

# QUADERNI DEL DIPARTIMENTO DI ECONOMIA POLITICA E STATISTICA

Raouf Boucekkine Giorgio Fabbri Salvatore Federico Fausto Gozzi

From Firm to Global-Level Pollution Control: the Case of Transboundary Pollution

n. 818 – Gennaio 2020



# FROM FIRM TO GLOBAL-LEVEL POLLUTION CONTROL: THE CASE OF TRANSBOUNDARY POLLUTION

#### RAOUF BOUCEKKINE<sup>a</sup>, GIORGIO FABBRI<sup>b</sup>, SALVATORE FEDERICO<sup>c</sup>, AND FAUSTO GOZZI<sup>d</sup>

ABSTRACT. We study the joint determination of optimal investment and optimal depollution in a spatiotemporal framework where pollution is transboundary. Pollution is controlled at a global level. The regulator internalizes that: (i) production generates pollution, which is bad for the wellbeing of population, and that (ii) pollution flows across space driven by a diffusion process. We solve analytically for the optimal investment and depollution spatiotemporal paths and characterize the optimal long-term spatial distribution when relevant. We finally explore numerically the variety of optimal spatial distributions obtained using a core/periphery model where the core differs from the periphery either in terms of input productivity, depollution efficiency or self-cleaning capacity of nature. We also compare the distributions with and without diffusion. Key aspects in the optimal policy of the regulator are the role of aversion to inequality, notably leading to smoothing consumption across locations, and the control of diffusive pollution adding another smoothing engine.

*Subject classifications:* Environment (we deal with pollution control as made clear in the title), Dynamic programming/optimal control (we solve an infinite dimensional optimal pollution control problem), Government (Pollution is transboundary, control is to be exercised by governments).

Area: Environment, energy and sustainability

Date: January 8, 2020.

<sup>&</sup>lt;sup>*a*</sup>Aix-Marseille University (Aix-Marseille School of Economics and IMéRA), CNRS, EHESS and Ecole Centrale de Marseille (France).

<sup>&</sup>lt;sup>b</sup>Univ. Grenoble Alpes, CNRS, INRA, Grenoble INP, GAEL, 38000 Grenoble (France).

<sup>&</sup>lt;sup>c</sup> Dipartimento di Economia Politica e Statistica, Università degli Studi di Siena (Italy).

<sup>&</sup>lt;sup>d</sup>Dipartimento di Economia e Finanza, LUISS *Guido Carli*, Roma (Italy).

#### 1. INTRODUCTION

Pollution control has been the target of a huge bulk of research in many fields, including management, operational research and economics. In the management literature (see for example the early work of Cohen and Hurter, 1974, and references therein), the minimization of the cost of pollution control at the firm and industry levels has been the object of numerous studies. While the usual direct costs (say those related to equipment control and to adoption of cleaner technologies or inputs) were of course taken into account, this literature has also incorporated into the analysis for a long time less direct factors affecting the profitability of firms and industries. One has to do with the subsequent impact on demand due to rising consumer price indexes (see again Cohen and Hurter, 1974). An even more important indirect cost, according to this terminology, comes from environmental regulation, in particular taxation (see Bawa, 1975). An interesting related question is whether taxation is more efficient compared to direct pollution control instruments, which we label later pollution abatement controls.For example, Bawa (1975) argued that environmental problems, being often characterized by infrequent serious crises, make direct controls more appropriate than tax policy.

In this paper, we do not contribute to this old but still highly relevant question. If any, the most recent trend in the related ongoing debate is the increasingly shared belief that the most urgent environmental problems are global, and in any case hardly restricted to the borders of a city, region or country. This does not disqualify the firm and industry levels because even though the problems are global, actions have to be taken also locally in all respects. For example, while the global warming problem has to do with global CO2 pollution, ancillary local greenhouse gas mitigation actions might well be useful (see Davis et al., 2001). Our point here is that a large part of the serious environmental problems faced can be hardly formulated at the level of a local industry. This is due to the fact that the latter problems derive from pollution processes which are essentially transboundary. This is true for air and water pollution as well, and this is equally true either for global or local pollutant diffusion. Indeed, there is an increasing evidence that an ancillary carbon reduction benefit can be achieved through the introduction of SO2

control policies, a typical local air pollutant. See Xu and Masui (2009) on China and Morgenstern et al. (2009) for the general case of developing countries.

Even more importantly, we do not think that we can capture all the essential implications of transboundary pollution without modelling it as precisely as possible. Highly stylized models of transboundary pollution, like those using the multi-country setting (see for example, Bertinelli et al., 2014, or Benchekroun and Martin-Herran, 2016), may capture some of the significant implications of transboundary pollution, but they cannot by construction deliver all the spatiotemporal dynamics inherent in the latter. Here, we rely on an analytical framework developed by Boucekkine et al. (2019a) to inquire about optimal pollution abatement policy over continuous space and continuous time when pollution is transboundary, driven by a diffusion equation. Key contribution of Boucekkine et al. (2019a) is to provide a spatiotemporal structure allowing for a large set of geographic heterogeneity features while still providing closed-form solutions. We only use some of the heterogeneity traits allowed but, importantly enough, we introduce into the latter framework space and time dependent pollution abatement controls (Boucekkine et al. (2019a) do not consider pollution control policies). More precisely, we shall consider three types of geographic discrepancy: discrepancy in productivity, in abatement efficiency, and in the nature self-cleaning capacity. Our extended model also allows to generate closed-form spatiotemporal optimal paths. Moreover, we can also identify analytically the (optimal) long-term geographic distributions of all variables. Typical related exercises run by economists (see the seminal paper by Stokey, 1999) only characterize optimal time paths and the corresponding pointwise stationary solutions.

Importantly enough, we consider a central planner problem, that is the case of a regulator who has to design the optimal spatiotemporal production paths for the whole spatial economy (here space is the unit circle in  $\mathbb{R}^2$ ). More precisely, she has to internalize two facts: (i) production generates pollution, which is bad for the welfare of the inhabitants, and (ii) pollution flows across space driven by a diffusion process. The regulator is given a pollution control instrument to help her to tackle the problem, a direct one we label abatement. It is worth pointing out here that by internalizing (ii), the regulator is actually preventing potential free-riding: as pollution is transboundary, non-cooperative producers located at different areas may choose the intensity and location of their production facilities in an oppotunistic way. We shut down this channel and abstract away from any strategic ingredient (see de Frutos and Martin-Herran, 2019a, 2019b for an excellent exploration of these aspects, and La Torre et al. (2019) for the global vs local dimension of policies.).

The rest of the paper is organized as follows. Section 2 briefly presents the model. Section 3 delivers the main results, the associated technical and methodological details being relegated in the appendix. Section 4 provides a sample of the optimal spatiotemporal paths generated depending notably on the type of geographic heterogeneity selected. Section 5 concludes.

