army effect and
should not be confused with some sort of non accelerating inflation rate of unemployment
(NAIRU)E] On the other hand, the parameter 3 in equation (26)) captures the presence of
increasing returns to scale for the labour productivity growth function. Finally, a and b are
adjustment parameters.

8Notice that can be obtained from Goodwin’s (1967) original formulation of the Phillips curve. Suppose
F(e) = —a1 + ae. Name a; = aé. Therefore, F(e) = —aé + ae = a(e — &). We use the last expression for
convenience.

11



Recalling the expressions given in equations —, equilibrium values become:

ef = g4 BT (27)
a

YBpP
w = 1-— (28)
—n\1/8
s (1252)

_ 1/8

In order to choose plausible parameter values we have considered the evidence given in a
number of empirical studies for the Phillips curve and the Kaldor-Verdoorn mechanism. They
were also adjusted in order to provide outcomes with economic meaning;:

ysp = 0.03105, n=0.01, s =0.3, §=1.17 (30)
a = 0.0372, & =0.28986, b = 0.091522

Taking F’(e*) = a as the bifurcation parameter, these values imply that agp ~ 0.0345.
Consequently, in our simulation, we used a value of a slightly higher than this.

Figure 2a displays the solution path for two different initial values (eq, wg, 1) equal to
(0.92,0.6,0.35) and (0.77,0.65,0.24), both converging to the limit cycle around (e*, w*, u*) =
(0.85572,0.63653,0.28475). Figure 2b plots the time series of our simulations.

i ; i j : ] ; : i
0E o7 1 101 102 103 104 105 106 107 108 109 11
o e f «10*

Figure 2a: Limit cycle 3D Figure 2b: Time series 3D

Taking a closer look at the figures above, we can attempt to sketch a description of the
dynamic interactions among the three variables along any given cycle. An increase in the
employment rate leads to an increase in the wage share, which decreases the profit share
and thus capital accumulation. A reduction in capital accumulation increases the effective
rate of capacity utilisation because the rate of growth of output is given and determined by
Thirlwall’s rule. The increase in capacity utilisation increases the rate of growth of labour
productivity through our Kaldor-Verdoorn mechanism reducing the rate of employment and
the wage share, leading to an increase in the profit share. The outcome of a higher profit
share is faster capital accumulation, reducing capacity utilisation and increasing the rate of
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employment. At this point the cycle restarts:
K 4
e | =wl=—=l=-T=¢cl
K u

e | :>wl:>%T:>%l:>eT

4 A second extension of the model

As briefly discussed at the beginning of the previous section, while the hypothesis of equi-
librium in the balance-of-payments is plausible in the long-run, for the short-run the story
is different. Moreover, if we are to fully embed Goodwin’s fundamental insight that trend
and cycle are indissolubly fused in our model, it is perfectly possible, as indeed is the case,
that over the business cycle growth deviates from the external constraint. How actual growth
adjusts to the BoPC and interacts with the rest of the dynamic system is the question we
address in this section.
In an open economy without government the expenditure identity is given by:

Y=C+I+X-M

where C' stands for consumption, [ is investment, X corresponds to exports, and M stands
for imports. It immediately follows that:

S—I=X-M (31)

with savings, S, equal to total output minus consumption.

Hence, equilibrium in the current account, X = M, implies that S = [ and we have
% = % However, as already shown, from X = M we obtain ygp, while % = s(l — w)u
with @ and u determined in steady state by and , respectively. This means that an
independent investment function would actually make the model overdetermined since S and
I would be equal only by chance.

Once we allow actual growth rates to deviate from the external constraint, i.e. outside
equilibrium X = M does not necessarily hold, we are able to introduce an independent invest-
ment function. Accordingly, the model developed must go through two important changes,

one in the distributive conditions block and one in the external constraint block.

4.1 Supply conditions

There are no changes in the supply conditions of the economy. Starting from the initial
Leontieff production function we have that variations in effective capacity utilisation adjust
the difference between the rate of growth of output and capital accumulation. Analogously,
variations in the employment rate adjust to the growth rate of the economy and variations
in labour productivity. Last but not least, labour productivity continues to be modelled as a
function of effective capacity utilisation.

4.2 Distributive conditions

The determination of investment is central to Keynesian theories of effective demand. Equa-
tions and resulted from the assumption that all profits or a share of them were
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reinvested. Dropping this hypothesis opens the door to the use of an independent investment
function. In this respect, the accumulation function is critical for the properties and implica-
tions of the model. Unfortunately, there is considerable disagreement over the specification of

this function (see [Skott, 2012| for a discussion of the topic).

For the purposes of this paper we adopt the following general specification:

7= H(w,u), Hy <0 and H, >0 (32)

The intuition of the expression above is similar to the one discussed by [Bhaduri and Marglin|
and is recurrent in the Kaleckian literature. The basic idea is that profitability and
capacity utilisation are used by investors as predictors of marginal profitability on new invest-
ment and the future state of demand, respectively. According to Bhaduri and Marglin (p.
380), this investment function has the analytical advantage of separating the “demand side”
impact on investment operating though the acceleration effect of higher capacity utilisation
from the “supply side” impact operating through the cost-reducing effect of a lower real wage
and higher profit share.

A possible alternative would be to make investment a function only of the accelerator ef-
fectﬂ This route is also pursued by Skott (, in a Harrodian set up. His contribution
is particularly important because he presents a strong critique of the Kaleckian formulation.
However, even though he makes an appealing defence of the Harrodian case, we chose to stick
to equation . Our reasons are threefold.

