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Abstract

Dávila-Fernández and Sordi (2018) have recently extended Goodwin’s (1967)
model to study the interaction between distributive cycles and international trade for
economies in which growth is Balance-of-Payments Constrained. This paper exam-
ines the implications of adopting (i) Kaldor-Verdoorn’s law, and (ii) classical-Marxian
technical change to the main results of the model. The Kaldorian specification leaves
the system with no internal equilibrium solution while the Marxian specification
makes it stable. A Hopf bifurcation analysis shows that the combination of both
formulations might give rise to persistent and bounded cyclical fluctuations. Given
the lack in the literature of reliable estimates for the classical-Marxian case, we pro-
vide a panel-VAR estimation for a sample of 16 OECD countries between 1980-2012
that gives some support to its central argument. Our estimates were used to calibrate
the models developed in the first part of the paper.
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1 Introduction

The analysis of the role of technical change in growth processes has been for a long time of
central importance in economic theory. Different approaches have been proposed over the
years to study distinct aspects of the phenomenon. Among alternative theories of growth
and distribution, two particular viewpoints on the evolution of technology deserve special
attention given their influence to Marxian and Post-Keynesian macrodynamic modelling.
On the one hand, according to Kaldor-Verdoorn’s law, labour productivity grows in line
with output’s growth rate or capital accumulation. On the other hand, classical-Marxian
technical change states that factor productivity growth rates respond positively to factor
cost shares.

Moreover, the seminal paper on the growth cycle by Goodwin (1967) has consolidated
itself throughout the past decades as a powerful “system for doing macrodynamics”. In the
last fifty years, a significant number of contributions have tried to generalise its formulation
in all possible directions. The introduction of technical change considerations has not been
an exception, especially in what concerns the dependence of labour productivity growth on
the share of labour on income, as initially discussed by Shah and Desai (1981), and further
elaborated by van der Ploeg (1987), Foley (2003), Julius (2006) or Tavani and Zamparelli
(2015; 2018), among others.

Recognising that the relationship between growth and income distribution has been
a central issue for non-neoclassical theories of social conflict, Dávila-Fernández and Sordi
(2018, hereafter DF&S), have extended Goodwin’s (1967) model to study the interaction be-
tween distributive cycles and international trade for economies in which growth is Balance-
of-Payments Constrained (BoPC), i.e. follows Thirlwall’s (1979) law. The authors have
demonstrated that under very general conditions and without relying on price-adjustment
mechanisms, output’s growth rate fluctuates around the external constraint while preserv-
ing the persistent endogenous oscillations that characterise the original growth cycle model.

However, these results strongly rely on a learning-by-doing mechanism in which changes
in labour productivity are a function of the level of effective capacity utilisation. DF&S
made the case that even though technological progress to some extent is capital embodied,
machines must be operating in order to productivity gains to be effectively incorporated.
Still, the implications of adopting different specifications of technical change have not been
discussed. It is our purpose in this article to address some of those issues, especially
regarding the local stability properties of the system.

We proceed in three steps. First, and following the Kaldorian literature, we introduce
labour productivity gains as a function of capital accumulation or output’s growth rate.
In a second step, we adopt a classical-Marxian technical change approach and make both
labour and capital productivity growth rates to depend positively on factor cost shares.
Finally, a combination of these two specifications is studied. The Kaldorian case leaves
the system with no internal equilibrium solution while the Marxian specification makes the
system stable. Furthermore, a Hopf bifurcation analysis shows that the combination of
both formulations might give rise to persistent and bounded cyclical paths.

When it comes to the empirics of technical change, there is robust literature on Kaldor-
Verdoorn’s law that gives support to its formulation (e.g. McCombie and De Ridder, 1983;
1984; Angeriz et al, 2008; 2009; Romero and McCombie, 2016a; Magacho and McCombie,
2017; Romero and Britto, 2017). The same cannot be said about the classical-Marxian
construction. Therefore, it is also our purpose to address the relation between functional
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income distribution and the evolution of technology empirically.
We applied panel Vector Autoregression (pVAR) techniques to a sample of 16 OECD

countries between 1980 and 2012. Orthogonalised Impulse Response Functions (OIRFs)
indicate that one standard deviation impulse on the profit-share/wage-share ratio decreases
labour productivity growth rates by 2% though it has a neglectable effect on capital produc-
tivity. Moreover, changes in income distribution are responsible for up to 40% of changes
in labour productivity growth rates. To the best of our knowledge, we are the first to pro-
vide more consistent estimations that give some support to the classical-Marxian technical
change argument.

Our estimates are used to calibrate the models developed in the first part of the paper.
Numerical simulations show that the main dynamics of DF&S are robust to alternative
specifications of technological change. Furthermore, the introduction of a forcing term
motivated by Goodwin’s discussion of “Schumpeter clock” gives rise to irregular fluctuations
similar to those observed in real data.

This article is organised as follows. In the next section, we revisit DF&S main dy-
namic equations discussing the implications of adopting different specifications for technical
change analytically. Section 3 brings our econometric exercise that provides some empirical
support to the Marxian argument. Readers not interested in the theoretical discussion can
go directly to this part. In section 4 we use those estimates to calibrate our theoretical
model. Some final considerations follow.

2 Kaldorian and classical-Marxian technical change

Suppose an economy in which output is produced with capital and labour inputs. We
characterised the production technology by the pair (ρ, q) where ρ and q represent capital
and labour productivities, respectively. Technical progress is expressed as a combination
of changes in both variables. In this section, we briefly revisit the main structure of DF&S
model and study the implications of adopting the Kaldorian and classical-Marxian formu-
lations.1

Define e as the rate of employment, Y as the level of output, N represents total labour
force, $ is the wage-share, w corresponds to real wages, u is the level of capacity utilisation,
and K is the capital stock. The employment rate is defined as e = L/N where L stands
for labour employed in production. Capacity utilisation is given by u = Y/Y ∗ with Y ∗ as
production at full capacity. Labour and capital productivity are defined as q = Y/L and
ρ = Y ∗/K, respectively. The main structure of the dynamic system is given by:2

ė

e
=

Ẏ

Y
− q̇

q
− Ṅ

N
(1)

$̇

$
=

ẇ

w
− q̇

q
(2)

u̇

u
=

Ẏ

Y
− K̇

K
− ρ̇

ρ
(3)

1See Tavani and Zamparelli (2017) for a comprehensive and recent survey on endogenous technical
change in alternative theories of growth and distribution.

2For any variable x, ẋ indicates its time derivative (dx/dt).
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Assumption 1 The balance-of-payments is always in equilibrium so that output’s growth
rate is demand-side determined and given by Thirlwall’s law, i.e.

Ẏ

Y
= ybp

Though it is true that there are short-run deviations from such a long-run trend, this
assumption allows us to isolate and focus on the implications of adopting different specifi-
cations of technical change.3 Another way of thinking of it is to implicitly assume that the
adjustment of the rate of growth of demand to the external constraint takes places through
changes in the rate of domestic absorption, more specifically, through expansionary or
contractionary fiscal policy.

When the economy exceeds the BoPC rate of growth, i.e. Ẏ /Y > ybp, and hence
a current account deficit emerges, the government adopts a contractionary fiscal policy to
correct the external deficit. This fall goes in hand with a perception that there will be a crisis
shortly if the government fails to curb the growth of imports. Guarini and Porcile (2016),
for instance, referred to instability in the exchange rate market and outflows of foreign
capital that follow this perception. They argued that crowding in effects of government
expenditures may also induce a similar fall of private expenditure. Inversely, for Ẏ /Y < ybp,
the government has space for more expansionary fiscal policy. In fact, from the expenditures
identity, we have that the difference between savings and investment is always equal to the
difference between exports and imports. Hence, a balance-of-payments that is always in
equilibrium requires that domestic savings must be equal to the firm’s investment plans.
Since we are going to introduce an independent investment function, we need savings to be
the adjustment variable.

Eqs. (1)-(3) are direct manipulations of accounting identities.4 In steady state, ė/e =
$̇/$ = u̇/u = 0. For positive values of employment, wage-share, and utilisation, we obtain
the following equilibrium conditions:

ybp =
q̇

q
+
Ṅ

N
(4)

ẇ

w
=

q̇

q
(5)

ybp =
K̇

K
+
ρ̇

ρ
(6)

From Eq. (4), we have that output’s growth rate must equal the natural growth rate
in order to deliver a constant employment rate. It establishes a correspondence between

3Although the BoPC growth model addresses the investigation of the long-run, it also has profound
implications for short-run dynamics. For a formal analysis of how deviations from long-run paths are
generated and corrected, see Soukiazis et al. (2012; 2014), Garcimartin et al. (2016), and DF&S. The last
one shows that as long as savings and investment growth at the same rate, output’s growth rate follows
Thirlwall’s law.

4Suppose a Leontief production function such that Y = min {ρKu; qNe}. The efficiency condition
states that Y = ρKu = qNe. Notice that, in a sense, this is an accounting identity because Y =
(Y ∗/K)K (Y/Y ∗) = (Y/L)N (L/N). Taking logarithms and time derivates of Y = ρKu and Y = qNe,
we obtain Eqs. (1) and (3). Finally, the wage-share is defined as the share of wages in output, $ =
wL/Y = w/q. Taking logarithms and time derivates we arrive at Eq. (2).
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the capacity of the economy to expand production and how this interacts with changes
in the supply of labour. Eq. (5) consists of the equilibrium condition to distributive
conflict. A stable income distribution requires real wages to grow at the same pace as
labour productivity. Finally, and analogously to the first expression, a constant level of
capacity utilisation is the result of output growing at the same rate of the sum between
capital accumulation and productivity. It shows how the capacity of the economy to expand
production interacts with changes in capital accumulation. We are now ready to study how
this structure responds to different behavioural assumptions.