# 2. The model

We now describe briefly the model. We consider a central planning problem of a spatial economy. There is only one good in this economy: it is consumed, used in production as input (or invested), used in pollution abatement, and, of course, it is produced at any location. Furthermore, we postulate that this good is not traded across locations. Only pollution is transboundary. This is of course made for simplification, in order to get the closed-form solutions needed. Modelling trade across locations requires typically another adequate diffusion equation as in Boucekkine et al. (2019b), which would make the problem definitely much more intricate than those treated separately in the two previous papers. As to the spatial support, we choose to work on the circle in  $\mathbb{R}^2$ :

$$S^1 := \left\{ x \in \mathbb{R}^2 : |x|_{\mathbb{R}^2} = 1 \right\}$$

At time t, at any location  $x \in S^1$ , there is a single individual consuming c(t, x), investing i(t, x), depolluting b(t, x), and producing y(t, x). The production technology is linear in the capital input, i(t, x), that is:

$$y(t,x) = a(t,x) \ i(t,x),$$

where a(t, x) is productivity at location x and time t. Again for simplification, to deal with a single diffusion equation in the optimal control problem, we assume that capital inputs do not accumulate over time nor are they exchanged across space. The resource constraint at any location x is:

$$c(t, x) + i(t, x) + b(t, x) = y(t, x),$$

which yields : c(t, x) = (a(t, x) - 1) i(t, x) - b(t, x). This is a very simple and flexible productive structure, which has the invaluable advantage to accommodate most types of spatial heterogeneity (so far, heterogeneity in productivity), including the solution step. The link with pollution is simple too: we assume that pollution one-to-one arises from the use of input, i(t, x).

We consider the following control problem with infinite time horizon in  $S^1$ . Let

$$p_0, \delta: S^1 \to \mathbb{R}, \quad \varphi: \mathbb{R}^+ \times S^1 \to \mathbb{R},$$

be given measurable functions. At each time  $t \in \mathbb{R}^+$  and location  $x \in S^1$ , the planner chooses the control variables investment, i(t, x), and the pollution abatement, b(t, x), knowing that the law of motion of pollution, p(t, x), is given by the following parabolic PDE

(1) 
$$\begin{cases} p_t(t,x) = \sigma p_{xx}(t,x) - \delta(x)p(t,x) + i(t,x) - \varphi(t,x)b(t,x)^{\theta}, & (t,x) \in \mathbb{R}^+ \times S^1, \\ \\ p(0,x) = p_0(x), & x \in S^1, \end{cases}$$

where  $\sigma > 0$ ,  $\theta \in (0, 1)$ . Here,  $p_t, p_x, p_{xx}$  denote, respectively, the derivative with respect to time, and the first and second derivative with respect to space. The right-hand side of the PDE above gives the component of pollution stock variation at location x: it depends on transboundary pollution,  $\sigma p_{xx}(t, x)$ , where  $\sigma$  measures the strength of diffusion; on nature self-cleaning capacity,  $\delta(x)p(t, x)$ , where  $\delta(x)$  is the rate of self-cleaning at location x; on input, i(t, x); and, finally, on abatement,  $\varphi(t, x)b(t, x)^{\theta}$ , where  $\varphi(t, x)$  is the efficiency (or productivity) of abatement, and  $\theta$  is the return to scale of the abatement technology  $(0 < \theta \le 1)$ . In Boucekkine et al (2019a), there is no pollution abatement control, i.e.  $\varphi \equiv 0$ .

The payoff functional of the regulator internalizes, as outlined in the introduction, the negative externality exercised by (local) pollution on population wellbeing (notably health) and also the transboundary nature of pollution via the state equation above. Precisely, the functional writes as

$$J(p_0;(i,b)) := \int_0^\infty e^{-\rho t} \left( \int_{S^1} \left( \frac{c(t,x)^{1-\gamma}}{1-\gamma} - w(x)p(t,x) \right) \mathrm{d}x \right) \mathrm{d}t$$

where  $\rho > 0, \gamma \in (0, 1) \cup (1, +\infty)$ , and

$$a: \mathbb{R}^+ \times S^1 \to \mathbb{R}^+, \quad w: S^1 \to \mathbb{R}^+$$

are given measurable functions with  $a \ge 1$ . The function p in the integral above is the solution to (1) corresponding to the initial datum  $p_0$  and to the control (i, b). The functional above takes into account two aspects of human wellbeing: consumption and health (via pollution negative externality). Note that the functional is strictly concave in the former and linear in pollution. The latter linearity assumption is needed for the analytical solution to work. The spatial function w(x) can be interpreted as the degree of pro-environmental culture (or environmental awarness) at location x. We shall not play on it in this paper.

Finally note that because of absence of trade and the technological assumptions made above, we can rewrite the objective functional in terms of the investment and abatement controls as announced above:

(2)

$$J(p_0;(i,b)) := \int_0^\infty e^{-\rho t} \left( \int_{S^1} \left( \frac{\left( (a(t,x) - 1)i(t,x) - b(t,x) \right)^{1-\gamma}}{1-\gamma} - w(x)p(t,x) \right) \mathrm{d}x \right) \mathrm{d}t,$$

We shall work with this functional hereafter.

## 3. Analytic results

In this section we describe the analytical results we get for the model we introduced in Section 2. For each of them we will refer the reader to the proof in the appendix where all the mathematical setting necessary to study the problem is developed.

We will make use of the following

# Assumption 3.1.

(i) 
$$\int_{S^1} |p_0(x)|^2 dx < \infty, \ \delta \in C(S^1; \mathbb{R}^+), \ and \ w \in C(S^1; (0, +\infty));$$

(ii) There exists L > 0 and  $g \ge 0$  such that

$$(a(t,x)-1)^{\frac{1-\gamma}{\gamma}} + \varphi(t,x)(a(t,x)-1)^{\frac{\theta}{1-\theta}} \leq Le^{gt}, \qquad \forall (t,x) \in \mathbb{R}^+ \times S^1;$$

(iii)  $\rho > g$ .

We also specify the set of the admissible controls: the planner aims at maximizing (2) over the measurable functions (i, b) in the set

(3)  

$$\mathcal{A} = \left\{ (i,b) \colon \mathbb{R}^+ \times S^1 \to \mathbb{R}^+ \times \mathbb{R}^+ \colon \int_0^\infty e^{-(\rho-g)t} \left( \int_{S^1} |i(t,x) - \varphi(t,x)b(t,x)^{\theta}|^2 \mathrm{d}x \right)^{1/2} \mathrm{d}t < \infty \right\}$$
and  $c(t,x) = (a(t,x) - 1)i(t,x) - b(t,x) \ge 0 \quad \forall (t,x) \in \mathbb{R}^+ \times S^1 \right\}.$ 

First, we observe, in the following proposition, that Assumption 3.1 is enough to ensure the well-posedness of the functional J.

**Proposition 3.2.** Let Assumption 3.1 hold. Then  $J(p_0, (i, b))$  is well defined for all  $(i, b) \in \mathcal{A}$  (possibly equal to  $+\infty$  or  $-\infty$ , depending on the occurences  $\gamma \in (0, 1)$  and  $\gamma \in (1, +\infty)$ , respectively).

*Proof.* See Proposition A.1 in Appendix A.

The planner aims at solving the optimization problem

(4) 
$$v(p_0) := \sup_{(i,b)\in\mathcal{A}} J(p_0;(i,b)).$$

The function v is said the value function of the optimization problem and a couple  $(i^*, b^*)$ such that  $J(p_0; (i^*, b^*)) = v(p_0)$  is said an optimal control for the problem starting at  $p_0$ .

