
  

 

 

 

 
 

 

Risk Measures with Generalized Secant 
Hyperbolic Dependence 

Paola Palmitesta 

Working Paper n. 76, April 2008 
 
 
 
 



  

 
 
 



Risk Measures with Generalized Secant
Hyperbolic Dependence

Paola Palmitesta
University of Siena, Italy

April 2008

Abstract

In this paper we propose to model the dependence of multiple time
series returns with a multivariate extension of the generalized secant hy-
perbolic distribution (GSH) using the NORTA (NORmal-to-Anything)
approach and the Koehler and Symanowski copula function. The two
methodologies permit to generate random vectors with marginals dis-
tributed as a GSH distribution and given correlation matrix, which can
be used to measure the risk of a portfolio using the Monte Carlo method.

1 Motivation

It is well known that distributions of many financial quantities have heavy
tails, are skewed and have other non-Gaussian characteristics. A multivari-
ate distribution often used in risk management is the asymmetric Student-t
distribution which seems to be the distribution which better captures the non-
normality features of financial data. A drawback of the Student-t distribution
is represented by the technical difficulties due to the evaluation of moments of
the marginals, especially in the case of fractional degrees of freedom.

In alternative, we propose to model the dependence of multiple time series
returns with a multivariate extension of the generalized secant hyperbolic dis-
tribution (GSH) using the NORTA (NORmal-To-Anything) approach and the
Koehler and Symanowski copula function. The two methodologies permit to
generate random vectors with marginals distributed as a GSH distribution and
given correlation matrix, which can be used to measure the risk of a portfolio
using the Monte Carlo method. The main advantage of the GSH distribution
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over the Student-t distribution is that all the moments are finite for each value
of the shape parameter.

The paper is organized as follows. After introducing the GSH distribution
in next section, in section 3 we present the two methodologies, the NORTA
(NORmal-To-Anything) approach and the Koehler and Symanowski copula
function, to model the dependence of multiple time series returns with a mul-
tivariate extension of GSH distribution; then, in section 4 we show the results
of an empirical experiment. Conclusions are left to the last section.

2 The GSH Distribution

A random variable X is said to follow a generalized secant hyperbolic distri-
bution having parameters µ, σ, λ, with µ ∈ IR, σ > 0, and λ > −π, in symbols
X ∼ GSH(µ, σ, λ), if its density function, for x ∈ IR, is

fGSH(x;µ, σ, λ) = σ−1fGSH

(
x− µ
σ

; 0, 1, λ

)
,

where

fGSH(z; 0, 1, λ) =
c1

2(a+ cosh(c2z))

and

a = cos(λ) c2 =

√
π2 − λ2

3
c1 =

sin(λ)
λ

c2 for −π < λ < 0

a = 1 c2 =

√
π2

3
c1 = c2 for λ = 0

a = cosh(λ) c2 =

√
π2 + λ2

3
c1 =

sinh(λ)
λ

c2 for λ > 0

X is symmetric around µ because fGSH(x) = fGSH(−x) for any value of x.
µ and σ are the mean and the standard deviation of X, while λ decides the
kurtosis of the distribution. In other terms, if X ∼ GSH(µ, σ, λ), then

Z =
X − µ
σ

is its standardized form, with distribution GSH(0, 1, λ). For λ = 0, X has a
logistic distribution.
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The cumulative distribution function of Z is

FGSH(z) =


1
2

+ 1
λ

tan−1
[
tan
(
λ
2

)
tanh

(
c2
2
z
)]

λ ∈ (−π, 0)

1
2

[
1 + tanh

(
c2
2
z
)]

λ = 0

1
2

+ 1
λ

tanh−1
[
tanh

(
λ
2

)
tanh

(
c2
2
z
)]

λ > 0

The quantile function for 0 < p < 1 is given by

F−1
GSH(p) =


2
c2

tanh−1
[
cot
(
λ
2

)
tan
(
λ
2

(2p− 1)
)]

λ ∈ (−π, 0)

2
c2

tanh−1(2p− 1) λ = 0

2
c2

tanh−1
[
coth

(
λ
2

)
tanh

(
λ
2

(2p− 1)
)]

λ > 0

X has kurtosis given by

Ku =


21π2 − 9λ2

5(π2 − λ2)
λ ∈ (−π, 0]

21π2 + 9λ2

5(π2 + λ2)
λ > 0

Note that Ku decreases as λ → ∞ and 1.8 < Ku < ∞. In particular, when
λ = π, Ku = 3, which is the kurtosis of the normal distribution.

2.1 Skew GSH Distribution

In literature, many methods can be found in order to transform a symmetric
distribution in a skewed one. In the present context, we apply the procedure
used by Fernandéz and Steel (1998) to design a skew-t distribution to the
density of GSH.