2.1 Labour productivity and Kaldor-Verdoorn’s law

It has been observed that changes in factor productivity do not occur symmetrically through
time. For a large group of capitalist countries and over long periods of time, capital
productivity has remained constant or even declined while labour productivity shows a
clear positive trend.

The Kaldorian tradition has indeed paid little attention to changes in capital produc-
tivity. In a well-known paper, Kaldor (1961, p. 178) himself stated as one of his “stylised
facts” a constant capital-output ratio, i.e. constant capital productivity. In what concerns
labour, Kaldor-Verdoon’s law states that labour productivity growth rates are directly re-
lated either to capital accumulation or output growth. The basic idea goes back to Adam
Smith’s pin factory and highlights the importance of dynamic returns to scale or macroeco-
nomic increasing returns that are involved in learning-by-doing processes.5 Two alternative
specifications are:

q̇

q
= G

(
K̇

K

)
, GK̇/K > 0 (7)

or
q̇

q
= G

(
Ẏ

Y

)
, GẎ /Y > 0 (8)

where both functions are monotonically increasing in their main arguments.

Five behavioural relations are needed in order to close the model. Set q̇/q = G
(
K̇/K

)
as in Eq. (7) and ρ̇/ρ = 0. Furthermore, make the labour force grow at an exogenous rate,
n. Assuming a real wages Phillips curve, ẇ/w = F (e) with F ′(·) > 0, and a conventional
capital accumulation function, K̇/K = H($, u) with H$ < 0 and Hu > 0, the dynamical
system (1)-(3) becomes:

ė = e[ybp −G (H($, u))− n] (9)

$̇ = $[F (e)−G (H($, u))] (10)

u̇ = u [ybp −H($, u)] (11)

For a given rate of growth of output, an increase in capital accumulation increases labour
productivity reducing employment rates and the wage-share. A reduction in $ rises the
profitability of investment. This leads to an increase in the growth rate of the capital stock
which in turn implies higher labour productivity. Even though the last equation indicates

5For a comprehensive review of Kaldor-Verdoorn’s law see McCombie et al. (2002).
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that u stabilises itself, increases in capacity utilisation seem to trigger instability through
an increase in capital accumulation.

In steady state, ė/e = $̇/$ = u̇/u = 0. Equilibrium conditions for this first set of
behavioural equations are:

ybp = G (H($, u)) + n (12)

F (e) = G (H($, u)) (13)

ybp = H($, u) (14)

Therefore, we can state and prove the following Proposition regarding the existence of
a non-trivial equilibrium solution.

Proposition 1 The probability that the dynamic system (9)-(11) has an internal non-
trivial equilibrium solution is zero.

Proof. Substituting Eq. (14) in (12) we obtain ybp = G (ybp) + n. Since ybp and n are
parameters in the model, only by chance this expression is actually true. In a continuous
sample space, the probability of any elementary event, consisting of a single outcome, is
zero.

At this point, it is quite intuitive to realise that a similar problem arises when adopting
the second specification of Kaldor-Verdoorn’s law. Substituting Eq. (8) in the first dynamic
equation, and keeping all other behavioural relations, we obtain:

ė = e [ybp −G (ybp)− n] (15)

In steady-state ė/e = 0 and a non-trivial solution exists only if ybp = G (ybp)+n. Given that
ybp and n are exogenous parameters, it is easy to understand that the equality is unlikely
to be satisfied.

Such result comes from the fact that we are fixing Ẏ /Y = ybp, i.e. the growth rate of
output required to maintain the equilibrium in the balance of payments. However, a simple
relaxation of this assumption does not come without problems. Suppose output’s growth
rate does not follow the external constraint. Keeping ρ̇/ρ = 0, from Eqs. (4) and (5) it is
clear that, in order to obtain a constant rate of employment and capacity utilisation, we
need Ẏ /Y = q̇/q + n and Ẏ /Y = K̇/K. Define Φ = Ẏ /Y − G(·). This means that as

long as Φ has an inverse, Ẏ /Y = G
(
Ẏ /Y

)
+n = Φ−1 (n) and growth becomes supply-side

determined. Such result goes against recent empirical evidence indicating that the natural
rate of growth is not only endogenous but also determined by the external constraint (see,
for example, Lanzafame, 2014).

Setterfield (2006) and Gabriel et al. (2016) among others have tried to overcome the

problem using linear specifications of G(·). Suppose G
(
Ẏ /Y

)
= α0 + α1Ẏ /Y where

α1 is the so-called Verdoorn coefficient and is assumed to capture the presence of dynamic
economies of scale. Hence, they endogenised α1 allowing an adjustment towards the external
constraint. Nonetheless, this is still quite unsatisfactory. As shown by McCombie and
Spreafico (2016), such interpretation of the linear coefficients is wrong because it implies
G(·) to be a sub-product of a neoclassical production function instead of a behavioural
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relation.6 They demonstrated that if a linear form is adopted “the intercept cannot and
should not be interpreted as the separate contribution to economic growth of the rate of
exogenous technical change” while “the Verdoorn coefficient also should not be interpreted
as a measure of increasing returns to scale per se” (p. 1131, emphasis added).

Another alternative would be to make the growth rate of the labour force, n, an endoge-
nous variable. For OECD countries, for example, this could be justified by immigration.
In developing countries, one could make the case that as the excess of labour supply is
absorbed by the modern sector, n changes. However, we do not deal with such cases here
since endogenising n goes beyond the scope of this article.

2.2 Classical-Marxian technical change

Classical-Marxian technological change is based on the assumption that labour-saving or
capital-saving innovations depend on the share of labour and capital costs in production.
The inspiration for this idea is not purely classical, and the first modern reference is Hicks
(1932) – with the induced (or biased) innovation hypothesis – while further contributions
include neoclassical (e.g. Kennedy, 1964; Samuelson, 1965; and more recently Funk, 2002;
Acemoglu, 2003) and non-neoclassical scholars (see Okishio, 1961; Duménil and Levy, 1995;
Foley, 2003; Kemp-Benedict, 2018).

We continue redefining the labour productivity growth rate, such that:

q̇

q
= G ($) , G$ > 0 (16)

ρ̇

ρ
= J ($) , J$ < 0 (17)

Notice that there is a fundamental difference between this case and the first one dis-
cussed in the previous subsection. Back then, an increase in the wage-share reduced capital
accumulation and as consequence labour productivity growth. Now, changes in income
distribution have the opposite effect, at least in what concerns labour. An increase in the
wage-share indicates that real wages are higher relative to labour productivity. Hence,
firms respond to increasing the search for labour saving techniques.

In a similar scenario to the one adopted for the Kaldorian specifications, make the
labour force grow at an exogenous rate n, assume a real wages Phillips curve, ẇ/w = F (e)
with F ′(·) > 0, and a conventional capital accumulation function, K̇/K = H($, u) with
H$ < 0 and Hu > 0. Finally, making use of Eqs. (16) and (17), we can rewrite the dynamic
system (1)-(3) as:

ė = e [ybp −G ($)− n] (18)

$̇ = $ [F (e)−G ($)] (19)

u̇ = u [ybp −H($, u)− J ($)] (20)

An increase in the wage-share reduces the rate of employment and capital productivity
growth through technical change functions. It also brings down investment’s profitability
resulting in lower capital accumulation. Lower capital accumulation and productivity rates

6 Needless to say that the problems of such production functions are well known. For a comprehensive
discussion see Petri (2004) and Felipe and McCombie (2013).
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increase the level of capacity utilisation. Such an increase may sound counterintuitive but
comes from the fact that capacity of production is expanding slower relatively to aggregate
demand. On the other hand, higher capacity utilisation increases capital accumulation
through the accelerator effect, which reduces u, stabilising the system. Furthermore, a
reduction in employment rates has a negative impact on real wages because workers are
not able to obtain the same wage increases as in the past. This leads to a reduction in the
wage-share and also stabilises the system.

In steady state, ė/e = $̇/$ = u̇/u = 0. We obtain the following equilibrium conditions:

ybp = G ($) + n (21)

F (e) = G ($) (22)

ybp = H($, u) + J ($) (23)

Therefore, we can state and prove the following Proposition regarding the existence and
uniqueness of a non-trivial equilibrium solution.

Proposition 2 The dynamic system (18)-(20) has a unique internal equilibrium point that
satisfies

e∗ = F−1 (ybp − n)

$∗ = G−1 (ybp − n)

ybp = H
(
G−1 (ybp − n) , u∗

)
+ J

(
G−1 (ybp − n)

)
Proof. See Mathematical Appendix B1.

The equilibrium solution values are very similar to those of DF&S with one striking
difference. While in the original model the wage-share was responsible for adjusting capac-
ity utilisation to the external constraint, now u adjusts itself once e and $ are previously
determined by the Phillips curve and labour technical change functions. Moreover, notice
that in equilibrium the share of wages on income only depends on the shape of G(·). An
increase in output’s growth rate leads to higher employment and wage-share.

Intuitively, if the economy is growing faster, firms will hire more workers increasing the
employment rate. This strengths the position of workers in the wage bargain process and
ultimately increases the wage-share. If the increase in output’s growth rate is permanent
so will be the changes in e and $. Additionally, this also causes an increase in the level of
capacity utilisation because machines are used more intensively.

It is also worth noting the effect of an increase in the sensitivity of labour productivity
on income distribution. If small increases in the wage-share lead to high jumps in labour
productivity, the $ required in order to match the long-run labour productivity growth
trend, ybp−n, will be lower. Therefore, an increase in the slope of G(·) causes a reduction in
the equilibrium wage-share. If it is easier for firms to find new production techniques when
facing increases in labour costs, the bargaining power of workers is reduced and, therefore,
they get a smaller piece of the cake.