By the results of Appendix A.2 (notably, Proposition A.2), there exists a unique function  $\alpha \in C^2(S^1; \mathbb{R})$  solution to the ODE

(5) 
$$\rho\alpha(x) - \sigma\alpha''(x) + \delta(x)\alpha(x) = w(x), \quad x \in S^1.$$

This ODE can be viewed as an ODE on the interval  $[0, 2\pi]$  with periodic boundary zeroorder and first-order boundary conditions, i.e.

$$\begin{cases} \rho\alpha(x) - \sigma\alpha''(x) + \delta(x)\alpha(x) = w(x), & x \in (0, 2\pi), \\ \alpha(0) = \alpha(2\pi), & \alpha'(0^+) = \alpha'(2\pi^-), \end{cases}$$

falling into the Sturm-Liouville theory with periodic boundary conditions (see Coddington and Levinson, 2013). We have

(6) 
$$0 < \min_{S^1} \frac{w(\cdot)}{\rho + \delta(\cdot)} \le \alpha(x) \le \max_{S^1} \frac{w(\cdot)}{\rho + \delta(\cdot)} \quad \forall x \in S^1.$$

Such function represents the core of the solution and has a natural interpretation: indeed, formally,

(7) 
$$\alpha(x) = \int_0^\infty e^{-\rho t} \left( \int_{S^1} w(\xi) \eta(t,\xi;x) \,\mathrm{d}\xi \right) \mathrm{d}t$$

where  $\eta(t,\xi;x)$  is the solution of the parabolic equation

$$\begin{cases} \frac{\partial \eta}{\partial t}(t,\xi) = \frac{\partial}{\partial \xi} \left( \sigma(\xi) \frac{\partial \eta}{\partial x}(t,\xi) \right) - \delta(\xi) \eta(t,\xi), \\ \eta(0,\xi) = \Delta_{\{x\}}(\xi) \end{cases}$$

,

i.e. the spatial density (with respect to the variable x) at time t of a pollutant initially concentrated at point x, once one takes into account the diffusion process and the natural decay. Thus, the term  $\int_{S^1} w(\xi) \eta(t,\xi;x) d\xi$  measures the instantaneous disutility all over the space and the whole expression in the right hand side of (7) is the total spatial (temporally discounted) future social disutility of a unit of pollutant initially concentrated at x.

The following theorem contains the core of our results. We are able to explicitly find the input level and the cleaning effort which maximize the social welfare function. Consequently, we can also find the expression of the optimal net emissions, the optimal consumption and the the maximal attainable social welfare.

**Theorem 3.3.** Let Assumption 3.1 hold. Then the couple  $(i^*, b^*)$  given by

(8) 
$$i^{*}(t,x) := \alpha(x)^{-\frac{1}{\gamma}} (a(t,x)-1)^{\frac{1-\gamma}{\gamma}} + (\varphi(t,x)\theta)^{\frac{1}{1-\theta}} (a(t,x)-1)^{\frac{\theta}{1-\theta}}$$

(9) 
$$b^*(t,x) := (\theta \varphi(t,x)(a(t,x)-1))^{\frac{1}{1-\theta}},$$

belongs to  $\mathcal{A}$  and is optimal for the problem (4). The optimal net emissions flow is (10)

$$n^{*}(t,x) := i^{*}(t,x) - \varphi(t,x)b^{*}(t,x)^{\theta} = \alpha(x)^{-\frac{1}{\gamma}}(a(t,x)-1)^{\frac{1-\gamma}{\gamma}} + \theta^{\frac{1}{1-\theta}}(1-\theta^{-1})\varphi(t,x)^{\frac{1}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}$$

and the optimal consumption flow is

(11) 
$$c^*(t,x) := (a(t,x)-1)i^*(t,x) - b^*(t,x) = \left(\frac{a(t,x)-1}{\alpha(x)}\right)^{\frac{1}{\gamma}}.$$

The evolution of the optimal pollution profile  $p^*$  over time is the unique solution of the following parabolic equation:

(12) 
$$\begin{cases} p_t(t,x) = \sigma p_{xx}(t,x) - \delta(x)p(t,x) + n^*(t,x), & (t,x) \in \mathbb{R}^+ \times S^1, \\ p(0,x) = p_0(x), & x \in S^1. \end{cases}$$

Finally, the maximal social welfare (value function) is affine in  $p_0$ :

$$v(p_0) = J(p_0; (i^*, b^*)) = -\int_{S^1} \alpha(x) p_0(x) dx + \int_0^\infty e^{-\rho t} \left( \int_{S^1} \frac{\gamma}{1 - \gamma} \left( \frac{a(t, x) - 1}{\alpha(x)} \right)^{\frac{1 - \gamma}{\gamma}} dx \right) dt \\ - \theta^{\frac{1}{1 - \theta}} \int_0^\infty e^{-\rho t} \left( \int_{S^1} \alpha(x) \left( \varphi(t, x) (a(t, x) - 1) \right)^{\frac{\theta}{1 - \theta}} dx \right) dt.$$

*Proof.* The claims are just the rephrasing in the original PDE setting of the claims expressed in Theorem A.4 in Appendix A in the infinite-dimensional formulation.  $\Box$ 

In our model, the local depollution effort depends on local productivities (at production and at depollution), and is not impacted by the transboundary nature of pollution (why should it be?). In contrast, investment (and therefore consumption and production) do depend on this the latter: the regulator has to account for the fact not only the local technological characteristics but also the implication of investing at a certain location on the neighboring ones in terms of pollution. Finally notice that local investment is not necessarily increasing with local productivity at production, a(t, x): a higher local productivity might lead to lower investment *i*, a such way that local emissions decrease at the expense of a slightly lower production. All these properties are illustrated in the numerical section below. **Proposition 3.4.** Let Assumption 3.1 hold. Assume that the coefficients a and  $\varphi$  are time independent, i.e. a(t,x) = a(x) and  $\varphi(t,x) = \varphi(x)$ , and that  $\delta(\cdot) \neq 0$ . Then

$$\lim_{t \to \infty} \int_{S^1} |p^*(t, x) - p^*_{\infty}(x)|^2 \, \mathrm{d}x = 0,$$

where  $p_{\infty}^*$  is the unique solution to the ODE

(13) 
$$\sigma p''(x) - \delta(x)p(x) + n^*(x) = 0, \quad x \in S^1,$$

Proof. It follows from Proposition A.5 in Appendix A, once noticing that (13) is the ODE counterpart of the abstract equation  $\mathcal{L}P^*_{\infty} + N^* = 0.$ 

#### 4. NUMERICAL EXPLORATION OF THE LONG-TERM SPATIAL DISTRIBUTION

In this section we shall use the analytical results of the previous section, notably Proposition 3.4, to explore the properties of the optimal spatial distributions, and in particular the optimal long term spatial distribution of pollution. The contribution of this section is specifically to highlight the implications of the type of geographic heterogeneity considered. We shall study three of them: the heterogeneity in productivity, the heterogeneity in abatement efficiency and finally, the discrepancy in the rate of natural self-cleaning. For a given benchmark calibration to be displayed below, we first compute the spatial distributions induced corresponding to each type of discrepancy represented in the form of a core/periphery configuration. We also study briefly the implications of combining these heterogeneities. Second, we show how some structural parameters of the model are important in the shape of distributions obtained.

4.1. Benchmark calibration. The level of the parameter a is calibrated in order to have an investment (input) - GDP ratio (which corresponds here to the value of 1/a) in a typical range of 15% - 40% (see for instance IMF, 2019). Future discount is typically considered to be around 1% - 5% (see Barro, 2015), it is taken here equal to 3%. The natural decay of pollutants strongly depends on their nature but a value of an annual decay of 30% - 50% meets several different possibilities (see Versino and Angeletti, 2012, or Perry and Tabor, 1962). The inverse of intertemporal elasticity of substitution is 6 that is consistent for instance with the data by Barsky et al. (1997).