First, empirical evidence does give support to the hypothesis that investment depends
to some degree on the functional income distribution ( [Stockhammer et al, 2009; [Onaran|
land Galanis, 2014} [2016]). Second, the model developed in this section does not rely on the
extension of the standard short-run Keynesian stability condition to the long-run. That is,
we do not assume that investment is less sensitive than savings to variations in the utilisation
rates of capital. To the best of our knowledge, this was the main objection against the
Kaleckian investment function. Finally, having H as a function of w is required in order to
generate distributive cycles in our model. A different alternative would be to assume that }X,
is a negative function of the wage-share (as does Skott). Even though we do not deny the
plausibility of such a mechanism, we present an alternative one that we think better suits an
open economy set up.

4.3 The external constraint

Although the BoPC growth model is addressed to the investigation of the long-run, it also
has profound implications for short-run dynamics. Few studies are devoted to the analysis
of how deviations from long-run paths are generated and correctedET] What happens in an
open economy if the actual growth rate causes balance-of-payments disequilibrium, which is
not automatically corrected by relative prices, so that the growth of income has to adjust to
bring the growth of imports and exports into line?

If the economy is growing faster than the BoPC it means imports are growing faster than
exports and therefore from that investment is growing faster than savings. Leaving
aside any considerations about the level of international reserves of a country, if investment is

9Different specifications of a flexible accelerator can be found in the literature and of course in Goodwin
himself (e.g. Goodwin, 1948, 1951; Asada et al, 2003; Chiarella et al, 2005).

0Soukiazis (2012, 2014) and Garcimartin et al (2016) are recent remarkable exceptions, ones that formally
address the issue although from a different perspective.
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growing faster than savings, then the economy is (or will be) accumulating debt. An increase
in debt on the other hand is related to an increase in risk perception which indicates that
at some point lenders might limit access to credit. The simple increase in risk leads to an
increase in the interest rate which also contributes to a reduction of expenditure (both in terms
of consumption and investment). The intensity of this adjustment depends on how creditors
perceive the behaviour of the borrower. This corresponds to the traditional BoPC adjustment
and in the extreme case one should expect a balance-of-payments crisis.

On the other hand, if the rate of growth of output is below what is determined by Thirlwall’s
rule, exports are growing faster than imports which in turn implies that savings are growing
faster than investment. In other words, the rest of the world is accumulating debt with
this country. At first such a process could continue without limits as long as the domestic
economy is willing to be a global creditor. However, two constraints might sooner or later
appear. First, at some point the country might fear not being paid and force borrowers to
meet their obligations. But then, imports of the debtor country will be reduced, which is
equivalent to saying that exports of the surplus country will be lower, adjusting the balance
of payments.

Another alternative is that the rest of the world, understanding that being in extreme
debt is damaging to their interests (even politically speaking), might try to force the lender
country to reduce its surplus. In this case, the economy will have to increase its expenditures
increasing as a consequence its imports and restoring equilibrium in the balance of payments.
This last situation resembles current negotiations led by the United States in demanding a
reduction of current account surpluses by China and Germany.

A first approximation that represents what has been so far described is:

§=D(ygp —y), D' >0, and D(0) =0 (33)

<l

where we have set y = < in order to simplify the notation.

However, from the expenditure identity it is also possible to obtain a growth rate of the
economy such that is always satisfied. In reasoning with some similarities to the one
presented here, [(Garcimartin et al (2016)| called it the short-run BoPC rate of growth. Given
the relations used in this paper, the rate of growth of output becomes:

() [F(e) — Glu)] + 9 [B52Ht + H(w;u)| + (1 - )%

1-w H(w;u)

0+ (1—-0)r

Y= (34)

Where0—5+ andQ—I

captures the “consumption effect” on growth, (2 [%7(’ tHy | (g, u)} is the “investment effect”,

€[0; 1 l Looking at the expression above, (=) [F(e) — G(u)]

M +X l-w

and (1 — Q)% stands for the “foreign demand effect”. Notice that exports are the only true

autonomous demand component following the Kaldorian tradition.

' Equation can be rewritten as S+ M =T + X. Taking logarithms and time derivatives, we have a

S
S+M

€[0;1]. In our economy, savings come from profits, & = s(1 — w)u. Therefore, making use
K

dynamic Version of this macroeconomic identity given by 9% +(1- 9)% = Q% +(1- Q)%, where 6 =
and Q = IJriX : .
of and (@) we obtain that % = —[F(e) — G(u)] (i) Moreover, from our import function, 4 = my,

l-w

where 7 = %‘f }\;[ is the income elasticity of imports. Finally, recall that % = % = H(w;u) so that % =
% + H(w;u). Substituting those expressions in the dynamic macroeconomic condition we obtain the

expression for y given in .
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Equation (34) shows that the impact of all cyclical variables on the rate of growth of
output is difficult to determine. Suppose for a moment that 6 and €2 are constant. Then, if an
increase (decrease) in the wage-share increases (decreases) consumption more than it decreases
(increases) investment, the rate of growth of output will be higher (lower). In contrast, an
increase in capacity utilisation only increases growth if it causes an increase in investment that
overcomes the reduction in consumption. This is because an increase in u increases the rate
of growth of labour productivity which in turn reduces the wage-share. Finally, variations in
the rate of employment have an effect similar to variations in the wage-share because they
operate through the latter. Nevertheless, allowing 6 and €2 to vary results in signals becoming
almost completely undetermined. This indeterminacy resembles the profit-led vs wage-led
controversy in the Kaleckian literature (see for a discussion of the topic).