Such a mechanism has some similarities with a concept put forward not long ago and
in a different set up as “Power Biased Technical Change” (see Skott and Guy, 2007).
New technologies, in particular, the so-called ICTs, have allowed firms to monitor workers
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more closely. Even though one could debate to which extend ICTs have increased labour
productivity growth rates, a higher capacity of monitoring allows firms to respond quicker
and faster to changes in labour costs and could be interpreted as an increase in the slope
of G(·). The outcome in both cases involves a reduction in the income share that goes to
those affected by the increase in surveillance.

Moreover, a lower wage-share increases capital profitability and, hence, capital accu-
mulation. This means that, for a given ybp, equilibrium capacity utilisation will be lower.
Higher profitability makes corporations to rely less on the accelerator effect which in turn
is reflected in a reduction of utilisation levels. Fig. 1 on the left shows the response of
income distribution and capacity utilisation to an increase in ybp while, on the right, we
depict their response to an increase in G$.

Figure 1: Response of equilibrium to changes in ybp (left) and G$ (right)

With regard to the unique internal equilibrium point, we can now state and prove the
following Proposition concerning its local stability.

Proposition 3 The unique internal equilibrium point of the dynamic system (18)-(20) is
locally stable.

Proof. See Mathematical Appendix B2.

Adopting a classical-Marxian specification for factor productivity growth changes dra-
matically the capacity of the model of generating cycles rooted in the functioning of the
labour market and the dynamics of distributive conflict. That is, it breaks one of the main
results of Goodwin (1967) and also of DF&S. We know that incorporating the induced
innovation hypothesis can potentially lead to the disappearance of the growth cycle (see
Tavani and Zamparelli, 2017). The reason for this is that increases in the employment rate
are immediately corrected through the effect of income distribution on labour productivity.
Still, several exercises have shown that under standard parameterisations, the direction of
adjustment is not monotonic being characterised by persistent fluctuations of decreasing
amplitude.
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2.3 Combining both approaches

So far we have shown that incorporating Kaldor-Verdoorn’s law to our framework leaves
the system with no internal equilibrium solution while the Marxian specification makes the
system locally stable. However, one may wonder what happens if both approaches were
combined. The simplest way to do it is by modelling changes in labour productivity as:

q̇

q
= G

(
K̇

K
,$

)
, GK̇/K > 0 and G$ > 0 (24)

or
q̇

q
= G

(
Ẏ

Y
,$

)
, GẎ /Y > 0 and G$ > 0 (25)

where from K̇/K = H($, u), we have that GK̇/K = GH , and it follows that GHH$ < 0
while GHHu > 0.

Assumption 2 The sensitivity of labour productivity growth rates to changes in the wage-
share is such that:

G$ > |GHH$|

Increases in the wage-share reduce investment profitability and therefore capital accu-
mulation. On the one hand, there is a reduction in the growth rate of labour productivity
through the Kaldor-Verdoorn’s effect. On the other hand, the Marxian component implies
that an increase in real wages relative to productivity forces capitalists to search for labour
saving techniques, increasing the growth rate of labour productivity. Since our econometric
exercise reports a positive net impact of cost shares on factor productivity shares, as we
will show in the next section, this assumption sounds quite plausible.

Maintaining the previous behavioural relations and making use of Eq. (24), the dynamic
system (1)-(3) becomes:

ė = e[ybp −G (H($, u), $)− n] (26)

$̇ = $[F (e)−G (H($, u), $)] (27)

u̇ = u [ybp −H($, u)− J ($)] (28)

An increase in the level of capacity utilisation has a positive effect on capital accumu-
lation through the accelerator. This in turns leads to a reduction in employment rates, in
the share of wages, and in u itself. The first two effects are the result of an increase in
labour productivity due to the Kaldorian part of the G(·) function. The latter comes from
the fact that the capital stock is growing faster relative to aggregate demand. A reduction
in the wage-share results in a reduction of labour productivity growth rates as well as an
increase in the rate of growth of the capital stock and productivity. This, in turn, pushes
employment, wage-share and utilisation up. At this point what seems to be a cycle restarts.

In steady state, ė/e = $̇/$ = u̇/u = 0. The respective equilibrium conditions are:

ybp = G (H($, u), $) + n (29)

F (e) = G (H($, u), $) (30)

ybp = H($, u) + J ($) (31)
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Contrary to the pure Kaldorian case, we can now state and prove the following Propo-
sition regarding the existence and uniqueness of a non-trivial equilibrium solution.

Proposition 4 The dynamic system (26)-(28) has a unique internal equilibrium point that
satisfies

e∗ = F−1 (ybp − n)

G (H($∗, u∗), $∗) = ybp − n
H($∗, u∗) + J ($∗) = ybp

Proof. See Mathematical Appendix B3.

The equilibrium value of the employment rate is the same as in the simple Marxian-
biased case. This comes from the fact that in both models employment is solely determined
in the labour market. Higher output growth rates or less combative workers are capable of
increasing steady-state employment. The last two equations simultaneously determine the
wage-share and capacity utilisation. Still, some interesting implications follow regarding
comparative statics. When proving Proposition 4, we showed that Eqs. (29) and (31) can
be rewritten as u = Ψ($) and u = Θ($), respectively, with Ψ′(·) < 0 and Θ′(·) > 0. We
can now briefly discuss the effects of changes in the BoPC growth rate and in the shape of
G(·).

A relaxation of the external constraint, meaning an increase in ybp , moves Ψ(·) to the
right and Θ(·) to the left. This implies an increase of equilibrium capacity utilisation. The
net effect on income distribution, however, is indetermined, contrasting with the classical-
Marxian case where the net effect was positive. Fig. 2 represents this case.

Figure 2: Response of equilibrium to changes in ybp

An extensive literature on complexity has shown that there is a positive relationship
between economic complexity, product diversification and growth (e.g. Hidalgo et al.,
2007; Hausmann et al., 2014). One of the main findings in this literature is that more-
sophisticated products are located in a densely connected core whereas less-sophisticated
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products occupy a less-connected periphery. Furthermore, recent contributions have also
pointed out a robust negative correspondence between income inequality and economic
complexity (Hartmann et al., 2017; Gala et al., 2017). Our model provides an explanatory
mechanism for those findings.

On the one hand, we have that the BoPC growth rate reflects the non-price compet-
itiveness of an economy (or region) which in turn is determined by the complexity and
diversification of its productive structure (see Gouvea and Lima, 2010; 2013; Romero and
McCombie, 2016b; Dávila-Fernández et al, 2018). On the other hand, observed trends show
that the labour income share has typically fallen alongside an increase in income inequality.
Countries that have managed to reduce inequality have also shown increases in the labour
share (ILO, IMF, OECD and World Bank, 2015; ILO and KIEP, 2015).7 In light of the
results presented so far, as long as the sensitivity of capital accumulation to profitability
is relatively weak, there is a positive relationship between ybp and $ that explains the
relations mentioned above. It is important to notice that in the simple classical-Marxian
case such correspondence exists without any requirements for H$.

Assuming that investment is not very sensitive to changes in income distribution, an
increase (reduction) in economic complexity increases (reduces) ybp and, therefore, employ-
ment rates. Higher (lower) employment leads to an increase (decrease) in the bargaining
power of workers. In this way, they can get a bigger (smaller) piece of the pie increasing
(decreasing) the wage-share. This leads to an increase (decrease) in labour productivity
growth rates which in turn guarantees a stable employment rate at equilibrium. In other
words, a reduction in economic complexity could explain the reduction in wage-shares and
the slowdown of labour productivity growth observed in several OECD countries.

In what concerns the Kaldorian component of G(·), an increase in the sensitiveness of
q̇/q to capital accumulation might produce a simultaneous increase or decrease in the level
of capacity utilisation and wage-share. Net effects depend on the structural parameters
of the economy. A higher Kaldor-Verdoorn effect implies a reduction of the slope and
intercept of Ψ(·) while Θ(·) remains unchanged. If the reduction of the intercept is smaller
relatively to the change in the slope, both variables move upwards as in Fig. 3 on the left.
Otherwise, we fall in the second situation, as in Fig. 3 on the right.

On the contrary, a higher classical-Marxian effect increases the slope of Ψ(·) with respect
to income distribution without changing the intercept. The natural growth rate becomes
very sensitive to changes in income distribution, and because wage-share and labour pro-
ductivity are positively related, a smaller $ is required to keep steady-state employment.
This result follows the intuition described for the pure Marxian case. If firms can easily
translate increases in labour costs to a change in production techniques, the bargaining
power of workers is reduced and consequently the equilibrium wage-share. Furthermore, a
lower wage-share means higher capital accumulation. For a given ybp this implies that a
lower u is required to bring utilisation levels to equilibrium. This is because firms now rely
less on the accelerator for making their investment plans which allow for a reduction in u.
We depict this case in Fig. 4.

With respect to the unique internal equilibrium point, we can now state and prove the

7In theory, the relationship between the share of wages on income and inequality is not clear-cut,
depending largely on how labour and capital incomes are distributed as well as the magnitude of other
sources of household incomes and the impact of taxes and social transfers. Recent evidence confirms that
declines in the labour income share have a significant relationship with income inequality, especially when
the decline in labour shares was concentrated at the lower end of the labour income distribution.
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Figure 3: Different responses of equilibrium to changes in Kaldor-Verdoorn effect

following Proposition regarding its local stability.

Proposition 5 If the Kaldorian and classical-Marxian effects on factor productivity growth
rates are such that

$∗ (GHH$ +G$)2 > |u∗GHHu [H$ + J ′($∗)]|

the internal equilibrium (e∗, $∗, u∗) of the dynamic system (29)(31) is locally asymptotically
stable.

Proof. See Mathematical Appendix B4.