A random variable X is said to follow a skew generalized secant hyperbolic
distribution having parameters µ, σ, γ, λ, with µ ∈ IR, σ > 0, γ > 0, and
λ > −π, in symbols X ∼ SGSH(µ, σ, γ, λ), if its density function, for x ∈ IR,
is

fSGSH(x;µ, σ, γ, λ) = σ−1fSGSH

(
x− µ
σ

; 0, 1, γ, λ

)
,

where
fSGSH(z; 0, 1, γ, λ) =

c1
(γ + 1

γ
)(a+ cosh(c2γ−sign(z)z))

.

The parameters of the distribution can be interpreted as follows:
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• µ is a position parameter,

• σ is a scale parameter,

• γ decides the skewness of the distribution (the density is symmetric for
γ = 1, right skewed for γ > 1 and left skewed for 0 < γ < 1),

• λ decides the kurtosis.

The characteristics of this distribution can be found in Palmitesta and
Provasi (2004).

3 Modelling the Dependence Structure

3.1 NORTA Method

Cario and Nelson (1997) described the “NORmal To Anything” (NORTA)
method for generating iid replicates of random vectors with specified marginals
and covariance structure. The NORTA method starts by generating a random
vector Z with a multivariate normal distribution and transforms Z to obtain
a random vector X = (X1, . . . , Xp) with the desired marginals and covariance
matrix.

Let Fi be the distribution function of Xi, for i = 1, . . . , p. The NORTA
method generate i.i.d. replicates of X by the following procedure.

1. Generate an IRp valued standard normal random vector Z = (Z1, . . . , Zp)
with mean vector 0 and covariance matrix ΣZ = (ΣZ(i, j) : 1 ≤ i, j ≤ p),
where ΣZ(i, i) = 1 for i = 1, . . . , p.

2. Compute the vector X = (X1, . . . , Xp) via

Xi = F−1(Φ(Zi))

for i = 1, . . . , p, where Φ is the distribution function of a standard normal
random variable.

A vector X generated by this procedure will have the prescripted marginal
distribution. To see this, note that each Zi has a standard normal distribution,
so that Φ(Zi) is uniformly distribuited on (0, 1) and F−1(Φ(Zi)) will have the
required marginal distribution. The covariance matrix ΣZ should be chosen
so that it induces the required correlation structure on X.
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3.2 A Copula Approach

3.2.1 The Multivariate Uniform Distribution

Koehler and Symanowski (1995) introduce a multivariate distribution that
can be viewed as a generalization of the Cook-Johnson family of distributions.
Consider the p-dimensional random variable U = (U1, . . . , Up)

′ with support
on the unit hypercube (0, 1]p and cumulative distribution function (cdf)

F (u1, . . . , up) =

p∏
i=1

ui

p∏
j=i+1

K
−αij

ij ,

where

Kij = u
1/αi+

i + u
1/αj+

j − u1/αi+

i u
1/αj+

j ,

with αij = αji ≥ 0 for all (i, j) and αi+ = αi1 + · · ·+αip > 0 for all i = 1, . . . , p.
Deriving the cdf with respect to u1, . . . , up, we obtain the probability den-

sity function (pdf) of U :

f(u1, . . . , up) =
p∏
i=1

Di

p∏
j=i+1

K−αij


·

1 +
p∑
i=1

p∑
j=i+1

(
αij

αi+αj+
D−1
i D−1

j K−2
ij u

1/αi+
i u

1/αj+
j

) ,
where

Di = α−1
i+

[
αii +

p∑
k 6=i

(αiku
1/αk+

k K−1
ik )

]
and Kij = Kji.

It is possible to obtain a scheme to generate U using gamma distributions.
Let Y1, . . . , Yp be i.i.d. Gamma(1, 1) and, independently, G11, G12, . . . , Gpp be
Gamma(αij, 1) with Gi+ =

∑p
j=1Gij. Then, the joint pdf of

Ui =

(
1 +

Yi
Gi+

)−αi+

,

for i = 1, . . . , p, has the cdf of U . U is positively associated. Variations in the
standard form that also take into account negative association can be obtained
by applying the transformation Vi = 1− Ui to some, but not all, variables.
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3.2.2 The Copula Function

Recall that a copula C is a p-dimensional distribution function defined on
[0, 1]p with uniform marginal distributions. From the Sklar’s theorem we have
that any cdf F with marginals F1, . . . , Fp can be written as

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp))

for any copula function C which is uniquely determined on [0, 1]p for F distri-
butions with marginals absolutely continuous. Vice versa, any copula function
C can be used to join any set of cdf F1, . . . , Fp to build a multivariate cdf F
with marginals F1, . . . , Fp. The copula function C of their joint distribution
can be obtained computing

C(u1, . . . , up) = F (F−1
1 (u1), . . . , F

−1
p (up))

where the F−1
i are the quantile function of the marginals.