It is outside the scope of this paper to take a position in the debate or propose a particular
solution for that discussion. Still, it is not possible to ignore the effects of cyclical variables in
the adjustment process of y. Therefore we generalise in order to take into account these
cyclical motions and write:

y = D(ypp —y,e—e",w—w",u—u"), with D(ygp, ", @*, u*) =0
D, < 0, D20, D20, D, 20,
De|e:e* = O’ Dw’w:w* = O’ Du|u:u* =0
where the only additional conditions we impose are that the partial derivatives of D (-) with
respect to employment, wage-share and effective capacity are equal to zero at their respective

equilibrium values. In other words, variations in the growth rate occur only when the system
is outside equilibrium|”]

4.4 The dynamic system
Substituting into we have:

S =y—Gu)—n
&= [y - G(u) - n]e = gl<€7wvu>y) (35)

The interpretation of the first dynamic equation remains the same with the only difference
that now the actual growth rate of output is also an endogenous variable.
Distributive dynamics continue to be given by:
w
—=F(e) — G(u
“ = F(e) - G(u)

w = [F(e) - G(“)]w = 92(@ w,u, y) (36)

Taking account of @, and , variations in effective capacity utilisation are such
that:

U
— =y — H(w,u)
u
12Notice that in steady state F(e) = G(u), % = 0 and H(w;u) = y so that equation becomes

o)X
y = %. However, once equilibrium in the current account is re-established § = 2, and y =

YBP.

X/xX _
™
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U=y — H(w,u)u = gs(e,w,u,y) (37)

An increase in demand above capital accumulation increases effective capacity utilisation.
The reason for this is easy to explain: production is increasing faster than the expansion
of productive capacity. Notice that capital accumulation is now given by the independent
investment function.

Finally, we simply restate the adjustment mechanism between the rate of growth of output
and the external constraint:

y=D(ygp —y,e — ", w —w",u—u*) = gs(e,w, u,y) (38)

Equations ([35))-(38)) form the dynamic system of our second modified model.

4.5 Local stability analysis and Hopf bifurcation

In steady-state é¢/e = w/w = 4/u = § = 0. This gives us the following conditions:

y = Gu)+n (39)
Fle) = G(u) (40)
y = H(wm;u) (41)
0 = D(ypp —y,e—€",w—w",u—u") (42)

The interpretation of equations (39)-(42) is very similar to the interpretation we have given
for the previous model. From , it follows that real wages and labour productivity must
grow at the same rate in order to obtain a constant wage-share. Furthermore, the rate of
growth of output is such that the natural rate of growth, capital accumulation and Thirlwall’s
law are equal to the former three adjusting to the last one.

In analogy with what was done with regard to the previous version of the model, we now
turn to the investigation of the local stability properties of the equilibrium points. As a first
step, we state and prove the following Proposition, regarding the conditions for a unique
economically meaningful internal equilibrium.

Proposition 4 The dynamic system —(@ has a unique internal equilibrium point given

by:
e = F'(ypp—n) (43)
@w* = H 'lypp,G '(ysp —n)] (44)
uw = G 'ypp—n) (45)
y* = ypp (46)

Proof. See Mathematical Appendix [A.4] m

Comparing equations and with and we see that they are exactly the
same. Equation on the other hand comes with some novelty because of the investment

function. Moreover, the net effect of growth on the wage-share continues to be undetermined
but now depends on the shape of the investment function. Furthermore, for a given rate
of growth of output (determined by Thirlwall’s law) we obtain a rate of employment and
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of capacity utilisation that depends on the bargaining power of workers and on the Kaldor-
Verdoorn mechanism, respectively. After that, the income distribution will adjust in order
to ensure that capital accumulation is such as to maintain the equilibrium rate of effective
capacity utilisation]”|

Notice also that there are two ways to permanently increase the rate of employment of
the economy. The first involves a deep transformation of the economic structure in favour of
productive diversification and technological complexity in order to ensure a higher ygp. The
second is related to a reduction in the bargaining power of workers. However, this second
mechanism does not rely on the problematic neoclassical factor demand curves but works as
follows. In order to obtain a constant wage-share, real wages and labour productivity must
grow at the same rate. Highly combative workers translate small increases in employment
into large increases in real wages. This means that, for a given rate of growth of labour
productivity, the employment rate that ensures that real wages and productivity grow at the
same rate will be lower the higher the capacity of workers to increase their wages. Therefore,
a reduction in bargaining power of workers can increase equilibrium employment.

With regard to this unique internal equilibrium point, we can now state and prove the
following Proposition regarding its local stability.

Proposition 5 If the sensitivity of real wages to changes in the employment rate is sufficiently
low and such that
H,(w*, v )u*  H,(=*,u*)G (ypp — n)

F'(e*) < =
() e F=Y (ypp —n)

the internal equilibrium (e*,w™, u*, y*) of the dynamic system —(@ 15 locally asymptoti-
cally stable.

Proof. See Mathematical Appendix m

Still, for higher values of F’ (e*), it may happen that F'(e*) > H,(w*, u*)u*/e*. Thus, the
dynamic behaviour of the model may drastically change, from the qualitative point of view, as
the sensitivity of real wages to changes in e increases, with all the other parameters remaining
constant. We pursue a route similar to the one we have followed in the section and use F’ (e*)
as a bifurcation parameter in order to study the possibility of persistent cyclical behaviour.

Proposition 6 For values of F' (€*) in the neighbourhood of the critical value such that

Fe*) = Hu(w*iu*)u*

e
the dynamic system (35)-(38) admits a family of periodic solutions.
Proof. See Mathematical Appendix [ |

Once more cyclical behavior is rooted on the labour market and distributive conflict.