This condition concerns the response of factor productivity to changes in income dis-
tribution. By assumption, an increase in the wage-share is followed by an increase in the
growth rate of labour productivity, i.e. GHH$ + G$ > 0. However, a higher $ also
triggers a reduction in capital accumulation and labour productivity growth which in turn
causes an increase in capacity utilisation. Through Kaldor-Verdoorn’s law, higher utilisa-
tion rates will further increase labour productivity leading to a reduction in the wage-share.
The proposition above guarantees that this second effect is not so strong so that we have
a smooth convergence to equilibrium. Such relation, of course, might not necessarily be
satisfied in which case two Propositions follow.

Proposition 6 If the Kaldorian and classical-Marxian effects on factor productivity growth
rates are such that

$∗ (GHH$ +G$)2 < |u∗GHHu [H$ + J ′($∗)]|

and the sensitivity of real wages to changes in the employment rate satisfies

F ′(e∗) < −u
∗ [$∗ (GHH$ +G$) + u∗Hu] {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]}

e∗$∗
{
$∗ (GHH$ +G$)2 + u∗GHHu [H$ + J ′($∗)]

} ,

13



Figure 4: Response of equilibrium to changes in the Marx-biased effect

then, the internal equilibrium (e∗, $∗, u∗) of the dynamic system (29)(31) is locally asymp-
totically stable.

Proof. See Mathematical Appendix B5.

Even when the inequality in Proposition 5 is violated, convergence to equilibrium is en-
sured if the worker’s real wages do not strongly increase with small changes in employment
rates. However, for higher values of F ′(e∗), it may happen that the last part of Proposition
6 also does not hold. Thus, the dynamic behaviour of the model may drastically change
from the qualitative point of view, as the sensitivity of real wages to changes in e increases,
with all the other parameters remaining constant. Using F ′(e∗) as a bifurcation parame-
ter, our purpose is now to apply the Hopf Bifurcation Theorem (HBT) for 3D systems to
show that persistent cyclical behaviour of the variables can emerge as F ′(e∗) is increased
(Gandolfo, 2009).

Proposition 7 If the Kaldorian and classical-Marxian effects on factor productivity growth
rates are such that

$∗ (GHH$ +G$)2 < |u∗GHHu [H$ + J ′($∗)]| ,

then, for values of F ′(e∗) in the neighbourhood of the critical value

F ′(e∗)|HB = −u
∗ [$∗ (GHH$ +G$) + u∗Hu] {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]}

e∗$∗
{
$∗ (GHH$ +G$)2 + u∗GHHu [H$ + J ′($∗)]

}
(32)

and for which the real negative root of the characteristic equation satisfies

λ1 6= u∗
{
GHHu [H$ + J ′($∗)]

GHH$ +G$

−Hu

}
the dynamic system (29)(31) has a family of periodic solutions.

Proof. See Mathematical Appendix B6.
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These results seem to be in line with Goodwin’s (1967) aim of generating cycles rooted
in the functioning of the labour market and the dynamics of distributive conflict. They
correspond to an adaptation of DF&S four-dimensional model to a three-dimensional set
up in which the behavioural equation for labour productivity was adjusted to the Kaldor-
Marx story. Permanent periodic solutions might emerge as a result of an increase in the
sensitivity of workers’ wage demands to the employment rate.

If instead, the labour productivity growth rate follows Eq. (25), we go back to the
pure Marxian case. This is because aggregate demand does not deviate from the external
constraint, i.e. Ẏ /Y = ybp. Therefore, the Kaldorian part of G(·) becomes a constant and
the wage-share turns out to depend only on the shape of the Marxian component and on
ybp − n.

It is important to notice that, in this last case, we also recover the negative relationship
between economic complexity and income inequality previously discussed. However, as in
the simple classical-Marxian setup, the existence of such correspondence and the mechanism
behind it does not require a sufficiently low response of capital accumulation to changes in
income distribution. Furthermore, the system becomes once again locally stable presenting
asymptotically convergence to the internal equilibrium solution.

A natural next step would be to perform numerical simulations in order to investigate
the responsiveness of the model to different scenarios. Nonetheless, at this point of the
analysis, any attempt of calibrating the system would be unsatisfactory. The reason for
this is that there are not reliable estimates in the literature for the classical-Marxian effect
of $ on q̇/q and ρ̇/ρ. Therefore, we proceed presenting some estimates of our own for
functions G(·) and J(·).

3 Estimating classical-Marxian technical change

There is a robust literature on Kaldor-Verdoorn’s law giving support to its formulation (e.g.
McCombie and De Ridder, 1983; 1984; Angeriz et al., 2008; 2009; Romero and McCombie,
2016a; Magacho and McCombie, 2017; Romero and Britto, 2017). The same cannot be said
about the classical-Marxian specification. It is our purpose in this section to provide more
accurate estimates of the relation between functional income distribution and changes in
factor productivity.

Several neoclassical contributions have investigated both theoretically and empirically
the existence of induced (or biased) technical change using a CES production function in
which each factor is paid accordingly to its marginal productivity. As usually is the case
in that literature, the critical estimated parameter is the elasticity of substitution between
capital and labour, though there seems to be little empirical consensus on its value and
nature (see León-Ledesma et al., 2010, for a comprehensive review).

Among non-neoclassical economists, there have been some attempts to address the
empirics behind factor productivity dynamics. Before continuing, however, an important
clarification is necessary. In this article, we are interested in the relationship between factor
productivity and factor cost shares also referred to as classical-Marxian technical change.
Though somehow related, this concept is different from the also well known Marx-biased
technical change (MBTC).

MBTC corresponds to the hypothesis that for a constant wage-share, labour produc-
tivity historically increases while capital productivity decreases, i.e. technical change is
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labour-saving and capital-using. It was first proposed by Foley and Michl (1999) and has
been observed in specific periods of time for different countries and regions (e.g. Mar-
quetti, 2003; Pichardo, 2007; Marquetti and Porsse, 2017). Moreover, authors such as
Michl (2002), Sasaki (2008), and Basu (2010) have assessed empirically the predictions of a
standard MBTC and neoclassical models making use of the so-called “viability condition”.8

Nonetheless, those contributions do not test the assumption that labour or capital-saving
technical change increase under higher factor costs.

In this respect, Hein and Tarassow (2010) and Tridico and Pariboni (2017) are maybe
the closest references to our exercise.9 The former applies single equation techniques to a
sample of 6 OECD countries between 1960 and 2007 while the latter uses panel data for 26
OECD countries from 1990 to 2013. Still, the evidence provided is limited for at least three
reasons. First, their tests are only concerned with labour saving technical change. Secondly,
the treatment used to remove cyclical effects is not convincing. Hein and Tarassow (2010),
for instance, introduce up to three lags to control for cyclical variations. However, in their
procedure, “insignificant variables were excluded and the equations re-estimated” (p. 742).
This is quite strange because then, for some countries, only lag t−1 or t−2 were estimated
(see, for example, Table 5, p. 748). It is difficult to understand the meaning of such
estimations. Tridico and Pariboni (2017), on the other hand, do not provide any treatment
for cyclicality. Finally, their regressions are likely to suffer from endogeneity by omitted
variable and simultaneity.

3.1 Empirical methodology

Our empirical strategy consists in estimating functions G(·) and J(·) as in Eqs. (16) and
(17). Under the hypothesis that firms make a local search relative to their current tech-
nology and implement discoveries following a profitability criteria, Kemp-Benedict (2017;
2018) has provided some general conditions that these functions need to satisfy. Hence, we
adopt the functional forms:

q̇

q
= a− b

(
1−$
$

)
(33)

ρ̇

ρ
= c+ d ln

(
1−$
$

)
(34)

where a, b, c, and d are parameters. Eqs. (33) and (34) provide the functional forms we
estimate, allowing factor productivity to respond positively to changes in factor costs.

We make use of a panel-data Vector Autoregression methodology (pVAR). This tech-
nique combines the traditional VAR approach, which treats all variables in the system as
endogenous, with the panel-data approach, which allows for unobserved individual het-
erogeneity. Time-series VAR models originated in the macroeconometrics literature as an
alternative to multivariate simultaneous equation models. With the introduction of VAR
in panel data settings, pVAR models have been used in multiple applications across fields.

8Foley and Michl (1999) derived the viability condition from a profit-maximising entrepreneur that
chooses a new technique only if it can generate a higher expected rate of profit at the ongoing wage rate,
compared with the old technique. See Basu (2018) for selective review on quantitative empirical research
in Marxism political economy.

9One should also mention that in related literature, some scholars have found that increases in real
wages are positively related to labour productivity growth (see, for example, Hartwig, 2014).
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In this paper, we follow the procedure put forward by Love and Zicchino (2006) and Abrigo
and Love (2016). A detailed description of the database, as well as pre-estimation treat-
ments of the respective time-series, are provided in the Empirical Appendix.

3.2 Panel-VAR estimates

Ascertaining the order of integration of the variables under analysis is an essential precon-
dition to establishing whether the use of panel-VAR tests is warranted. In this respect,
we performed the Levin, Lin and Chu test that assumes a common unit root process, and
the Im, Pesaran and Shin test, the ADF and PP test that assume individual unit root
processes. Results are reported in the Empirical Appendix and indicate that series are
stationary. Therefore, we can proceed and investigate the correspondence between factor
productivities and cost shares using our pVAR methodology.

3.2.1 Labour productivity

Two pVAR models for labour productivity, q̇/q, and income distribution, (1−$)/$, were
estimated following Schwarz lag order selection criteria. To simplify notation, we write
π = 1−$. We preferred Schwarz lag selection over the popular Akaike insofar as usually
it assigns a lower number of lags which in this case is desirable given the limited size
of our sample.10 Model I uses labour productivity in PPPs while in model II we have
constant national prices converted to 2011 US$ dollars. Table 1 reports our estimates.
Results indicate that the growth rate of labour productivity responds negatively to an
increase in the profit/wage-share ratio. That is, an increase in the wage-share increases
q̇/q as expected from theory. Stability conditions of the estimated panels are checked in
the Empirical Appendix.