A KS copula is given by

F (x1, . . . , xp) =

p∏
i=1

Fi(xi)

p∏
j=i+1

K
−αij

ij

The pdf is

f(x1, . . . , xp) =
p∏
i=1

fi(xi)Di

p∏
j=i+1

K−αij


·

1 +
p∑
i=1

p∑
j=i+1

(
αij

αi+αj+
D−1
i D−1

j K−2
ij Fi(xi)

1/αi+Fj(xj)1/αj+

) ,
where

Di = α−1
i+

αii +
p∑
k 6=i

(αikFk(xk)1/αk+C−1
ik )

 ,
Kij = Fi(xi)1/αi+ + Fj(xj)1/αj+ − Fi(xi)1/αi+Fj(xj)1/αj+ .

It is immediately verified that, to simulate the joint distribution ofX1, . . . , Xp

with the Monte Carlo method, it is sufficient to generate some variates from
U and then apply the inverse transformation to each marginal.
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3.2.3 Measures of association

The conditional means of C are not linear functions of the values of the condi-
tioning variables. Consequently, it is more reasonable to measure dependence
between variables using concordance coefficients as the Kendall’s tau or the
Spearman’s rho than using the linear correlation coefficient. The level of as-
sociation of (X1, X2) depends on the level of the parameters αij.

The cdf of (X1, X2) approaches the upper Fréchet bound as α12 → 0 when
both α11/α1+ → 0 and α22/α2+ → 0 provided that α11 and α22 decrease to
zero faster than α12. It approximates (X1X2), paired independence, when

1. either α12 → 0 and both α1+ and α2+ are finitely nonzero or

2. both α1+ →∞ and α2+ →∞.

In order to stress these properties, we quote the values of Kendall’s τ and
Spearman’s ρ coefficients of the KS copula function for some values of α12

when α11 = α22 = 0 and X1 and X2 are uniform on zero and 1. It must be
emphasized that τ and ρ depend only on the copula function C.

Association Kendall’s Spearman’s
parameter coefficient coefficient

0.1 0.8333 0.9581
0.5 0.5000 0.6822
1.0 0.3333 0.4784
1.5 0.2500 0.3654
2.0 0.2000 0.2949
2.5 0.1667 0.2470
3.0 0.1429 0.2124
4.0 0.1111 0.1657
5.0 0.0909 0.1358
10.0 0.0476 0.0714
∞ 0.0000 0.0000

3.3 Tail dependence coefficients

The tail-dependence coefficients provide asymptotic measures of the depen-
dence in the tails of the bivariate distribution for (X1, X2). The upper tail-
dependence coefficient for X1 and X2 is

lim
q→1

P (X2 > F−1
2 |X1 > X1 > F−1

1 ) = λU ,

provided that a limit λU ∈ [0, 1] exists. The lower tail dependence coefficient
is

lim
q→0

P (X2 > F−1
2 |X1 > X1 > F−1

1 ) = λL,
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Association λL
parameter

0.1 0.9330
0.5 0.7071
1.0 0.5000
1.5 0.3536
2.0 0.2500
2.5 0.1768
3.0 0.1250
4.0 0.0884
5.0 0.0625
10.0 0.0313

Table 1: Coefficients of the lower tail dependence for some values of α12 when
α11 = α22 = 0.

provided that a limit λL ∈ [0, 1] exists.

Also these measures depend only on the copula function C of (X1, X2) and
can be obtained easily by means of the expressions used by Joe (1997), which
are given by

λU = lim
q→1−

C̄(q, q)

1− q
, λL = lim

q→0+

C(q, q)

q
,

where C̄(u, u) = 1 − 2u + C(u, u) is known as the survivor function of the
copula.

On the basis of this expression, it is immediate to verify that, for the KS
copula function λU = 0, while λL → 1 when the cdf of (X1, X2) approaches the
upper Fréchet bound and λL → 0 when X1 and X2 approach the indipendence.
Coefficients of the lower tail dependence for the KS copula are given in Table
2 for some values of α12 when α11 = α22 = 0.

3.3.1 Minimum Distance

We want to obtain the parameters of the KS copula which permit to gener-
ate, as with NORTA, multivariate random samples with known marginals and
given correlation matrix. With this aim, we can minimize the distance (MD)
between the association matrix P obtained with the Kendall’s tau or Spear-
man’s rho coefficients computed for each bivariate marginal of the copula and
the corresponding copula-implied association matrix R(α).
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The MD minimizes respect to the p(p+ 1)/2 elements of α

(P † − h(α))′W−1(P † − h(α))

where P † and h(α) indicates vectors p(p−1)/2×1 which contain, respectively,
the only elements of the given correlation measures and theoretical association
matrices and W−1 is a weight matrix.