13This last conclusion resembles Kaldor’s (1957) contribution to the “Capital Controversies” because capital
accumulation was supposed to adjust to the natural growth rate through a redistribution between wages and
profits. At that time, however, the discussion concerned closed economies, a very different scenario from the
one discussed here. Still, we would say that the similarity is not negligible.
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4.6 Numerical Simulations

We proceed by presenting a numerical simulation exercise to illustrate the existence and eco-
nomic interpretation of the limit cycle whose existence was proved in the last subsection.
Following what was done in section 3.6, we first determine functional forms for the behav-
ioural equations. We maintain equations and for F'(-) and G (-). Therefore, there
are only two behavioural equations missing, namely, H (-) and D (-) for which we choose the
following specifications:

H(w,u) = ¢ —cw+cu (47)
D(yBP—yje—e*,w—W*>U—U*) = d(yBP_y)+f1<€_e*)3 (48)
+fo(w — @) + fa(u — u*)?

where d is the adjustment parameter of the growth rate of output to the BoPC and f; with
i = {1,2,3} stand for the influence of the other cyclical variables on growth. A cubic form for
the deviations of employment, wage share and effective capacity utilisation was preferred over
a quadratic formulation because it allows for changes in the signal of the effect if deviations
occur upwards or downwards.

Recalling —, equilibrium values become:

e’ = e+ Ypp 71 (49)
a
C3 (Ypp — M 1/ C1 — YBP
e -
Co b Co
_ 1/8
b
Yy = ysp (52)

Parameter values were chosen in accordance with the magnitude of the ones found in several
empirical studies for the Phillips curve, the Kaldor-Verdoorn mechanism, and the investment
function. However, to the best of our knowledge, there are no estimates for the last equation.
A careful analysis of D () would have to rely on country-specific time series techniques because
f; parameters are supposed to have a different combination of signs for different economies
(as the wage-led vs profit-led debate shows). Nevertheless, in order to have a preliminary
approximation of these magnitudes, we estimated D (-) using the panel built on the previous
section to estimate Thirlwall’s law and assuming for a moment that f; = 0.

Table 1 reports the estimates of the Fixed Effects (FE) regression:

Dependent variable: g

Ypp—Y 0.6027352%***
c -0.0810926
Observations 868
R? within 0.3050

Table 1: FE estimations of D(-). *** and *** are 10%, 5% and 1% of significance

A positive adjustment coefficient of 0.6 is in line with the theoretical discussion presented
in this section. Given that we cannot reject the null hypothesis of an intercept equal to zero
even at the 10% of significance, in steady state the rate of growth of output converges (or
fluctuates) around the BoPC.
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Accordingly, for the numerical simulations, we use the following parameter values, which
were also adjusted in order to provide outcomes with economic meaning;:

ygp = 0.03105, n = 0.01, a = 0.0422
e = 0.28086, b= 0.091522, 3 = 1.17
¢ = 0.03061, ¢y = 0.05, c3 = 0.11407
d = 06, fi =0, fo==20.75, f3=0

There are eight possible combinations of f; that can provide different cyclical dynamics.
We chose to set fi; and f3 equal to zero in order to focus on income distribution. This of course
does not have necessarily to be the case. Nevertheless, it allows the model to provide some
specific insights into the relation between the income distribution and growth. A positive f,
comes near to the so called wage-led case because over the cycle an increase in the wage share
increases consumption more than it decreases investment and therefore increases the rate of
growth of output. Analogously, a negative f, approaches the profit-led case.

Taking F’(e*) = a as the bifurcation parameter it turns out that ayp ~ 0.0394 and
for the simulation we used a value slightly higher than this. Figure 3a displays the so-
lution path for two different initial values (eq, o, ug,yo) equal to (0.9,0.6,0.4,0.04) and
(0.77,0.65,0.24,0.2) when f, = 0.75. Both trajectories converge to the limit cycle around
(e*, w*,u*, y*) = (0.78868,0.64083, 0.28475,0.03105). Figure 3b plots the time series for the
first trajectory. This confirms that the Hopf bifurcation is supercritical and that, as conse-
quence, the emerging persistent periodic solution is stable.
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Figure 3a: Limit cycle “wage-led” economy Figure 3b: Time series “wage-led” economy

From the figures above we can sketch a description of the dynamic interactions of the
four variables over the cycle. These effects can now be divided in two groups with different
characteristics, which are not easy to separate. An increase in the employment rate leads to
an increase in the wage share. On the one hand this reduces capital accumulation, creating
pressure for an increase in capacity utilisation. On the other hand, given that an increase in
the wage-share increases consumption more than it decreases investment, there is going to be
an increase in the rate of growth of output which in turn creates pressure for an increase in
employment and the rate of capacity utilisation. The increase in the employment rate repeats
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the narrative while the increase in utilisation brings downward pressure on employment and
the wage share through the Kaldor-Verdoorn mechanism.

A reduction in the rate of employment reduces the wage share. This increases capital
accumulation and ceteris paribus reduces the rate of effective utilisation. Nevertheless, a
reduction in the wage share reduces the rate of growth of output, bringing downward pressure
on employment and capacity utilisation. The reduction in employment has the same effects we
have just described while a reduction in utilisation has as outcome an increase in employment
and wage share because of Kaldor-Verdoorn.

When f; = —0.75 we were also able to find a supercritical Hopf bifurcation with a periodic
stable solution around the same equilibrium as before. However, the limit cycle lies outside
values with an economic interpretation. Figure 4 plots the time series of our simulation for
initial values (eq, o, uo) equal to (0.9,0.6,0.4,0.04).
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Figure 4: Time series 4D, “profit-led” case

As we can see, the periodic solution increases in magnitude while slowly converging to
the limit cycle outside values with economic meaning. While this result has to be taken
parsimoniously, it throws a question, at least for the set of parameters and functional forms
used in numerical simulations, over the sustainability of the so called profit-led regime that is
usually claimed for open economies.

Still, two observations have to be made. First, in general profit-led regimes are considered
to be more likely in open economies because of price-competitiveness effects, while here we
abstracted from any price considerations. Second, recall from the local stability analysis that
for values of F'(e*) < ayp the system actually exhibits convergence to equilibrium. Periodic
solutions emerge as a result of an increase in the sensitivity of workers’ wage demands to
the employment rate. What our numerical exercise indicates is that the profit led regime is
unsustainable only once endogenous fluctuations emerge, that is, for highly combative workers.