Table 1: Income distribution vs Labour productivity growth, pVAR estimates

Model I II

Explanatory q̇/q π/$ q̇/q π/$

(q̇/q)t−1 0.107678 0.0683345 0.3916637*** 0.3716756***

(π/$)t−1 -0.3507041*** 0.7405059*** -0.2891601*** 0.6392449***

No. Lags instruments 5 4

No. Obs. 378 378

No. Panels 16 16

Average t 23.625 23.625

*, **, and *** stand by 10%, 5% and 1% of significance

Granger (1969) argued that causality in economics could be tested for by measuring
the ability to predict the future values of a time series using prior values of another time

10Schwarz criterion is strongly consistent while Akaike is generally more efficient though not consistent.
In other words, while the former will asymptotically deliver the correct model order, the latter will deliver
on average a too large a model (Brooks, 2014). In our case, Akaike criteria recommended 2 lags for model
I and 3 lags for model II. Still, estimates using 2 or 3 lags do not change significantly and are available
under request.
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series. Though the question of “true causality” is deeply philosophical, Granger causality
tests are useful because they allow us to investigate if values of income distribution provide
statistically significant information about future values of labour productivity growth rates.
Table 2 reports our results for the two models estimated. In both cases we reject the null
hypothesis and have that (1−$)/$ Granger causes q̇/q.

Table 2: Granger causality

Model I II

Equation Excluded chi2 Prob>chi2 chi2 Prob >chi2

q̇/q π/$ 8.073 0.004 29.596 0.000

π/$ q̇/q 0.615 0.433 7.781 0.005

H0: no-causality in Granger sense

With our pVAR model in hands, we can also make use of variance decomposition anal-
ysis to assess the amount of information income distribution contributes to labour produc-
tivity in the autoregression. This allows us to determine how much of the forecast error
variance of the latter can be explained by exogenous shocks in the former. As table 3
shows, with a 10-year forecast horizon, something around 20− 40% of the variation in q̇/q
can be explained by income distribution.

Table 3: Variance decomposition

Response variable Impulse variable Model I Model II

q̇/q π/$ 0.1909791 0.3848296

q̇/q q̇/q 0.8090209 0.6151704

π/$ π/$ 0.7638016 0.7894201

π/$ q̇/q 0.2361984 0.2105799

Forecast horizon t 10 10

As a final step, we plot the response of q̇/q to a shock in (1 − $)/$ as in traditional
impulse response analysis. Fig. 5 reports OIRFs and only reinforces what we have found
so far, that is, an increase in the share of wages on income seems to incentive firms at a
macro-level to adopt labour saving techniques, increasing labour productivity growth rates.
Most of these effects happen between 1 and 5 years after the shock.

3.2.2 Capital productivity

Two pVAR models for capital productivity, ρ̇/ρ, and income distribution, ln (π/$), were
estimated. Model I uses data for real GDP and capital stock in PPPs while in model II
both series are in national prices converted to 2011 US$ dollars. In the first case, Schwarz
and Akaike lag selection criteria chose a two lag model. In the second case, Schwarz selected
one lag while Akaike two lags. Following the procedure adopted in the last subsection, we
preferred the former. Table 4 reports our estimates.
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Figure 5: Impulse response functions, Model I (left) and II (right)

For both models, an increase of the profit share relative to the wage-share seems to
be positively related to an increase in capital productivity growth rates. However, net
effects here are not as apparent as in the labour productivity case. In the first of them,
for instance, an increase in ln (π/$) has an adverse effect in t − 1 though a positive and
slightly higher in t − 2. In model II, the respective coefficient is positive but statistically
not different from zero. Stability conditions of the estimated panels are checked in the
Empirical Appendix.

Table 4: Income distribution and capital productivity growth, pVAR estimates

Model I II

Explanatory ρ̇/ρ ln (π/$) ρ̇/ρ ln (π/$)

(ρ̇/ρ)t−1 0.2705985*** -0.0835614 0.2837008*** 0.2918696

(ρ̇/ρ)t−2 -0.1326931* -0.0575909 - -

ln (π/$)t−1 -0.2341877** 0.7806212*** 0.0146131 0.7800752***

ln π/$)t−2 0.2436164** -0.3626047*** - -

No. Lags instruments 4 5

No. Obs. 329 377

No. Panels 16 16

Average t 20.563 23.563

*, **, and *** stand by 10%, 5% and 1% of significance

Granger causality tests confirm these first insights. Table 5 reports our results for the
two models estimated. In the first case we have that ln(π/$) unilaterally Granger causes
ρ̇/ρ though this relationship disappears in the second model. This means that while in the
first model past values of income distribution predict changes in capital productivity in the
second model such correspondence does not hold anymore.
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Table 5: Granger causality

Model I II

Equation Excluded chi2 Prob>chi2 chi2 Prob>chi2

ρ̇/ρ ln (π/$) 9.853 0.007 0.622 0.430

ln (π/$) ρ̇/ρ 4.597 0.100 2.360 0.124

H0: no-causality in Granger sense

Variance decomposition analysis emphasises the small relationship between income dis-
tribution and capital productivity growth rates. As Table 8 reports, within a 10-year
forecast horizon, only 1 − 5% of variation in ρ̇/ρ can be explained by ln (π/$). Numbers
do not change when we look at the response of income distribution to changes in capital
productivity growth rates. For such magnitudes, it is quite safe to say that there is no
correspondence at all among the variables. There is a clear contrast with the labour pro-
ductivity case where changes in income distribution could explain up to 40% of variations
in productivity.

Table 6: Variance decomposition

Response variable Impulse variable Model I Model II

ρ̇/ρ ln (π/$) 0.0554572 0.0108349

ρ̇/ρ ρ̇/ρ 0.9445428 0.9891652

ln (π/$) ln (π/$) 0.9451099 0.9648765

ln (π/$) ρ̇/ρ 0.0548901 0.0351234

Forecast horizon t 10 10

Fig. 6, through OIRFs, reinforces what we have found so far, that is, changes in the
functional income distribution have little effect in firms’ decisions to adopt capital saving
techniques. In model I, it is possible to visualise the initial adverse effect of an increase in
the profit share relative to the wage-share. Such negative impact was reversed immediately
in the next three to four periods leading to a small positive net effect. On the other hand,
model II depicts a non-statistically significant positive effect.

3.3 Discussion

The intuition behind functions G(·) and J(·) is that changes in functional income distribu-
tion reflect variations in factor cost shares. An increase in the wage-share means that real
wages have increased relative to labour productivity. This implies a reduction in profitabil-
ity and forces firms to increase their search for labour saving techniques, thus, increasing
labour productivity growth rates. Analogously, an increase in profit shares is related to an
increase in the cost of capital relative to capital productivity. Theory considers that firms
should respond similarly and increase capital productivity growth rates.

Our results lead us to at least two possible conclusions. The first one comes from a
straight reading of the estimates presented in this section. Variations in the wage (or profit)
share only impact labour. The channel between the share of wages and labour productivity
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Figure 6: Impulse response functions, Model I (left) and II (right)

continues to be the same. Nevertheless, it seems that an increase in the profit share is
not interpreted by the firm, at least at a macro level, as an increase in capital costs but
only as labour becoming cheaper. Asymmetries in the ownership of the firm could justify
such asymmetric behaviour. If those who own capital also own corporations, the latter
will be more concerned with the factor of production it hires, that is labour. Therefore,
asymmetries in firm’s ownership are reflected in how they respond to changes in factor
costs.

“In a perfectly competitive economy, it doesn’t really matter who hires whom” (Samuel-
son, 1957, p. 894). This statement has been challenged for a long time by non-neoclassical
economists and more recently by new-institutional scholars, who have shown that technolo-
gies are not neutral regarding the nature of property rights and corporate governance (see,
for example, Pagano, 2013). The evidence presented in this article could be interpreted as
reflecting such non-neutrality. Complementary, a higher wage-share drives low-productivity
firms out of the market being the outcome of a selection process.

Alternatively, one could bring to attention that our estimates of capital productivity
strongly depend on estimates of potential output. Potential output and the output gap are
unobserved variables. Their estimation is deeply related to the estimation of production
functions which involve controversial concepts such as the natural rate of unemployment
and total factor productivity.11 Potential output and output gap indicators are subject
to a significant margin of uncertainty and might not be reliable. In this case, coefficients
reported for capital productivity are not reliable as well and should be interpreted with
caution.

4 Numerical Simulations

In section 2, we studied the analytical implications of adopting (i) Kaldor-Verdoorn’s law,
and (ii) classical-Marxian technical change to the main results of our model. The Kaldorian
specification left the system with no internal equilibrium solution while the Marxian for-
mulation made it stable. Nevertheless, a Hopf bifurcation analysis demonstrated that the

11For a review of the methodology employed by the IMF to estimate those variables, see De Masi (1997).

21



combination of both theories might give rise to persistent and bounded cyclical fluctuations
when Verdoorn’s effects are related to capital accumulation dynamics. Therefore, in this
section, we present numerical simulations to investigate if the bifurcation is supercritical
so that, under plausible settings, oscillations have economic meaning.

To this end, we must, first of all, choose functional forms for the main behavioural
equations of the model, namely, F (·), H(·), G(·), and J(·). Given that our empirical exercise
indicated that the effect of income distribution on the growth rate of capital productivity is
neglectable, we set J(·) = 0 and focused only on the first three relationships. Leaving aside,
for a moment, any considerations about changes in labour productivity, the two remaining
relations are expressed by:

F (e) = β(e− ē) (35)

H($, u) = γ1 − γ2$ + γ3u (36)

where ē is the rate of employment above which workers can obtain real wage increases.
The functional form we have chosen in Eq. (35) captures the Marxian reserve army effect
as discussed by DF&S. On the other hand, parameter β corresponds to the sensitiveness
of real wages to changes in employment rates. In Eq. (36), we adopt a linear specification
of investment, where γ1 captures the growth rate of the capital stock when wage income
and capacity utilisation are both set to zero, while γ2 and γ3 stand for the sensitiveness of
accumulation to income distribution and capacity utilisation, respectively.