4 An Application

In this section we show the results of an experiment in order to verify if the
approach is correct, both in terms of comparison between the skew Student-
t and the skew GSH distributions and in terms of accuracy of the copula
approach.

4.1 The data

The raw data used in this paper are weekly prices of four market indices:

• the S&P 500 Composite index (S&PCOMP),

• the NASDAQ Composite index (NASCOMP),

• the NIKKEI 500 index (JAPA500) and

• the MSCI AC World index (MSACWFL).

The observations were obtained by Datastream for the period 1/1/1988 to
12/31/2003. We compute returns as the first differences of the natural loga-
rithms of each series, rt = ln It − ln It−1, where It indicates the price at time
t. This gives a sample of T = 854 returns.

If we express the dependence structure of the four indices with the Kendall’s
tau coefficient, we obtain the following matrix:

Pτ =


1.0000 0.6347 0.2499 0.6807
0.6347 1.0000 0.2421 0.5517
0.2499 0.2421 1.0000 0.4578
0.6807 0.5517 0.4578 1.0000


while if we use the Spearman’s rho coefficient we obtain:

PS =


1.0000 0.8245 0.3642 0.8577
0.8245 1.0000 0.3524 0.7423
0.3642 0.3524 1.0000 0.6337
0.8577 0.7423 0.6337 1.0000

 .

9



4.2 Fitting the marginals

We have considered as marginals of the KS copula the skew Student-t and
the skew generalized secant hyperbolic distributions. The two following tables
present the results of the maximum likelihood estimation of the parameters of
the two distributions for the four series of returns. In the table we also present
the values of the averaged loglikelihood function at the maximum (shown in
italics). On the basis of these values, note that the two distributions show a
good fitting to the data.

ML Estimation of the Skew Student-t Distribution

S&PCOMP NASCOMP JAPA500 MSACWFL
Location 0.0062 0.0096 0.0013 0.0055
Scale 0.0222 0.0357 0.0300 0.0196
Skewness 0.8664 0.8506 0.9593 0.8593
Kurtosis 5.4329 3.4153 4.5528 4.8423

LogLik 2.4179 2.0313 2.1460 2.5503

ML Estimation of the Skew Generalized Secant Hyperbolic Distribution

S&PCOMP NASCOMP JAPA500 MSACWFL
Location 0.0061 0.0010 0.0011 0.0055
Scale 0.0220 0.0334 0.0294 0.0193
Skewness 0.8738 0.8440 0.9645 0.8599
Kurtosis -1.4014 -2.1752 -1.7483 -1.6308

LogLik 2.4160 2.0360 2.1477 2.5497

4.3 Fitting the KS copula

The estimated parameters of the KS copula function for the four series of
returns are shown in the following table. The values refer to the minimum dis-
tance estimates with association matrices based on the Kendall’s tau (MDEτ )
and the Spearman’s rho (MDEρ). The last row of the table shows the distance
value between the empirical and theoretical association matrices.
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MD Estimation of the KS Copula Function
(W = I)

Parameters MDEτ MDEρ
α11 0.0072 0.0013
α12 0.0640 0.0608
α13 0.0208 0.0181
α14 0.0574 0.0478
α22 0.0181 0.0157
α23 0.0239 0.0227
α24 0.0437 0.0523
α33 0.0517 0.0457
α34 0.0684 0.0712
α44 0.0110 0.0094

Distances 0.0000 0.0000

The structure of α obtained with the minimum distance method proves
quite similar (it is equivalent at the second decimal digit) depending on mea-
suring the association between variables using the Kendall’s tau or the Spear-
man’s rho;

The distance of Pτ and Pρ from α̃ is virtually zero and it denotes the skill
of the KS copula function to model complex dependence structures among
subsets of marginals.

5 Conclusions

In this paper we have proposed to model the dependence of multiple time series
returns with a multivariate extension of the generalized secant hyperbolic dis-
tribution (GSH) using the NORTA (NORmal-to-Anything) approach and the
Koehler and Symanowski copula function. Fitting the distribution to the re-
turns of four market indices, the S&P 500 Composite index (S&PCOMP), the
NASDAQ Composite index (NASCOMP), the NIKKEI 500 index (JAPA500)
and the MSCI AC World index (MSACWFL), with the skew Student-t and
the skew generalized secant hyperbolic, we find that this copula function suc-
ceeds in properly interpreting the dependence structure of data, apart from
the marginals. The two methodologies permit to generate random vectors
with marginals distributed as a GSH distribution and given correlation ma-
trix, which can be used to measure the risk of a portfolio using the Monte
Carlo method. It is in progress the implementation in Mathematica of the
NORTA method and of the KS copula to measure the risk of a portfolio with
the Monte Carlo method.
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