It is more difficult to calibrate other parameters: the efficiency of the depollution technology (i.e., the values of  $\varphi$  and  $\theta$ ), the unitary disutility from pollution w, and the diffusivity parameter  $\sigma$ . We take them respectively equal to 0.05, 0.2, 1 and 0.5. In the last subsection, we shall consider some departures from these benchmark values to illustrate how the shapes of spatial distributions are sensitive to some parameters. In particular, the value of  $\gamma$  will be shown to be crucial. As explained in Boucekkine et al. (2019b) in a different spatiotemporal context,  $\gamma$  measures a mixture of individual behaviour (here, intertemporal substitution in consumption) and the regulator's aversion for inequality in consumption as well. Therefore, the larger  $\gamma$ , the more equal should be the spatial consumption distribution. Last but not least, it should be noted that the linearity in local pollution in the objective functional (for analytical reasons outlined above) shuts down this specific aversion of inequality channel in what concerns pollution. This does not mean that the regulator will not take care of the spatial distribution of pollution: as it will be clear in the figures displayed below, where the optimal long-term pollution spatial distributions are shown both with and without diffusion, the regulator does optimally internalize the transboundary nature of pollution but smoothing out the distribution of pollution across space. In a sense, our exercise allows to disentangle properly the action of the regulator in the face of transboundary pollution. With strictly convex disutility of pollution in the objective functional, the optimal shapes would have been smoother.

4.2. Spatial distributions by type of geographic heterogeneity. Figure 1 and Figure 2 illustrate the outcomes of a spatial discrepancy in input productivity through a core/periphery configuration. The peak value of productivity is 10 pc (Resp. 66 pc) higher than the periphery floor value in the former (Resp. latter) figure. Both deliver however the same qualitative picture. For the benchmark calibration chosen, both show that the regulator will invest less, depollute more, produce less and therefore pollute less in the core than in the periphery. This goes at odds with the typical picture generated by economic growth models à la Stokey (1999). Typically, these models are concerned with the evolution over time of a growing economy: as the economy develops, it eventually starts depolluting when it becomes rich enough, ultimately leading to curb pollution

without breaking down growth. In our frame, we are concerned not only with the evolution over time, but also with the spatial (long-term) distributions resulting from optimal spatiotemporal dynamics. The picture can be indeed very different from the Stokey story. The optimal outcome would be indeed less pollution in the core than in the periphery but at the same time, more production in the periphery. Incidentally, consumption is higher in the core and pollution is smoothed out with respect to the no-diffusion case, illustrating the two main engines driving the regulator's action: on one hand, she aims at lowering inequalities in consumption, which in this case requires to produce more and to pollute more in the periphery (as no trade in the good is allowed across locations); on the other hand, she internalizes both the negative pollution externality at any location and pollution diffusion, leading to smooth out the pollution spatial shape with respect to the no-diffusion case. We will see in the last sub-section that the value of parameter  $\gamma$  is crucial in the shape of the relationships generated between long-term pollution, production and abatement.

When it comes to **heterogeneity in depollution efficiency across space**, the picture is different, as shown in Figure 3. Quite naturally, abatement is larger in the core, and this goes with a larger optimal investment and a larger production. More interesting, though production is larger in the core, its long-term optimal pollution is lower thanks to its technological superiority in abatement. The picture is analogous to Stokey's typical outcome on time paths. But we do generate it here putting spatial heterogeneity in depollution efficiency, not in input productivity (when  $\gamma = 6$ ). If we combine both heterogeneities, as in Figure 4 with same benchmark calibration, we get qualitatively the same outcomes as in the case of a single discrepancy in input productivity, that's the above described mechanisms associated with the latter dominate. Again, this is only true at the benchmark calibration as we will show below. Many more pictures can arise when we depart from the latter, and we will show one particular and striking case therein.

Finally, when we consider the **spatial discrepancy in self-cleaning capacity**, that is through the function  $\delta(x)$ , we get a peculiar and interesting picture. First of all, and in contrast to the previous figures in which diffusion and no-diffusion paths coincide except for pollution, here diffusion (that's the parameter  $\sigma$ ) matters in optimal investment, production and consumption. By Theorem 3.3,  $\delta(x)$  enters the expression of optimal investment — given in (8) — indirectly through function  $\alpha(x)$ , which itself depends on the diffusion parameter  $\sigma$  via the solution of the differential equation (5). Second, optimal abatement — given in (9) — does not depend on  $\delta(x)$  neither directly nor indirectly. As a result, as self-cleaning capacity is larger in the core, investment, production and consumption are bigger at the core, while pollution is still lower than in the periphery. We get again the Stokey classical picture where pollution goes down with production (or income) across location. Moreover, for all variables, the regulator "uses" diffusion to smooth pollution across space.

4.3. The role of structural parameters. In this subsection, we will provide two striking examples of how the spatial distributions can be strongly impacted by changes in the structural parameters. In Figure 6, we report the optimal distributions obtained when we decrease  $\gamma$  from 6 to 0.5 under a core/periphery configuration structure on input productivity (all the other parameter values are unchanged). Compared to the benchmark, here Figure 1, there are notable changes: investment in the core are increased, and not reduced, and despite an increase in depollution effort in the core, net emissions and longterm pollution are higher than in the periphery, again in sharp contrast to the benchmark case. Why is so? Actually, lowering so strongly  $\gamma$  is reflected in a much lower aversion for inequality: as a result, the regulator does not need to increase investment more in the periphery to compensate the disadvantage in input productivity. Eventually, consumption is less smooth than in the benchmark.

So far, we have generated a rich set of spatial distributions shapes but with a monotonic relationship between production and pollution (or emissions). Our model can generate non-monotonic relationships by combining different types of geographic discrepancies and adjusting the values of some critical parameters like  $\gamma$ . Figure 7 provides an example. In this picture, as in Figure 4, we both consider heterogeneities in input productivity and depollution efficiency but we have an higher level of latter (equal to 0.595 in the periphery) and, as in Figure 6,  $\gamma = 0.5$ . We get a non-monotonic relation between production and emissions in the spirit of the the so-called Environmental KC (see Stokey, 1999).

#### 5. Conclusions

In this paper, we construct a spatiotemporal model where optimal investment and optimal depollution can be jointly determined where pollution is transboundary. Beside the nice feature of keeping the analytical nature of the solution paths when including pollution control, we have been able to uncover many aspects of optimal policy under transboundary pollution and geographic heterogeneities. We have studied three types of spatial discrepancies (input productivity, depollution efficiency and nature self-cleaning capacity) and we could have studied more given the flexibility of our framework. A rich set of optimal spatial distributions has been identified and we have also clarified the mechanisms leading the regulator to choose these distributions. Key aspects in the optimal policy of the regulator are indeed the role of aversion to inequality, notably leading to smoothing consumption across locations, and the control of diffusive pollution adding another smoothing engine.

Clearly, while clarifying the latter aspects, several issues remain open. A few are due to the analytical solution which requires linearity in the state variable within the objective functional. Allowing for the strict convexity of the disutility from pollution is a natural extension, beside generalization. It will allow to incorporate aversion to environmental inequality in the frame, which is an increasingly important normative aspect. We are working on that.