We have discussed Kaldor-Verdoorn’s effects on labour productivity under two different
specifications. The first one makes q̇/q a function of capital accumulation while the second
one takes into account output’s growth rate. Local stability analysis demonstrated that
those different formulations change the nature of the dynamic system from a qualitative
point of view. When q̇/q depends on output’s growth rate, we return to the pure Marxian
case with simple convergence. Hence, in what follows, we investigate the case when labour
productivity relies on K̇/K.

In the empirical section, we used Eq. (33) to estimate the relationship between income
distribution and labour productivity growth. This functional form was used following
Kemp-Benedict’s (2017; 2018) conditions for the existence of biased technical change. For
our numerical simulations, however, a linear specification of G(·) was preferred. The reason
for this is that we want to make it clear that the dynamics obtained do not depend on ad-hoc
induced non-linearities. The system is intrinsically non-linear as a result of the interaction
between its basic structure, given by equations (26)-(28), and the adopted behavioural
rules, which are kept linear. Therefore, make:

G

(
K̇

K
,$

)
= a+ b$ + ϑ

(
K̇

K

)
(37)

For this case, the steady-state internal equilibrium solution is such that satisfies:

e∗ = ē+
ybp − n
β

(38)

$∗ =
(1− ϑ)ybp − n− a

b
(39)

u∗ =
ybp − γ1 + γ2$

∗

γ3

(40)
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In order to choose plausible parameter values, we have considered the evidence that is
given in different empirical studies including DF&S. In particular, in what concerns the
classical-Marxian effect, we dwell on our estimates of the impulse response functions.

ybp = 0.03, n = 0.01, ē = 0.85, a = −0.0275, b = 0.05

ϑ = 0.5, γ1 = −0.0125, γ2 = 0.05, γ3 = 0.1

For this set of parameters, we have that the inequality in Proposition 5 is violated
and, hence, there might be persistent and bounded fluctuations. Taking F ′(e∗) = β as
bifurcation parameter, it turns out that βHB ≈ 0.25055. Therefore, for the simulations, we
used a value slightly higher than this. Fig. 7 displays the solution path for initial values
(e0, $0, u0) equal to (0.95, 0.7, 0.75) which converge to a limit cycle around (0.93, 0.65,
0.75).

Figure 7: Limit cycle and time series

Still, it is important to understand the mechanism that is generating this outcome.
Suppose that, for some exogenous reason, there is an increase in the employment rate.
This will increase the bargaining power of workers and therefore the wage-share. Two
effects follow. First, there is an increase in labour productivity which in turn brings down
employment and the wage-share. Thus, we have a sequence similar to the one obtained by
Goodwin, with:

e ↑ ⇒ ẇ

w
↑⇒ $ ↑⇒ q̇

q
↑⇒ e ↓

e ↓ ⇒ ẇ

w
↓⇒ $ ↓⇒ q̇

q
↓⇒ e ↑

On the other hand, the increase in the wage-share that follows the increase in employ-
ment makes investment profitability to shrink and brings capital accumulation down. This
leads to an increase in capacity utilisation. Through the accelerator effect, investment
goes up and ultimately there is a reduction of u. Because of Kaldor-Verdoorn’s law, one
should expect an increase in labour productivity growth rate. Nonetheless, we know that
by assumption this effect is small and does not overcome the Marxian effect. Still, the rein-
troduction of Kaldor-Verdoorn’s law breaks the pure stability obtained from the Marxian
mechanism, allowing the model to maintain its essential cyclical feature.
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In his paper On the Nonlinear Accelerator and the Persistence of Business Cycles,
Goodwin (1951) discussed the so-called “Schumpeter clock” relating the evolution of ideas
to capital accumulation. New ideas require investment to occur regularly, but the latter
goes by spurts. On the one hand, I is limited by the capacity of the investment goods
industry. On the other hand, machines once made, cannot be unmade, so that negative
investment is constrained to attrition from time and innovations waves.

So far, our model has dealt with an induced component of investment. It is possible
to evaluate the implications of introducing a cyclical autonomous component numerically.
Making innovations a periodic function of time, as done by Sordi (1990), we can rewrite
Eq. (36) as:

H($, u) = γ1 − γ2$ + γ3u+ γA cos(τt) (41)

where γA and τ are parameters.
In this way, we obtain a scenario in which a nonlinear system with a “natural” oscillation

frequency interacts with an external periodic “force” resulting in a torus (see Fig. 8 on
the left). A competition between two or more independent frequencies characterising the
dynamics of the system is a well-known route to more complex behaviour. Fig. 8, on the
right, depicts the solution path for the same initial values making γA = 0.01 and τ = 0.25.

Figure 8: Torus and time series

The Newhouse-Ruelle-Takens theorem requires a three-dimensional torus for chaos pos-
sibility to arise in this context (Gandolfo, 2009). Providing that obtained quasi-periodic
fluctuations result from a two-dimensional torus, there is no sensitive dependence on initial
conditions. Still, the term quasi-periodic is used to describe the behaviour of the system
given that it never exactly repeats itself (Lorenz, 1993).

One of the motives that lead Goodwin to the study of nonlinear dynamical systems was
the advantage this structure offers to represent the interaction between cycle and trend.
Hence, before concluding this article, we show how the growth cycle can be easily recovered
by relaxing the assumption that output’s growth rate is fixed and equal to Thirlwall’s law.
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Recalling the adjustment mechanism for GDP growth described in DF&S, we can write:

Ẏ

Y
= ybp +D(e− e∗, $ −$∗, u− u∗) (42)

where D(e∗, $∗, u∗) = 0 and De|e=e∗ = D$|$=$∗ = Du|u=u∗ = 0. It is easy to see that
this modification does not change our local stability analysis. Since the system never actu-
ally reaches equilibrium, we have permanent and irregular fluctuations in the employment
rate, wage-share, capacity utilisation, and output’s growth rate.

5 Final Considerations

The analysis of the role of technical change in growth processes has been for a long time
of central importance in economic theory. Different approaches have been proposed over
the years to study distinct aspects of the phenomenon. On the other hand, in DF&S, we
have extended Goodwin’s (1967) model to study the interaction between distributive cycles
and international trade for economies in which growth is BoPC. This article examined the
implications of adopting (i) Kaldor-Verdoorn’s law; and (ii) classical-Marxian technological
change to the main results of the model.

We showed that using a Kaldorian approach to technical progress leaves the system with
no internal equilibrium solution while the classical-Marxian formulation makes it stable.
However, a Hopf bifurcation analysis demonstrated that the combination of both formu-
lations might give rise to persistent and bounded cyclical fluctuations. Our numerical
simulations confirmed that the Hopf bifurcation is supercritical and the limit cycle lies in
a range of values with economic meaning. In other words, the central dynamics of DF&S
are robust to alternative specifications of technological change. Moreover, the introduction
of a forcing term motivated by Goodwin’s discussion of “Schumpeter clock” gives rise to
irregular fluctuations.

Furthermore, the models developed in this article provide a mechanism that helps to
explain the positive correspondence found in the literature between economic complexity
and income inequality. An increase in the diversification of the productive structure in-
creases the BoPC growth rate and, therefore, employment rates. Higher employment leads
to an increase in the bargaining power of workers allowing them to get a more significant
piece of the pie, i.e. increasing the wage-share. This results in higher labour productivity
which in turn guarantees a stable employment rate at equilibrium. Inversely, a reduction
in economic complexity could explain the reduction in wage-shares and the slowdown of
labour productivity growth observed in several OECD countries. New technologies, in par-
ticular, the so-called ICTs, have allowed firms to monitor workers more closely increasing
the slope of G(·) and accentuating the aforementioned effect.

When it comes to the empirics of technological progress, studies testing the classical-
Marxian formulation are limited. Several scholars have addressed the so-called MBTC
hypothesis according to which, for a constant wage-share, labour productivity historically
increases while capital productivity decreases, i.e. technical change is labour-saving and
capital-using. Nevertheless, to the best of our knowledge, no reliable studies have tested
the correspondence between factor productivity growth and cost shares. Therefore, we
provided estimates of our own that give some support to the Marxian argument.
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An increase in the means that real wages are higher relative to labour productivity.
This implies a reduction in profitability and forces firms to increase their search for labour
saving techniques, thus, increasing labour productivity growth rates. Analogously, an in-
crease in profit shares is related to an increase in the cost of capital relative to capital
productivity. Making use of a pVAR model for a sample of 16 OECD countries between
1980 and 2012, we found that one standard deviation impulse on the profit-share/wage-
share ratio decreases labour productivity growth rates by 2% though it has a neglectable
effect on capital productivity growth rate.

Our results lead us to two possible conclusions. The first one is that variations of income
distribution only impact labour. Asymmetries in the ownership of the firm could justify
such asymmetric behaviour. If those who own capital also own firms, the latter would
be mainly concerned with the factor of production it hires, that is labour. Therefore,
asymmetries in the firm’s ownership are reflected in how the firm responds to changes
in factor costs. Alternatively, one could bring to attention that our estimates of capital
productivity strongly depend on estimates of potential output which are problematic given
that involve controversial concepts such as the natural rate of unemployment or total factor
productivity. Further research on those issues is required and encouraged.

Empirical Appendix

Our data-set fundamentally comes from the Penn World Table 9.0 (PWT), which contains
standardised macro series for a large number of economies from the 1950s onward. Output
is measured both as real GDP at current PPPs and at constant 2011 national prices (in
millions of 2011 US$). Total employment is given by the number of persons engaged in
production (in millions). Hence, we obtain two indicators for labour productivity, computed
as the ratio of those two measures and employment.