A description of the dynamics follows. An increase in the employment rate increases the
wage share and as consequence reduces capital accumulation and the rate of growth of output
because the reduction in investment is higher than the increase in consumption. On the one
hand, a reduction in capital accumulation creates upward pressure on the rate of capacity
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utilisation which is expected to decrease the employment rate through Kaldor-Verdoorn. On
the other hand, a reduction in the rate of growth of output creates downward pressure on
capacity utilisation, which in turn is expected to increase employment. It seems that at the
beginning, the first effect prevails and we have periodic fluctuations within an economically
meaningful range. However, the second effect increases in magnitude as time goes by and the
model converges to a limit cycle outside a range of values with economic meaning.

5 Conclusions

In the last fifty years Goodwin’s distributive cycle model has been and continues to be used
as a fruitful “system for doing macro-dynamics”. We note, however, that most of the existing
contributions have been based on a closed economy framework. In this paper we have offered
a modeling structure that expands the original model to an open economy framework in a way
that incorporates the Balance-of-Payments constraint on growth. We have done so allowing
technical change to be endogenous to the cyclical dynamics of the system.

We developed a three dimensional dynamic system that includes, besides the employment
rate and the wage-share of the original model, also the rate of effective capacity utilisation. We
showed that without having to impose any special condition on the values of the parameters, a
Hopf-Bifurcation analysis establishes the possibility of persistent and bounded cyclical paths
providing insights to enable better understanding of the nature of real-world fluctuations.

Moreover, in order to obtain a model that is fully embedded in Goodwin’s fundamental
insight that trend and cycle are indissolubly fused, we build a four dimensional dynamic system
where the rate of growth of output was allowed to deviate from the external constraint. In
this second case, disequilibrium in the goods market was further explored introducing an
independent investment function. The importance of our contribution resides in its provision
of a base-line model to study distributive dynamics in open economies.

Some numerical simulations were performed based on the analytical models. We showed
that indeed under plausible conditions, a stable limit cycle emerges. Furthermore, even though
our model is not Kaleckian in nature, it is possible to obtain insights that address the wage-led
vs profit-led growth regimes. Our last growth-cycle model questions the sustainability of the
so called profit-led regime that is usually claimed for open economy models.
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A Mathematical appendix

A.1 Proof of Proposition 1

To prove Proposition 1 we proceed in four steps. First, from equation we have that
G(u) = ygp — n, where G : # — R is a function monotonically increasing in u. The inverse
of G (+) is also monotonically increasing so that u* = G~ (ygp — n) is the unique equilibrium
value of effective capacity utilisation.

Making use of equations and we obtain the rate of growth of real wages in terms
of the external constrain, i.e. F'(e¢) = ypp — n, where ' : R — R is monotonically increasing
in e. Therefore, its inverse is also an increasing function and we obtain e* = F~!(ygp — n) as
the unique equilibrium value of the rate of employment.

The equilibrium wage-share is defined as the value of the wage-share that brings effective
capacity utilisation and the external constraint to equilibrium. Rearranging it is easy to
see that = 1 — #22. Substituting the equilibrium value of capacity utilisation in this last
expression we arrive at w* =1 — %

Finally, in order for equilibrium values to have an economic meaning, we have to impose
0<GYypp—n)<1,0< FYygp—n) <1, and ygp < sG1(ygp — n).

A.2 Local stability analysis for the 3D dynamic system and proof
of Proposition 2
In this Appendix we first derive the characteristic equation of the dynamics system —

and prove Proposition 2. To do this, we linearise the dynamic system around the internal
equilibrium point so as to obtain:

e 0 0 J13 e—e*

w - J21 0 J23 w—wt

U 0 J32 J33 u—u*
pa

where the elements of the Jacobian matrix J* are given by:

0
Ty = w 0
€ (E*zzU*: *)
df1 (e,m,u
w (6*,@*,1/,*)
0
Jiz = Onle.@,u) (g,w,u) =—G'(u")e" <0
u (6*,@*71,6*)
0
Jo1 = —f2 (687 @) = F'(e")w" >0
€ (e*,m*,u*)
dfs(e,w,u
w (6*,@*7'&*)
0
hy = 2REEU g <o
U (e*,w*,u*)




Ofs (e, w,u)

Jsi = —5—— =0
ae (e*,w*,u*)
0
Ty = M —w? >0
w (6*,@'*,71*)
0
J3g = Ofs (&, u) (g,uw,u) =—s(l—w")u" <0

(e* 7w* 7u*)
so that the characteristic equation can be written as

N4 A2+ b\ +b3=0

where the coefficients are given by:

by = —tr J* = —J33 >0 (53)
O J23 O J13 O 0

by = = —Jo3J33 >0 54

? ‘ sz J33 1o J33 * ‘ Jor 0 ’ 2882 (54)

bg = —detJ = —J13J21J32 >0 (55)

The necessary and sufficient condition for the local stability of (e*, z*, u*) is that all roots
of the characteristic equation have negative real parts, which, from Routh—Hurwitz conditions,
requires:

b1>0, b2>0, b3 > 0 and b1by — b3 > 0.

Given —, the crucial condition for local stability becomes the last one. Through direct
computation we find that:

biby — bz = Js3JozJso + Ji3Ja1J30 (56)
= Jso (J33J23 + J13Ja1)
= Ja[s(l — @")w'G (v )@ — G'(u*)e* F'(e*) o]
= Jpw'G'(u)[s(l — @*)u* — e F'(e*)] > 0

a condition that is satisfied when:

s(1 — w*)u* YBp
F'(e*) < =
() e F=Y(ygp —n)

A.3 Proof of Proposition 3

To prove Proposition 3 using the (existence part of) the Hopf Bifurcation Theorem and using
F' (e*) as bifurcation parameter, we must first of all (HB1) show that the characteristic equa-
tion possesses a pair of complex conjugate eigenvalues 6 [F” (e*)] + iw [F” (e*)] that become
purely imaginary at the critical value F” (e*) ;5 of the parameter —i.e., § [F’ (e*), 5] = 0 — and
no other eigenvalues with zero real part exists at F” (e*),; and then (HB2) check that the
derivative of the real part of the complex eigenvalues with respect to the bifurcation parameter
is different from zero at the critical value.