#### Appendix A. Proofs

**NOTE:** Throughout the Appendix, Assumption 3.1 will hold and will not be repeated in the statement of the results.

A.1. Formulation in Hilbert spaces. Here we give a rigorous formulation of the problem formulated in Section 3 by embedding it in an infinite dimensional setting.

On  $S^1$  we consider the metrics induced by the Euclidean metrics of  $\mathbb{R}^2$ . In this way  $S^1$  can be isometrically identified with  $2\pi\mathbb{R}/\mathbb{Z}$  and the (class of) functions  $S^1 \to \mathbb{R}$  with  $2\pi$ -periodic function  $\mathbb{R} \to \mathbb{R}$ ; differentiaton of functions  $S^1 \to \mathbb{R}$  is defined according to this identification.

We proceed now to our infinite dimensional reformulation of the problem. We will use the framework of Lebesgue and Sobolev spaces, for more details we refer to Brezis (2011). The procedure is similar to Boucekkine et al. (2019a) but their results do not cover the problem we are studying here because of the presence of the abatment.

The infinite dimensional space H, where we will reformulate our maximization, is the Lebesgue space  $L^2(S^1; \mathbb{R})$ , i.e.

$$H := L^2(S^1; \mathbb{R}) := \left\{ f: S^1 \to \mathbb{R} \text{ measurable}: \int_{S^1} |f(x)|^2 \mathrm{d}x < \infty \right\},$$

endowed with the usual inner product  $\langle f, g \rangle = \int_{S^1} f(x)g(x)dx$ , which makes it a Hilbert space. Actually, rather than a space of functions,  $L^2(S^1; \mathbb{R})$  is a space of equivalence classes of functions, with the equivalence relation identifying functions which are equal *almost everywhere*, i.e. out of a null Lebesgue measure set. For details we refer again to Brezis (2011). We denote by  $\|\cdot\|$ the associated norm, by  $H^+$  the nonnegative cone of H, i.e.

$$H^+ := \{ f \in H : f \ge 0 \}$$

and by **1** the constant function equal to 1 on  $S^1$ . Moreover, we introduce the Sobolev space — we refer to Brezis (2011) for the notion of *weak* differentiability:

 $W^{2,2}(S^1;\mathbb{R}) := \left\{ f \in L^2(S^1;\mathbb{R}) : f \text{ is twice weakly differentiable, } f', f'' \in L^2(S^1;\mathbb{R}) \right\}.$ 

Consider the differential operator  $\mathcal{L}: D(\mathcal{L}) \subset H \to H$ , where

$$D(\mathcal{L}) = W^{2,2}(S^1; \mathbb{R}); \quad \mathcal{L}\psi = \sigma\psi'' - \delta\psi, \quad \psi \in D(\mathcal{L}).$$

Due to Assumption 3.1, the latter is a closed, densely defined, unbounded linear operator on the space H (see, e.g. Lunardi, 1995, p. 71-75, Sections 3.1 and 3.1.1). A core for it is the space  $C^{\infty}(S^1; \mathbb{R})$  (see, e.g., Engel and Nagel, 1995, pages 69-70). Let  $\psi \in C^{\infty}(S^1; \mathbb{R})$ . Integration by parts yields

(14) 
$$\langle \mathcal{L}\psi,\psi\rangle = \int_{S^1} \left([\mathcal{L}\psi](x)\right)\psi(x)\mathrm{d}x = -\int_{S^1}\sigma|\psi'(x)|^2\mathrm{d}x - \int_{S^1}\delta(x))|\psi(x)|^2\mathrm{d}x \le 0$$

Since  $C^{\infty}(S^1; \mathbb{R})$  is a core for  $\mathcal{L}$ , (15) extends to all functions  $\psi \in D(\mathcal{L})$ , showing that the operator  $\mathcal{L}$  is dissipative. Similarly, a double integration by parts shows that

(15) 
$$\langle \mathcal{L}\psi_1, \psi_2 \rangle = \langle \psi_1, \mathcal{L}\psi_2 \rangle, \quad \forall \psi_1, \psi_2 \in C^{\infty}(S^1; \mathbb{R}).$$

Again, since  $C^{\infty}(S^1; \mathbb{R})$  is a core for  $\mathcal{L}$ , (15) extends to all couples of functions in  $D(\mathcal{L})$ , showing that  $\mathcal{L}$  is self-adjoint, i.e.  $\mathcal{L} = \mathcal{L}^*$ , where  $\mathcal{L}^*$  denotes the adjoint of  $\mathcal{L}$ . Therefore, by Engel and Nagel (1995) (see in particular Chapter II),  $\mathcal{L}$  generates a strongly continuous contraction semigroup  $(e^{t\mathcal{L}})_{t\geq 0} \subset L(H)$ ; in particular, Since  $\mathcal{L}$  is dissipative and  $\rho > 0$ , by standard theory of strongly continuous semigroup in Banach spaces (see, e.g. Engel and Nagel, 1995, Ch. II, p. 82-83 and Ch. II, Th. 1.10, p. 55]), it follows that  $\rho$  belongs to the resolvent set of  $\mathcal{L}$ , i.e.

$$\rho - \mathcal{L} : D(\mathcal{L}) \longrightarrow H$$

is invertible with bounded inverse  $(\rho-\mathcal{L})^{-1}:H\to H$  and the resolvent formula hold: for every  $\rho>0$ 

(16) 
$$(\rho - \mathcal{L})^{-1}h = \int_0^\infty e^{-(\rho - \mathcal{L})t}h \,\mathrm{d}t \qquad \forall h \in H.$$

Given  $i, b: \mathbb{R}^+ \times S^1 \to \mathbb{R}^+$  with functions  $I, B: \mathbb{R}^+ \to H^+$ , provided by

$$I(t) = i(t, \cdot), \quad B(t) = b(t, \cdot).$$

Moreover, define

$$\Phi: \mathbb{R}^+ \to H^+, \quad \Phi(t) := \varphi(t, \cdot),$$

and

$$[\Phi(t)B(t)^{\theta}](x) := \Phi(t)(x)(B(t)(x))^{\theta} = \varphi(t,x)b(t,x)^{\theta}, \quad t \ge 0, \ x \in S^{1}.$$

Then, defining also the function (net emissions)

$$N : \mathbb{R}^+ \to H, \quad N(t) := I(t) - \Phi(t)B(t)^{\theta},$$

the set  $\mathcal{A}$  is rewritten as

$$\mathcal{A} = \left\{ (I,B) : \mathbb{R}^+ \to H^+ \times H^+ : \int_0^\infty e^{-(\rho-g)t} \|N(t)\| \mathrm{d}t < \infty, \\ (A(t)(x) - 1)I(t)(x) - B(t)(x) \ge 0 \quad \forall (t,x) \in \mathbb{R}^+ \times S^1 \right\}.$$

Hence, given  $(I, B) \in \mathcal{A}$  and with the identification  $P(t) = p(t, \cdot)$ , we can reformulate (1) in H as an abstract evolution equation:

(17) 
$$\begin{cases} P'(t) = \mathcal{L}P(t) + N(t), & t \ge 0, \\ P(0) = p_0 \in H. \end{cases}$$

according to Part. II, Ch. 1. Def. 3.1(v) of Bensoussan et al. (2007) we define the *mild solution* to (17) as