On the other hand, recall that capital productivity is defined as the ratio between
potential output and the capital stock. The PWT lacks of estimates for Y ∗ and, therefore,
we adjust Y making use of output gap series available from the World Economic Outlook
Database (WEO). However, one should keep in mind that estimates of output gaps are
subject to a significant margin of uncertainty. The WEO calculates the output gap as actual
GDP less potential GDP as a percentage of potential GDP, i.e. gap = (Y − Y ∗) /Y ∗. This
is equivalente to say that Y ∗/Y = 1/(1 + gap). Therefore, capital productivity is obtained
as Y ∗/K = (Y/K) (Y ∗/Y ), where data for the capital stock comes from the PWT at both
current PPPs and constant 2011 national prices (in millions of 2011 US$).

The reader may ask why not just approximate ρ as Y/K. The reason is the following.
Doing that, ρ̇/ρ by definition equals the difference between output and capital growth
rates. The first one follows, in the long-run, Thirlwall’s law. The second one depends
on investment behaviour. But we know that the wage-share and investment are negative
related through profitability. This means that an increase in the wage-share reduces capital
accumulation resulting in an apparent increase in the growth rate of ρ, against the Marxian
proposal. That is, making ρ = Y/K is very likely to wrongly reject the classical-Marxian
specification.

When addressing functional income distribution, aggregate labour share measures are
influenced by the methods used to separate labour and capital income earned by en-
trepreneurs, sole proprietors, and unincorporated business. Thus, we use the novel database
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put forward by Karabarbounis and Neiman (2014) that focus on the labour share within
the corporate sector and, thus, circumvent many of those measurament difficulties. By
default, the profit share is equal to 1−$. Data for most OECD countries is available after
the 1980s.

In order to keep our exercise as close as possible to DF&S, we use the same sample
of 16 OECD countries (Australia, Belgium, Canada, Denmark, Finland, France, Germany,
Italy, Japan, Netherlands, New Zealand, Norway, South Korea, Sweden, United Kingdom,
and United States). Our final dataset comprehends the period 1980 to 2012. Time span
was determined due to data availability.

Over the past twenty years the Hodrick-Prescott (HP) filter has been used in macroe-
conomic analysis to separate trend from cycle when using macrodata. Although some of
its drawbacks have been known for some time, the method continues to be widely adopted.
Recently, Hamilton (2018) has strongly argued against its use showing this to be a serious
mistake. He not only demonstrates that the HP filter introduces spurious dynamic relations
that have no basis in the underlying data but provides an alternative that does the job
without those distortions.

Hamilton’s method consists in estimating an OLS regression of the type:

xt+h = β0 + β1xt + β2xt−1 + β3xt−2 + β4xt−3 + vt+h

where x is a generic variable, β’s are the estimated coefficients, and v is the error component.
He proposes a 2-year horizon as a standard benchmark, in which case h = 2. Hence,
residuals are:

v̂t+2 = xt+2 − β̂0 − β̂1xt − β̂2xt−1 − β̂3xt−2 − β̂4xt−3

and correspond to time series cyclical component. Making x − v̂ we obtain the trend.
We apply this procedure to detrend our data for q, ρ, and $. Once we got rid of the
cyclical component, we compute labour and capital productivity growth rates. We proceed
evaluating the stationarity of time-series.

We performed the Levin, Lin and Chu test that assumes a common unit root process,
and the Im, Pesaran and Shin test, the ADF and PP tests that assume individual unit root
processes. Number of lags was choosen following the Schwarz criteria. Results are reported
in table A1. Series are found to be stationary.

Table A1: Panel Unit root tests

(1−$)/$ Intercept Trend and Intercept

Method Prob. Prob.

Levin, Lin & Chu 0.0000 0.0000

Im, Pesaran and Shin 0.0000 0.0000

ADF 0.0000 0.0000

PP 0.0000 0.1003
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ln ((1−$)/$) Intercept Trend and Intercept

Method Prob. Prob.

Levin, Lin & Chu 0.0000 0.0000

Im, Pesaran and Shin 0.0000 0.0000

ADF 0.0000 0.0000

PP 0.0000 0.0566

Variable PPPs, 2011 US$ cons. nat. prices, 2011 US$

q̇/q Intercept Trend and Intercept Intercept Trend and Intercept

Method Prob. Prob. Prob. Prob.

Levin, Lin & Chu 0.0000 0.0000 0.0000 0.0000

Im, Pesaran and Shin 0.0000 0.0000 0.0000 0.0000

ADF 0.0000 0.0000 0.0000 0.0000

PP 0.0000 0.0000 0.0000 0.0000

Variable PPPs, 2011 US$ cons. nat. prices, 2011 US$

ρ̇/ρ Intercept Trend and Intercept Intercept Trend and Intercept

Method Prob. Prob. Prob. Prob.

Levin, Lin & Chu 0.0000 0.0000 0.0000 0.0000

Im, Pesaran and Shin 0.0000 0.0000 0.0000 0.0000

ADF 0.0000 0.0000 0.0000 0.0000

PP 0.0000 0.0000 0.0000 0.0000

Finally we check the stability condition of the estimated pVAR. We start ploting the
stability diagram for models I and II relating labour productivity growth rates and income
distribution as in figure A1. Real and imaginary roots of the companion matrix lie inside
the unit circle confirming the model is stable.

Figure A1: Stability condition, Model I (left) and Model II (right)
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Figure A2 plot the unit circle for the relation between capital productivity and func-
tional income distribution. Once more, models are found to be stable.

Figure A2: Stability condition, Model I (left) and Model II (right)

Mathematical Appendix

Proof of Proposition 2

To demonstrate proposition 2 we proceed in three steps. First, from equations (21) and
(22) we obtain the rate of growth of real wages in terms of the external constrain, i.e.
F (e) = ybp − n, where F : < → < is monotonically increasing in e. Therefore, its inverse
is also an increasing function and we obtain e∗ = F−1(ybp − n) as the unique equilibrium
value of the rate of employment.

Looking at equation (21), it is straighforward that G$ ($) = ybp+n, where, G$ : < → <
is a function monotonically increasing in $. The inverse of G$ (·) is also monotonically
increasing so that $∗ = G−1

$ (ybp − n) is the unique equilibrium value of the .
The equilibrium capacity utilisation is defined as the value of u that brings utilisation

and the balance-of-payments to equilibrium. Our investment function H : < → < is
monotonically increasing in u and decreasing in $. Making use of the equilibrium value
of the wage-share, we have that ybp = H [G−1 (ybp − n) , u] + J [G−1 (ybp − n)]. It follows
that the unique equilibrium for capacity utilisation is determined and defined by u∗ that
statisfies that condition.

Finally, in order to obtain values with economic meaning we have to impose 0 <
F−1(ybp − n) < 1, 0 < G−1(ybp − n) < 1, and 0 < u∗ < 1.

Proof of Proposition 3

In this Appendix we first derive the characteristic equation of the dynamic system (18)-(20)
and prove Proposition 3. To do this, we linearise the dynamic system around the internal
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equilibrium point so as to obtain: ė
$̇
u̇

 =

 0 j12 0
j21 j22 0
0 j32 j33


︸ ︷︷ ︸

J∗

 e− e∗
$ −$∗
u− u∗


where the elements of the Jacobian matrix J∗ are given by:

j11 = 0

j12 = −G$e
∗ < 0

j13 = 0

j21 = F ′(e∗)$∗ > 0

j22 = −G$$
∗ < 0

j23 == 0

j31 = 0

j32 = −H$u
∗ > 0

j33 = −Huu
∗ < 0

so that the characteristic equation can be written as

λ3 + b1λ
2 + b2λ+ b3 = 0

where the coefficients are given by:

b1 = − tr J∗ = −(j22 + j33) > 0 (43)

b2 =

∣∣∣∣ j22 0
j32 j33

∣∣∣∣+

∣∣∣∣ 0 0
0 j33

∣∣∣∣+

∣∣∣∣ 0 j12

j21 j21

∣∣∣∣
= j22j33 − j12j21 > 0 (44)

b3 = − det J∗ = j12j21j33 > 0 (45)

The necessary and sufficient condition for the local stability of (e∗, $∗, u∗) is that all
roots of the characteristic equation have negative real parts, which, from Routh-Hurwitz
conditions, requires:

b1 > 0, b2 > 0, b3 > 0 and b1b2 − b3 > 0.

Given (43)-(45) the crucial condition for local stability becomes the last one. Through
direct computation we find that:

b1b2 − b3 = − (j22 + j33) (j22j33 − j12j21)− j12j21j33

= (G$$
∗ +Huu

∗) [G$$
∗Huu

∗ +G$e
∗F ′(e∗)$∗]−G$e

∗F ′(e∗)$∗Huu
∗

= G$$
∗ [G$$

∗Huu
∗ +G$e

∗F ′(e∗)$∗] +Huu
∗G$$

∗Huu
∗ > 0

= (G$$
∗)2︸ ︷︷ ︸

>0

(Huu
∗ + e∗F ′(e∗)e∗)︸ ︷︷ ︸

>0

+ (Huu
∗)2︸ ︷︷ ︸

>0

G$$
∗︸ ︷︷ ︸

>0

> 0

Therefore, the system is locally stable.
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Proof of Proposition 4

To demonstrate proposition 4 we proceed in the following series of steps. First, from
equations (29) and (30) we obtain the rate of growth of real wages in terms of the external
constrain, i.e. F (e) = ybp−n, where F : < → < is monotonically increasing in e. Therefore,
its inverse is also an increasing function and we obtain e∗ = F−1(ybp − n) as the unique
equilibrium value of the rate of employment.