(HB1) Given that the conditions b; > 0, by > 0 and b3 are all satisfied, in order that the
characteristic equation has one negative real root and a pair of complex roots with zero real
part we must have:

blbg —bg - 0
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a condition which, given the expression for b;by — b3 derived in , is satisfied for

*

P (o) = S0

(HB2) By using the so-called sensitivity analysis, it is then possible to show that the second
requirement of the Hopf Bifurcation Theorem is also met. Substituting the elements of the
Jacobian matrix into the respective coefficients of the characteristic equation:

by = s(1—w")u"
by = sG'(u*)w u*?

by = sG'(u*)F'(e*)e*w*u*?

6*

so that
e =0
8;”6(2*) = sG'(u")erw u? >0

When F'(e*)yp = s(1 —w*)u*/e*, apart from b, > 0, by > 0 and b3 > 0 which is
always true, one also has b1by — b3 = 0. In this case, one root of the characteristic equation
is real negative (A1), whereas the other two are a pair of complex roots with zero real part

(A23 = 0 £ iw, with 6 = 0). We thus have:
by = — (A1 + A+ A3)
=~ (\ +20)
bg = )\1)\2 ‘|‘ )\1)\3 + )\2)\3
= 2\0 4 6% + 2

b3 == —)\1)\2)\3
= —)\1 (92 + wz)
such that:
0by 2 5 a0
OF'(e*) — OF'(e*) OF' (e*)
8[)2 8/\1 89 &u
OF (") or ey 2N G ey Y 2R e
(%3 i 9 9 8)\1 00 Ow
o) — ) ey T MmN (o
— SG/(U*)G*W*U*2
For 6 = 0, the system to be solved becomes:
R 5 00 _ 0
OF"(e*)  OF'(e¥)
00 ow
Mor ey P2 arey —°
(9)\1 8&)
2 o 2 — 1/ %\ % ___x %2
W ST (o) ) Al“—aF/ ) G'(u*)e*w*u



or

-1 -2 0 31?5%;*) 0
0 2\ 2w S | = 0
—w? 0 —2\w %?’e*) sG' (u*)e*w*u*?
Thus:
—1 0 0
0 0 2w
a0 | W sG(u et 20w
aF/ (6*) F’(e*):F’(e*)HB _1 —2 O
0 2\ 2w

—w? 0 —2\w
2 G/ *\ %k, *2
_ 2ws (u2)e @,
4w (A + w?)

A.4 Proof of Proposition 4

The demonstration of Proposition 4 follows very closely the steps of Proposition 1. Nev-
ertheless, the first variable to adjust is output. In equilibrium, equation states that
D(ygp, €*, w*, u*) =0, where D (-) is monotonically decreasing in y. It follows by construc-
tion that y = ygp, e = €*, w = w* and v = v* with the employment rate, the wage share and
capacity utilization still to be determined. Once output converges to the BoPC growth rate we
have from that G(u) = ypp — n, where G : § — R is a function monotonically increasing
in u. The inverse of G (-) is also monotonically increasing so that u* = G~!(ygp — n) is the
unique equilibrium value of effective capacity utilisation.

Making use of equations and we obtain the rate of growth of real wages in terms
of Thirlwall’s law, i.e. F(e) = ygp — n, where F' : ® — R is monotonically increasing in e.
Therefore, its inverse is also an increasing function and we obtain e* = F~(ygp — n) as the
unique equilibrium value of the rate of employment.

The equilibrium wage-share is defined as the value of the wage-share that brings effective
capacity utilisation and the balance-of-payments to equilibrium. The novelty here is the
independent investment function H : i — ¥R, monotonically increasing in v and decreasing
in w. Making use of the equilibrium value of capacity utilisation and equation (42)) we have
that H[ww; G ! (ypp — n)] = ygp. It follows that the unique equilibrium for the wage-share is
determined and defined by @* = H ygp;@; G (ygp — n)|.

Finally, in order to obtain equilibrium values with economic meaning we have to impose
0< G_l(pr — TL) <1,0< F_1<y3p — Tl) <land0< H_l[pr;w; G_l(pr — TL)] < 1.

A.5 Local stability analysis for the dynamic system (35))-(38)) and
proof of Proposition 5

In this Appendix we first derive the characteristic equation of the dynamic system —
and prove Proposition 5. To do this, we first linearise the dynamic system around the internal
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equilibrium point so as to obtain:

é
@
i
Y

Ji3

Ja3

J33
0

0

J14

J34
J44

w’_
uU—u
y—y

J*

where the elements of the Jacobian matrix J* are given by:

Jll

J12

JlS

J14

J21

J22

Jas

Jos

Ja1

a93 (67 w, u, y)

agl (67 w, U, y)
de

891 (6, w,u, y)
Jw

agl (67 w,u, y)
ou

991 (e, @, u,y)
dy

892 (67 w,u, y)

Oe

892 (67 w, U, y)
Ow

8g2 (67 w,u, y)
ou

892 (67 w, U, y)
dy

693 (67 w, u, y)

Oe
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893 (67 w,u, y)

Ow
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Oe
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ou

894 (67 w? u’ y)
dy

=0

(e* 7w* 7u* 7y*)

(e* 7w* 7u* 7y*)