(18) 
$$P(t) = e^{t\mathcal{L}}p_0 + \int_0^t e^{(t-s)\mathcal{L}}N(s)\mathrm{d}s, \quad t \ge 0.$$

The formula (18) provides our notion of solution to (1). Now we go on by reformulating the objective functional. Set  $A(t) := a(t, \cdot)$  and

$$\left[\frac{\left((A(t)-\mathbf{1})I(t)-B(t)\right)^{1-\gamma}}{1-\gamma}\right](x) := \frac{\left((a(t,x)-1)i(t,x)-b(t,x)\right)^{1-\gamma}}{1-\gamma}, \quad t \in \mathbb{R}^+, \ x \in S^1.$$

The functional (2) is rewritten in this formalism as

(19) 
$$J(p_0, (I, B)) = \int_0^\infty e^{-\rho t} \left[ \left\langle \frac{\left( (A(t) - \mathbf{1})I(t) - B(t) \right)^{1-\gamma}}{1-\gamma}, \mathbf{1} \right\rangle - \langle w, P(t) \rangle \right] dt$$

**Proposition A.1.**  $J(p_0, (I, B))$  is well defined for all  $p_0 \in H$  and  $(I, B) \in A$ .

*Proof.* The term  $\frac{((A(t)-1)I(t)-B(t))^{1-\gamma}}{1-\gamma}$  in (19) is always either positive (if  $\gamma \in (0,1)$ ) or negative (if  $\gamma > 1$ ). So, it suffices to show that  $\int_0^\infty e^{-\rho t} \langle w, P(t) \rangle dt$  is well defined and finite. We have

(20) 
$$\int_0^\infty e^{-\rho t} \langle w, P(t) \rangle \mathrm{d}t = \int_0^\infty e^{-\rho t} \langle w, e^{t\mathcal{L}} p_0 + \int_0^t e^{(t-s)\mathcal{L}} N(s) \mathrm{d}s \rangle \mathrm{d}t$$

Now, since w is bounded and  $e^{t\mathcal{L}}$  is a contraction, the integral  $\int_0^\infty e^{-\rho t} \langle w, e^{t\mathcal{L}} p_0 \rangle dt$  is finite. Moreover, for all T > 0 we get, by Fubini-Tonelli's Theorem

$$\int_0^T \left( \int_0^t e^{-\rho t} \left\langle w, e^{(t-s)\mathcal{L}} N(s) \right\rangle ds \right) dt$$
$$= \int_0^T \left( \int_0^t e^{-\rho s} \left\langle w, e^{-(\rho-\mathcal{L})(t-s)} N(s) \right\rangle ds \right) dt$$
$$= \int_0^T e^{-\rho s} \left\langle w, \int_s^T e^{-(\rho-\mathcal{L})(t-s)} N(s) dt \right\rangle ds$$

Using again the fact that  $e^{(t-s)\mathcal{L}}$  is a contraction and Assumption 3.1, we have, for each  $s \ge 0$ ,  $T \ge 0$ 

$$\left\|\int_{s}^{T} e^{-(\rho-\mathcal{L})(t-s)} N(s) \mathrm{d}t\right\| \leq \int_{s}^{\infty} e^{-\rho(t-s)} \|N(s)\| \mathrm{d}t \leq \frac{1}{\rho} \|N(s)\|.$$

Hence, by definition of  $\mathcal{A}$ , the claim follows sending T to  $+\infty$ .

A.2. The function  $\alpha$ . We define a function  $\alpha$ , which will represent the core of the solution. Set

(21) 
$$\alpha := (\rho - \mathcal{L})^{-1} w = \int_0^\infty e^{-(\rho - \mathcal{L})t} w \, \mathrm{d}t,$$

where the equality above is due to (16). By definition,  $\alpha$  is the unique solution in  $W^{2,2}(S^1;\mathbb{R})$ of the abstract ODE

(22) 
$$(\rho - \mathcal{L}) \alpha = w.$$

More explicitly,  $\alpha$ , as defined in (21), is the unique solution in the class  $W^{2,2}(S^1;\mathbb{R})$  to

(23) 
$$\rho\alpha(x) - \sigma\alpha''(x) + \delta(x)\alpha(x) = w(x), \quad x \in S^1,$$

meaning that it verifies (23) pointwise almost everywhere in  $S^1$ . The latter ODE can be viewed as an ODE on the interval  $[0, 2\pi]$  with periodic boundary zero-order and first-order boundary conditions, i.e.

$$\begin{cases} \rho\alpha(x) - \sigma\alpha''(x) + \delta(x)\alpha(x) = w(x), & x \in [0, 2\pi], \\ \alpha(0) = \alpha(2\pi), & \alpha'(0) = \alpha'(2\pi), \end{cases}$$

falling into the Sturm-Liouville theory with periodic boundary conditions (see Coddington and Levinson, 2013). Recall that we are dealing with the topology induced by the topology of  $\mathbb{R}^2$ on  $S^1$  and we are identifying functions on  $S^1$  with  $2\pi$ -periodic functions on  $\mathbb{R}$ . By Sobolev embedding  $W^{2,2}(S^1;\mathbb{R}) \subset C^1(S^1;\mathbb{R})$ , so  $\alpha \in C^1(S^1;\mathbb{R})$ .

**Proposition A.2.** We have  $\alpha \in C^2(S^1; \mathbb{R})$  and

$$0 < \min_{S^1} \frac{w(\cdot)}{\rho + \delta(\cdot)} \le \alpha(x) \le \max_{S^1} \frac{w(\cdot)}{\rho + \delta(\cdot)} \quad \forall x \in S^1.$$

*Proof.* The fact that  $\alpha$  solves (23) and the fact that, by Assumption 3.1, we have  $\sigma > 0$  which yields

$$\alpha''(x) = \frac{1}{\sigma} \left[ (\rho + \delta(x)) \alpha(x) - w(x) \right], \quad \text{for a.e. } x \in S^1.$$

Since  $\alpha \in C^1(S^1; \mathbb{R})$ , it follows, by Assumption 3.1, that  $\alpha \in C^2(S^1; \mathbb{R})$ .

Now, let  $x_* \in S^1$  be a minimum point of  $\alpha$  over  $S^1$ . Then  $\alpha''(x_*) \ge 0$ . Plugging this into (23) we get

$$(\rho + \delta(x_*))\alpha(x_*) = \sigma(x_*)\alpha''(x_*) + w(x_*) \ge w(x_*),$$

and the estimate from below follows. The estimate from above can be obtained symmetrically.

A.3. Rewriting the objective functional. Using (18) it is possible to rewrite the second part of the functional (2) in a more convenient way. Setting

$$e^{-(\rho-\mathcal{L})t} := e^{-\rho t} e^{t\mathcal{L}}, \quad t \ge 0,$$

first, we rewrite

(24)  

$$\int_{0}^{\infty} e^{-\rho t} \left( \int_{S^{1}} w(x) p(t, x) dx \right) dt = \int_{0}^{\infty} e^{-\rho t} \langle w, P(t) \rangle dt$$

$$= \int_{0}^{\infty} e^{-\rho t} \langle w, e^{t\mathcal{L}} p_{0} + \int_{0}^{t} e^{(t-s)\mathcal{L}} N(s) ds \rangle dt$$

$$= \left\langle w, \int_{0}^{\infty} e^{-(\rho - \mathcal{L})t} p_{0} dt \right\rangle + \int_{0}^{\infty} e^{-\rho t} \left\langle w, \int_{0}^{t} e^{(t-s)\mathcal{L}} N(s) ds \right\rangle dt$$

Note that the first term of the right hand side is the only one which depends on the initial datum  $p_0$ . We now devote some space to rewrite and study (in Propositions A.2) such term. Then we show how to rewrite the whole functional, including second term (Proposition A.3). First of all, by (16), it can be rewritten as

$$\left\langle w, \int_0^\infty e^{-(\rho-\mathcal{L})t} p_0 \,\mathrm{d}t \right\rangle = \left\langle w, (\rho-\mathcal{L})^{-1} p_0 \right\rangle = \left\langle (\rho-\mathcal{L})^{-1} w, p_0 \right\rangle = \left\langle \alpha, p_0 \right\rangle.$$

We now rewrite also the last term of the last line of (24) getting the following result.