Looking at equation (29), we have that G [H($, u), $] = ybp + n, where, G : < → < is
a function monotonically increasing in its two arguments while H : < → < is decreasing
in $ and increasing in u. However, by assumption, G$ > |GHH$| which implies G(·) is
monotonically increasing in $ and u. Hence, we can rewrite (29) as u = Ψ($), where,
Ψ : < → < is monotonically decreasing in$. Analogously, from equation (31) a constantant
level of capacity utilisation requires H($, u) + J($) = ybp, with J : < → < is a decreasing
function in $. Since H is also monotonically decreasing in the wage share we can rewrite
(31) as u = Θ($), where, Θ : < → < is monotonically increasing in $.

Given that Ψ is a decreasing function of $ in u and Θ is an increasing one, they intercept
each other in one unique point that characterise the equilibrium solution of the system for
these two variables. That is, though the employment rate is determined alone in the labour
market, income distribution and capacity utilisation are simultaneously chosen. Finally, in
order to obtain values with economic meaning we have to impose 0 < F−1(ybp − n) < 1,
0 < $∗ < 1, and 0 < u∗ < 1.

Proof of Proposition 5

In this Appendix we first derive the characteristic equation of the dynamic system (26)-(28)
and prove Proposition 5. To do this, we linearise the dynamic system around the internal
equilibrium point so as to obtain: ė

$̇
u̇

 =

 0 j12 j13

j21 j22 j23

0 j32 j33


︸ ︷︷ ︸

J∗

 e− e∗
$ −$∗
u− u∗



where the elements of the Jacobian matrix J∗ are given by:

j11 = 0

j12 = − (GHH$ +G$) e∗ < 0

j13 = −GHHue
∗ < 0

j21 = F ′(e∗)$∗ > 0

j22 = − (GHH$ +G$)$∗ < 0

j23 = −GHHu$
∗ < 0

j31 = 0

j32 = − [H$ + J ′($∗)]u∗ > 0

j33 = −Huu
∗ < 0
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so that the characteristic equation can be written as

λ3 + b1λ
2 + b2λ+ b3 = 0

where the coefficients are given by:

b1 = − tr J∗ = −(j22 + j33) > 0 (46)

b2 =

∣∣∣∣ j22 j23

j32 j33

∣∣∣∣+

∣∣∣∣ 0 j13

0 j33

∣∣∣∣+

∣∣∣∣ 0 j12

j21 j21

∣∣∣∣
= j22j33 − j23j32 − j12j21 > 0 (47)

b3 = − det J∗ = −j13j21j32 + j12j21j33 > 0 (48)

The necessary and sufficient condition for the local stability of (e∗, $∗, u∗) is that all
roots of the characteristic equation have negative real parts, which, from Routh-Hurwitz
conditions, requires:

b1 > 0, b2 > 0, b3 > 0 and b1b2 − b3 > 0.

Given (43)-(45) the crucial condition for local stability becomes the last one. Through
direct computation we find that:

b1b2 − b3 = [(GHH$ +G$)$∗ +Huu
∗] [(GHH$ +G$)$∗Huu

∗ −GHHu$
∗ [H$ + J ′($∗)]u∗

+ (GHH$ +G$) e∗F ′(e∗)$∗] +GHHue
∗F ′(e∗)$∗ [H$ + J ′($∗)]u∗

− (GHH$ +G$) e∗F ′(e∗)$∗Huu
∗

= (GHH$ +G$)$∗ [(GHH$ +G$)$∗Huu
∗ −GHHu$

∗ [H$ + J ′($∗)]u∗

+ (GHH$ +G$) e∗F ′(e∗)$∗] +Huu
∗ [(GHH$ +G$)$∗Huu

∗ −GHHu$
∗ [H$ + J ′($∗)]u∗]

+GHHue
∗F ′(e∗)$∗ [H$ + J ′($∗)]u∗

= $∗u∗ [(GHH$ +G$)$∗ +Huu
∗]︸ ︷︷ ︸ [(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]]︸ ︷︷ ︸

>0

+ e∗$∗F ′(e∗)︸ ︷︷ ︸
>0

[
$∗ (GHH$ +G$)2 +GHHuu

∗ [H$ + J ′($∗)]
]︸ ︷︷ ︸

≷0

(49)

Therefore, $∗ (GHH$ +G$)2 > GHHu [H$ + J ′($∗)]u∗ is a sufficient condition for
b1b2 − b3 > 0, and hence, guarantees local stability of the dynamical system.

Proof of Proposition 6

When demonstrating Proposition 5, we showed that$∗ (GHH$ +G$)2 > GHHu [H$ + J ′($∗)]u∗

is a sufficient condition for local stability. However, even if that inequality is no satisfied,
local stability might still hold. Manipulating equation (49) we have that this is the case as
long as:

F ′(e∗) < −u
∗ [$∗ (GHH$ +G$) + u∗Hu] {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]}

e∗$∗
{
$∗ (GHH$ +G$)2 + u∗GHHu [H$ + J ′($∗)]

}
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Proof of Proposition 7

To prove Proposition 7 using the (existence part of) the Hopf Bifurcation Theorem and
using ∂F/∂e as bifurcation parameter, we must: (HB1) show that the characteristic equa-
tion possesses a pair of complex conjugate eigenvalues θ [F ′(e∗)]± iω [F ′(e∗)] that become
purely imaginary at the critical value F ′(e∗)HB of the parameter – i.e. θ [F ′(e∗)HB] = 0 –
and no other eigenvalues with zero real part exists at [F ′(e∗)]HB, and then (HB2) check that
the derivative of the real part of the complex eigenvalues with respect to the bifurcation
parameter is different from zero at the critical value.

(HB1) Given that the conditions b1 > 0, b2 > 0 and b3 are all fulfilled, in order that the
characteristic equation has one negative real root and a pair of complex roots with zero
real part we must have:

b1b2 − b3 = 0

a condition which, given the expression for b1b2 − b3 derived in (49), is satisfied for

F ′(e∗)|HB = −u
∗ [$∗ (GHH$ +G$) + u∗Hu] {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]}

e∗$∗
{
$∗ (GHH$ +G$)2 + u∗GHHu [H$ + J ′($∗)]

}
(HB2) By using the so-called sensitivity analysis, it is then possible to show that the

second requirement of the Hopf Bifurcation Theorem is also met. Substituting the elements
of the Jacobian matrix into the respective coefficients of the characteristic equation:

b1 = (GHH$ +G$)$∗ +Huu
∗

b2 = (GHH$ +G$)$∗Huu
∗ −GHHu$

∗ [H$ + J ′($∗)]u∗

+ (GHH$ +G$) e∗F ′(e∗)$∗

b3 = −GHHue
∗F ′(e∗)$∗ [H$ + J ′($∗)]u∗

+ (GHH$ +G$) e∗F ′(e∗)$∗Huu
∗

so that

∂b1

∂F ′ (e∗)
= 0

∂b2

∂F ′ (e∗)
= (GHH$ +G$) e∗$∗ > 0

∂b3

∂F ′ (e∗)
= e∗$∗u∗ {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]} > 0

When F ′(e∗) = F ′(e∗)HB as in (32), apart from b1 > 0, b2 > 0 and b3 > 0 one also has
b1b2 − b3 = 0. In this case, one root of the characteristic equation is real negative (λ1),
whereas the other two are a pair of complex roots with zero real part (λ2,3 = θ ± iω, with
θ = 0). We thus have:

b1 = − (λ1 + λ2 + λ3)

= − (λ1 + 2θ)

b2 = λ1λ2 + λ1λ3 + λ2λ3

= 2λ1θ + θ2 + ω2

b3 = −λ1λ2λ3

= −λ1

(
θ2 + ω2

)
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such that:

∂b1

∂ [F ′(e∗)]
= − ∂λ1

∂ [F ′(e∗)]
− 2

∂θ

∂ [F ′(e∗)]
= 0

∂b2

∂ [F ′(e∗)]
= 2θ

∂λ1

∂ [F ′(e∗)]
+ 2 (λ1 + θ)

∂θ

∂ [F ′(e∗)]
+ 2ω

∂ω

∂ [F ′(e∗)]
= P > 0

∂b3

∂ [F ′(e∗)]
= −

(
θ2 + ω2

) ∂λ1

∂ [F ′(e∗)]
− 2λ1θ

∂θ

∂ [F ′(e∗)]
− 2λ1ω

∂ω

∂ [F ′(e∗)]
= R > 0

where P = (GHH$ +G$) e∗$∗ andR = e∗$∗u∗ {(GHH$ +G$)Hu −GHHu [H$ + J ′($∗)]}.
For θ = 0, the system to be solved becomes:

− ∂λ1

∂ [F ′(e∗)]
− 2

∂θ

∂ [F ′(e∗)]
= 0

2λ1
∂θ

∂ [F ′(e∗)]
+ 2ω

∂ω

∂ [F ′(e∗)]
= P

−ω2 ∂λ1

∂ [F ′(e∗)]
− 2λ1ω

∂ω

∂ [F ′(e∗)]
= R

or  −1 −2 0
0 2λ1 2ω
−ω2 0 −2λ1ω




∂λ1
∂[F ′(e∗)]

∂θ
∂[F ′(e∗)]

∂ω
∂[F ′(e∗)]

 =

 0
P
R


Thus:

∂θ

∂ [F ′(e∗)]

∣∣∣∣
F ′(e∗)=F ′(e∗)HB

=

∣∣∣∣∣∣
−1 0 0
0 P 2ω
−ω2 R −2λ1ω

∣∣∣∣∣∣∣∣∣∣∣∣
−1 −2 0
0 2λ1 2ω
−ω2 0 −2λ1ω

∣∣∣∣∣∣
=

(Pλ1 +R)

2 (λ2
1 + ω2)

and ∂θ
∂[F ′(e∗)]

∣∣∣
F ′(e∗)=F ′(e∗)HB

6= 0 as long as Pλ1 +R 6= 0. Substituting the respective expres-

sions of P and R, that is equivalente to say that:

λ1 6= u∗
{
GHHu [H$ + J ′($∗)]

GHH$ +G$

−Hu

}
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