=u" >0

[

w

*



Thus, the characteristic equation for the linearised system is:
A DAY 4+ 0N + b A + by = 0

where the coefficients are given by:

bl = —tI’J*:—Jgg—J44>O (57)
Ja3z  J3a 0 0 0 Jy
by = + + 58
2 ‘ 0 Jus ‘ 0 Jaa ‘ Js2  J33 (58)
0 Jus 0 Jis 0O 0
o T *’0 Tz *’ Joy 0
= J33Jua — JozJ32 >0
bs = —| Jso Jsz3 Sz | —| 0 Jz3 Ju (59)
0 O J44 0 0 <]44
0 O J14 0 O J13
— J21 0 0 — J21 0 J23
0 O J44 O J32 J33
= JozJsoJua — JizJo1J30 > 0
by = detJ = —JyJi3J32J44 >0 (60)

The necessary and sufficient condition for the local stability of (e*,w*, u*) is that all roots of
the characteristic equation have negative real parts, which, from Routh—Hurwitz conditions,
requires:

by > O,bg > 0, bg > 0,b4 > 0 and b1b2b3 — b?b4 — bg > 0.

Given -, the crucial requirement for local stability becomes the last one. Through
direct computation we find that:

b1b2bs — b%b4 - b% = —(Ja3 + Jua)(J33Jaa — Jo3J32)(JazJs2Jaa — J13J21J52)
—(J33 + J44)2J21J13J32J44 — (JozJ32 44 — J13J21J32)2
= —Jso(J13J21 + J23J33)(J33JZ4 + Ji’4 + JigJs2Ja1 — J23J32J44)J

v (.
<0 <0

Therefore, the last Routh—Hurwitz condition is satisfied when:
Ji3Ja1 + JazJzz > 0
Substituting the respective values of the Jacobian matrix:
= —G'(u)e*F'(e")w" + G (u")w" H, ("5 u*)u*
= —G'(v)w*[e*F'(e*) — Hy(w";u")u*] > 0
a condition which is satisfied when:

Fer) < H,(@*;u*)u* _ H, (" u*)G  (ygp — n)
e F~ (ypp — n)
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A.6 Proof of Proposition 6

To prove this proposition (see|{Asada and Yoshida, 2003|), we must show that there exists a value
of F' (e*) = F' (€*) ;g such that we have (HB1) b1[F" (€*) 5], b2[F" (€*) 5, bs[F (€*) 5], ba[F” (€) 5] >
0 and (HB2) ®[F" (") 5] = bl[F, (€) prplbaF" (€%) g plba[F" () gl =01 [F" (") yrpl*bal F" () ) =

by [F (€7) 5] = 0 with dF/( I pr(ery=rr(er) 7 0.
=€ )up

(HB1) Given the expressions for by, by, b3 and by in — the first part of the demon-
stration is immediately satisfied.

(HB2) Through direct computation we obtain:

bi1babs — 5%54 - b% = —(Ja3 + Jua)(J33Jaa — Jo3J32)(JazJ32Jaa — J13J21J52)
—(J33 + J44)2J21J13J32J44 — (JozJ39Jaa — J13J21J32)2
= —J32(=]31J12 + J23J33)(J33J44 + J44 + JigJsaJo1 — J23J32J44)

<O <0

Taking J31J12 + Jo3J33 and substituting the respective values of the Jacobian matrix, it is
certainly possible to find a F’(e*) sufficiently greater than Hu(@ 5w " gich that:

J31J12 + JazJ33
= —-G'(u)eF'(ew" + G (v )w"H,(w"; u*)u*
= —G'(u)T*[e*F'(e*) — Hy(w*;u*)u*] < 0
and therefore b1bybs — b2by — b2 < 0. By continuity, this means that there exists at least one

*)=F"(e* HB
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B Econometric appendix

aX Z / aM Yy ﬁé) Z

dz X/ dy M- iz X) Z

is nothing other than the growth rate of exports, % Therefore, we can rewrite the rule as

YyBp = %, that is, as the ratio between the growth rate of exports and the income elasticity
dYy M

of imports. Assuming that M (-) is an homogenous function of degree 7, we have:

Thirlwall’s law states that ygp = p% where p = Notice, however, that (

X/X
Ypp = ——
™
where 7 stands for the income elasticity of imports.

The empirical relevance of the BoPC model is usually investigated by relying on this
last simple expression. This crucially depends on the estimate of the income elasticity of
imports which can be obtained from a standard aggregate import function. To this end,
in this paper we use country-specific cointegrating techniques[™| We make use of the Auto-
Regressive Distributed Lag (ARDL) bounds, testing the cointegration procedure developed by
[Pesaran and Shin (1998)| and latter extended by [Pesaran, Shin and Smith (2001)| to estimate
Thirlwall’s law for each individual country. This methodology has several advantages over
other cointegration methods as it allows the analysis to be undertaken regardless of whether
the variables are a mixture of stationary [I(0)] and integrated of order one [I(1)], which is
potentially our case.

To the best of our knowledge [Lanzafame (2014)| is the only other author to have used a
similar technique when estimating the law. However, he imposes a common lag structure to
all countries and does not apply the Bounds cointegration test. Actually, he considers that
the significant negative error-correction coefficients provide enough support for the hypothesis
that the variables share a long-run relation. The novelty of our exercise is in (i) allowing
different lags for each country and (ii) applying the Bounds/ARDL cointegration test.

Our dataset is annual and covers the period between 1960 and 2016 for 17 OECD countries
(Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Nether-
lands, New Zealand, Norway, Portugal, Sweden, Switzerland, United Kingdom, and United
States) with some variability according to data availability. We use Gross Domestic Product
(GDP), exports and imports at constant 2010 US$ from the World Development Indicators
(WDI). The real effective exchange rate (REER) was obtained from the Bruegel Project when
not accessible directly from the WDI.