## Proposition A.3. We have

$$J(p_0;(I,B)) = -\langle \alpha, p_0 \rangle + \int_0^\infty e^{-\rho t} \left[ \left\langle \frac{\left( (A(t) - 1)I(t) - B(t) \right)^{1-\gamma}}{1-\gamma}, \mathbf{1} \right\rangle - \left\langle \alpha, I(t) - \Phi(t)B(t)^{\theta} \right\rangle \right] \mathrm{d}t.$$

*Proof.* Using the definition of  $\alpha$  given in (21), the last term of the last line of (24) can be rewritten by exchanging the integrals as follows:

(25)  

$$\int_{0}^{\infty} \left( \int_{0}^{t} e^{-\rho t} \left\langle w, e^{(t-s)\mathcal{L}} N(s) \right\rangle ds \right) dt$$

$$= \int_{0}^{\infty} \left( \int_{0}^{t} e^{-\rho s} \left\langle w, e^{-(\rho-\mathcal{L})(t-s)} N(s) \right\rangle ds \right) dt$$

$$= \int_{0}^{\infty} e^{-\rho s} \left\langle w, \int_{s}^{\infty} e^{-(\rho-\mathcal{L})(t-s)} N(s) dt \right\rangle ds$$

$$= \int_{0}^{\infty} e^{-\rho s} \left\langle w, (\rho-\mathcal{L})^{-1} N(s) \right\rangle ds$$

$$= \int_{0}^{\infty} e^{-\rho s} \left\langle (\rho-\mathcal{L})^{-1} w, N(s) \right\rangle ds$$

The claim immediately follows.

# A.4. Solution of the problem.

**Theorem A.4.** The couple  $(I^*, B^*)$  given by

(26) 
$$B^*(t)(x) = (\theta \varphi(t, x)(a(t, x) - 1))^{\frac{1}{1-\theta}},$$

(27) 
$$I^{*}(t)(x) = \alpha(x)^{-\frac{1}{\gamma}} (a(t,x)-1)^{\frac{1-\gamma}{\gamma}} + (\theta\varphi(t,x))^{\frac{1}{1-\theta}} (a(t,x)-1)^{\frac{\theta}{1-\theta}}.$$

belongs to  $\mathcal{A}$  and is optimal starting at each  $p_0$ . The corresponding optimal net emissions flow is

$$N^{*}(t) := I^{*}(t) - \Phi(t)B^{*}(t)^{\theta} = \alpha(x)^{-\frac{1}{\gamma}}(a(t,x)-1)^{\frac{1-\gamma}{\gamma}} + \theta^{\frac{1}{1-\theta}}(1-\theta^{-1})\varphi(t,x)^{\frac{1}{1-\theta}}(a(t,x)-1)^{\frac{\theta}{1-\theta}},$$

and the optimal consumption flow is

(29) 
$$C^*(t) = (A(t) - \mathbf{1})I^*(t) - B^*(t) = \left(\frac{a(t, x) - 1}{\alpha(x)}\right)^{\frac{1}{\gamma}}$$

The optimal pollution flow is

(30) 
$$P^*(t) := e^{t\mathcal{L}} p_0 + \int_0^t e^{(t-s)\mathcal{L}} N^*(t) \mathrm{d}s$$

Finally, the value function is affine in  $p_0$ :

$$v(p_0) = J(p_0; (I^*, B^*)) = -\langle \alpha, p_0 \rangle + \int_0^\infty e^{-\rho t} \left( \int_{S^1} \frac{\gamma}{1 - \gamma} \left( \frac{a(t, x) - 1}{\alpha(x)} \right)^{\frac{1 - \gamma}{\gamma}} \mathrm{d}x \right) \mathrm{d}t \\ - \theta^{\frac{1}{1 - \theta}} \int_0^\infty e^{-\rho t} \left( \int_{S^1} \alpha(x) (\varphi(t, x)(a(t, x) - 1))^{\frac{\theta}{1 - \theta}} \mathrm{d}x \right) \mathrm{d}t.$$

*Proof.* First of all, we need to check that  $(I^*, B^*) \in \mathcal{A}$ . We have

$$\left( (A(t) - \mathbf{1})I^*(t) - B^*(t) \right)(x) = \left( \frac{a(t, x) - 1}{\alpha(x)} \right)^{\frac{1}{\gamma}} \ge 0 \quad \forall (t, x) \in \mathbb{R}^+ \times S^1.$$

Morever, by the expression of  $N^*(t)$  provided by (28) and by (6), and considering Assumption 3.1(ii), we get the existence of some constant  $C_0 > 0$  such that

$$0 \le N^*(t)(x) \le C_0 e^{gt} \quad \forall (t,x) \in \mathbb{R}^+ \times S^1.$$

We conclude that  $(I^*, B^*) \in \mathcal{A}$  by Assumption 3.1(iii).

Concerning optimality, after writing explicitly the inner products in the expression of J provided by Proposition A.3, the integrals can be optimized pointwisely, getting the expression of the optimizers. Indeed, fix  $(t, x) \in \mathbb{R}^+ \times S^1$ . By strict concavity of the integrand function with respect to  $\iota := I(t)(x)$  and  $\beta := B(t)(x)$ , the unique maximum point can be found just by first order optimality conditions. The resulting system is

(31) 
$$\begin{cases} \left( (a(t,x) - 1)\iota - \beta \right)^{-\gamma} (a(t,x) - 1) - \alpha(x) = 0, \\ - \left( (a(t,x) - 1)\iota - \beta \right)^{-\gamma} + \alpha(x)\varphi(t,x)\theta\beta^{\theta - 1} = 0 \end{cases}$$

The claim on the optimal control then follows by solving the above system. The remaining claims immediately follow from straightforward computations.  $\Box$ 

A.5. Limit behaviour in the time-homogeneous case. We consider now the special case when the coefficient are time-independent, i.e. a(t, x) = a(x), etc.. In this case the expressions of the optimal controls are time independent, too:

(32) 
$$B^*(t)(x) \equiv B^*(x) := [\varphi(x)(a(x) - 1)\theta]^{\frac{1}{1-\theta}}$$

(33) 
$$I^{*}(t)(x) \equiv I^{*}(x) := \alpha(x)^{-\frac{1}{\gamma}} (a(x) - 1)^{\frac{1-\gamma}{\gamma}} + (\varphi(x)\theta)^{\frac{1}{1-\theta}} (a(x) - 1)^{\frac{\theta}{1-\theta}}.$$

Finally we prove the following proposition.