Table A1 reports each ARDL estimation and the Bounds test for cointegration under the
null hypothesis of no cointegration["] All models estimated included dummy variables to
capture the structural break effects. One dummy variable was assigned for each indicator for

14This approach overcomes two of the main shortcomings of the usual cross-country regressions. First, by
focusing exclusively on the time dimension of data it avoids a number of heterogeneity problems. Second,
the omitted variable issue is less likely to affect the reliability of our estimates. This is because an omitted
variable will either be stationary - in which case the estimated coeflicients are invariant to its inclusion - or it
will be non-stationary - in which case we will not be able to obtain a stable cointegrating relationship if we
leave it out. For a further discussion and references on the econometric properties of the time-series approach
see Gobbin and Rayp (2008).

15In order to confirm that all series are at most integrated of order one we perform for each country two
different group unit root tests. The first one is the Levin, Lin and Chu (LLC) test that assumes a common
unit root process. The second one is the Im, Pesaran and Shin (IPS) test that assumes an individual unit root
process. We also performed the Bai-Perron test for multiple sequencial break-points. Results of the unit root
and Bai-Perron tests are available on request.
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each country. They assume a value of 1 for years with breaks and 0 for years with no break.
We can see that in all cases with the exception of the United Kingdom series cointegrate.
Moreover, the significance and negative signal of the coefficient of the lagged error-correction
term indicates that the system is stable and there is Granger causality running from the
explanatory variables to imports.

Country Model Bounds/Coint. | EC
Australia ARDL(1,1,2) ok A
Austria ARDL(1,4,4) otk - [
Belgium | ARDL(1,0,0) o R
Canada ARDL(1,0,0) otk - Rk
Denmark ARDL(1,0,0) otk - Rk
Finland | ARDL(L,0,0) o R
France ARDL(1,0,0) ok - [k
Germany ARDL(1,0,0) ok - [
Ireland ARDL(2,0,0) ek - [
Netherlands | ARDL(1,0,0) otk - Rk
New Zealand | ARDL(1,0,0) otk - Rk
Norway | ARDL(1,0,0) 5 e
Portugal ARDL(1,0,0) oK - [k
Sweden | ARDL(6,9,10) o W
Switzerland | ARDL(1,0,0) ok S

UK ARDL(L,1,0)

US ARDL(L,1,0) T R

Table Al: ARDL and Bounds test. *, ¥* *** gtand for 10%, 5% and 1% of significance

Long-run coefficients are reported in table A2:

Country C In GDP In REER
Australia -28.89172%** | 1,938834*** 0.205465
Austria -24.14632%F*% | 2.014088*** | -0.794064***
Belgium -17.12713 1.634609*** -0.015309
Canada -19.93800*** | 1.646217*** 0.148537
Denmark -31.35056™** | 2.300086*** -0.857417
Finland -11.09356*** | 1.560602*** | -0.0996308**
France -26.85979%** | 1.855581*** 0.261043
Germany | -37.29493*** | 2.341404*** | -0.485288
Ireland -16.84760%** | 1.643780*** -0.018189
Netherlands | -20.13538*** | 1.956193*** | -1.412166***
New Zealand | -24.35072*** | 1.851500*** 0.275679
Norway 2.645805 1.110661*** -1.457865
Portugal -7.635766 1.658072** -2.278364
Sweden -37.34596%F* | 2.231836*** | 0.695648**
Switzerland | -29.62199*** | 2.044630*** 0.163915
UK -30.64547*F* | 2.026361*** 0.039008
US -37.89596F* | 2.137113%** 0.313885

Table A2: Long-trun coefficients. *, ** and *** are 10%, 5% and 1% of significance.

As expected from theory, the income elasticity of imports is positive and significant in all
cases. An increase of 1% in GDP is associated with an increase of between 1.1% — 2.3% in
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imports. On the other hand, the REER, which measures the development of the real value
of a country’s currency against the basket of its trading partners’ currencies, was statistically
non-significant in most of the cases giving support to the hypothesis that the balance-of-
payments adjustment occurs through income instead of prices. To assess a valid inference and
no spurious regressions, residuals of all ARLD estimations were checked for serial correlation
using the Bresch-Godfrey LM test. We concluded that our estimates were consistent. Results
are available on request.

The coefficient of In GDP corresponds to the estimated income elasticity of imports (7)
of each country. Taking the average growth rate of exports and dividing by © we obtain the

long-run BoPC growth rate. Table A3 presents our estimates:

Country Actual growth | BoPC growth | delta | delta/actual growth
Australia 3.488844673 2.864993 0.623852 0.178813
Austria 2.751033634 2.808055 -0.05702 0.020756
Belgium 2.643991373 3.109916 -0.46592 0.176218
Canada 3.199715 3.075819 0.123896 0.038720
Denmark 2.32909 2.166420 0.16267 0.069842
Finland 2.829946 3.406702 -0.57676 0.203806
France 2.791525 3.049623 -0.2581 0.092458
Germany 1.990479 1.896716 0.093763 0.047105
Ireland 4.929054 5.628571 -0.69952 0.141917
Netherlands 2.83579 2.885580 -0.04979 0.017557
New Zealand 2.473258 2.186086 0.287172 0.116110
Norway 3.160926 3.761338 -0.60041 0.189947
Portugal 3.243022 3.581068 -0.33805 0.104239
Sweden 2.578775 2.345635 0.23314 0.090407
Switzerland 1.721889 1.973946 -0.25206 0.146385
UK 2.412672 2.225886 0.186786 0.077418
Us 2.79901 2.666027 0.132983 0.047510

Table A3: Actual vs estimated growth rates

Our estimates of Thirlwall’s law provide a fair approximation of actual average long-run
growth rates for countries of the sample with an average error (delta/actual growth) of 10%.
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