**Proposition A.5.** Let Assumption 3.1 hold and assume, furthermore, that  $\delta(\cdot) \neq 0$ . We have

$$\lim_{t \to \infty} P^*(t) = P^*_{\infty} \quad in \ H,$$

where  $P^*_{\infty} \in W^{2,2}(S^1;\mathbb{R})$  is the unique solution in H to the abstract ODE

$$\mathcal{L}P + N^* = 0$$

*Proof.* Since  $\delta \neq 0$ , we have  $\lambda_0 < 0$ . Let us write

$$\mathcal{L} = \mathcal{L}_0 - \lambda_0$$
, where  $\mathcal{L}_0 := \mathcal{L} + \lambda_0$ ,

and note that  $\mathcal{L}_0$  is dissipative by definition, hence  $e^{s\mathcal{L}_0}$  is a contraction. Then, we can rewrite

$$P^{*}(t) = e^{\lambda_{0}t}e^{t\mathcal{L}_{0}}p_{0} + \int_{0}^{t}e^{\lambda_{0}(t-s)}e^{(t-s)\mathcal{L}_{0}}N^{*}\mathrm{d}s = e^{\lambda_{0}t}e^{t\mathcal{L}_{0}}p_{0} + \int_{0}^{t}e^{\lambda_{0}t}e^{t\mathcal{L}_{0}}N^{*}\mathrm{d}s,$$

and take the limit above when  $t \to \infty$ . Since  $e^{s\mathcal{L}_0}$  is a contraction, the first term of the right hand side converges to 0, whereas the second one converges to

$$P_{\infty}^* := \int_0^\infty e^{-\lambda_0 s} e^{s\mathcal{L}_0} N^* \mathrm{d}s \in H.$$

Then, the limit state  $P_{\infty}^* \in H$  can be expressed using again Proposition 3.14, page 82 and Theorem 1.10, Chapter II of Engel and Nagel (1995) as  $P_{\infty}^* = (\lambda_0 - \mathcal{L}_0)^{-1} N^*$ , i.e.  $P_{\infty}^*$  is the solution to  $(\lambda_0 - \mathcal{L}_0)P = N^*$  or, equivalently, to  $\mathcal{L}P + N^* = 0$ .

#### References

- Barro, R. J. (2015). Environmental protection, rare disasters and discount rates. Economica, 82(325), 1-23.
- Barsky, R. B., Juster, F. T., Kimball, M. S., and Shapiro, M. D. (1997). Preference Parameters and Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement Study. *The Quarterly Journal of Economics*, 112(2), 537-579.
- Bawa, V.S. (1975). On optimal pollution control policies. Management Science, 21, 1397-1404.
- Bensoussan, A., Da Prato, G., Delfour, M.C. and Mitter, S.K. (2007). *Representation and Control of Infinite Dimensional Systems*. 2nd edition. Basel: Birkhäuser.
- Benchekroun, H., and Martin-Herran, G. (2016). The impact of foresight in a transboundary pollution game. European Journal of Operational Research, 251(1), 300-309.
- Bertinelli, L., Camacho, C., and Zou, B. (2014). Carbon capture and storage and transboundary pollution: A differential game approach, European Journal of Operational Research, 237 (2), 721-728.
- Boucekkine, R., Fabbri, G., Federico, S. and Gozzi, F. (2019a). A spatiotemporal framework for the analytical study of optimal growth under transboundary pollution. Working Paper 2019-26, AMSE.
- Boucekkine R., Fabbri G., Federico S. and Gozzi F. (2019b). Growth and agglomeration in the heterogeneous space: a generalized AK approach. Journal of Economic Geography, 19 (6), 1287–1318.
- Brezis H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer.
- Cohen, A., and Hurter, A. P. (1974). An input-output analysis of the costs of air pollution control. Management Science, 21 (4), 453-461.
- Davis, D., Krupnick, A., and McGlynn, G. (Eds.), 2001. Ancillary benefits and costs gas mitigation. In: Proceedings of an IPCC Co-Sponsored Workshop,27–29 March 2000. Organization for Economic Co-Operation and Development,Washington, DC
- Engel K.J., Nagel R. (1995). One-parameter Semigroups for Linear Evolution Equations., Graduate Texts in Mathematics 194, Berlin: Springer.
- de Frutos J., Martin-Herran G. (2019a). Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. Journal of Environmental Economics and Management, 97, 182-207.
- de Frutos, J., López, P. and Martin-Herran, G. Equilibrium strategies in a multiregional transboundary pollution differential game with spatially distributed controls. arXiv preprint arXiv:1912.00481 (2019b).
- Fabbri, G. (2016). Geographical structure and convergence: A note on geometry in spatial growth models. Journal of Economic Theory, 162(1), 114-136.
- IMF (2019). World economic outlook database.
- La Torre D., Liuzzi D., Marsiglio, S. Transboundary Pollution Externalities: Think Globally, Act Locally?. arXiv preprint arXiv:1910.04469 (2019).
- Morgenstern, R., Krupnick, A., and Zhang, X. (2004). The ancillary carbon benefits of SO2 reductions from a small-boiler policy in Taiyuan, PRC. Journal of Environment and Development, 13, 140-155
- Perry, W. H. and Tabor, E. C. (1962). National air sampling network measurement of SO2 and NO2. Archives of Environmental Health: An International Journal, 4(3), 254-264.
- Stokey N. (1999). Are there limits to growth? International Economic Review, 39, 1-31.
- Versino, B. and Angeletti, G. (Eds.). (2012). Physico-Chemical Behaviour of Atmospheric Pollutants: Proceedings of the Third European Symposium. Springer Science and Business Media.

Xu, Y., and Masui, T. (2009). Local air pollutant emission reduction and ancillary carbon benefits of SO2 control policies: Application of AIM/CGE model to China. European Journal of Operational Research, 198(1), 315-325.

#### FIGURES



FIGURE 1. Numerical illustration of the situation in which input productivity is higher in a technologically more developed core and lower in the periphery, the peak in productivity is 10 pc higher than the floor value (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are:  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 6$ ,  $\varphi = 0.05$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 2. Numerical illustration of the situation in which input productivity is higher in a technologically more developed core and lower in the periphery, the peak in productivity is 66 pc higher than the floor value (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are:  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 6$ ,  $\varphi = 0.05$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 3. Numerical illustration of the situation in which depollution efficiency is higher in a certain core and lower in the periphery (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are: a = 3,  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 6$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 4. Numerical illustration of the situation in which both input productivity and depollution efficiency are higher in a technologically more developed core and lower in the periphery (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are:  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 6$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 5. Numerical illustration of the situation in which natural decay is higher in a region and lower in the remaining part of the surface (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are: a = 3,  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 6$ ,  $\varphi = 0.05$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 6. Numerical illustration of the situation in which input productivity is higher in a region and lower in the remaining part of the surface (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are:  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.4$ , w = 1,  $\gamma = 0.5$ ,  $\varphi = 0.05$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.



FIGURE 7. Numerical illustration of the situation in which both input productivity and depollution efficiency are higher in a region and lower in the remaining part of the surface (all other exogenous parameters being homogeneous in space). The spatial optimal distribution of economic and environmental relevant variables, the relations between production and net emissions and production and abatement are represented. The values of other parameters (constant over space) are:  $\rho = 0.03$ ,  $\sigma = 0.5$ ,  $\delta = 0.2$ , w = 1,  $\gamma = 0.5$ ,  $\theta = 0.2$ . Dashed lines are related to the no-diffusion benchmark.