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Abstract

This paper proposes novel inference procedures for instrumental variable models in
the presence of many, potentially weak instruments that are robust to the presence
of heteroskedasticity. First, we provide an Anderson-Rubin-type test for the entire
parameter vector that is valid under assumptions weaker than previously proposed
Anderson-Rubin-type tests. Second, we consider the case of testing a subset of para-
meters under the assumption that a consistent estimator for the parameters not
under test exists. We show that under the null the proposed statistics have Gaussian
limiting distributions and derive alternative chi square approximations. An extensive
simulation study shows the competitive finite sample properties in terms of size and
power of our procedures. Finally, we provide an empirical application using college
proximity instruments to estimate the returns to education.
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§Department of Business Sciences, Piata Libertătii 1, 530104 Miercurea Ciuc, Romania, sandorz-

solt@cs.sapientia.ro



1 Introduction

The performance of test statistics based on instrumental variable (IV) models crucially

depends on the quality and quantity of said IVs. In the presence of weak instruments,

standard test statistics tend to deliver unreliable results. It is also well known that the

number of instruments used in the construction of such tests plays a key role (see, e.g.,

Kleibergen, 2002, and references therein).

The Anderson-Rubin test (Anderson and Rubin, 1949, henceforth AR) is one of the

most widely used statistics in the context of IV. Notoriously, this approach has the ad-

vantage of being robust to the presence of weak instruments. However, when the number

of instruments grows larger than the number of parameters, the performance of the AR

test starts deteriorating (e.g., Anatolyev and Gospodinov, 2011).The presence of hetero-

skedasticity may exacerbate the problem.

Over the years a number of improvements on the basic formulation of the AR test have

been introduced (see, e.g., Staiger and Stock, 1997; Wang and Zivot, 1998; Zivot et al.,

1998; Kleibergen, 2002; Stock et al., 2002; Andrews et al., 2006; Moreira, 2009; Andrews

et al., 2019). However, those tests do not consider the framework when the number of

instruments grows with the sample size.

Anatolyev and Gospodinov (2011) study the limiting behavior of the AR and Sargan

statistic under Bekker’s many instruments framework (Bekker, 1994). Under conditional

homoskedasticity they find that their test statistics are asymptotically normal and that

the resulting limiting distributions depend on λ = limn→∞ k/n, 0 < λ < 1 where k is the

number of instruments and n is the sample size. Since the tests may display some size

distortion when λ is close to either zero or one, the authors propose a suitable chi square

approximation. Donald et al. (2003) and Andrews and Stock (2007) obtain similar results

where the instruments are allowed to grow at slower rates.

Probably, the paper closest to ours is that of Chao et al. (2014), where the authors pro-

pose an overidentification test for many (weak) instruments and heteroskedasticity that
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exploits the properties of the jackknife IV estimator (see Hausman et al., 2012). The

framework in Chao et al. (2014) is sufficiently general to include the Bekker’s many instru-

ments case, the many weak instruments case of Chao and Swanson (2005) and instruments

that are either weak or strong. Furthermore, the ratio k/n is bounded and the number of

instruments cannot grow faster than the square of the concentration parameter.

Newey and Windmeijer (2009) study generalized empirical likelihood and generalized

method of moments methods in a model with moment restrictions and show that the tests

of Guggenberger and Smith (2005) and Kleibergen (2005) have canonical chi square limits

even when the number of instruments goes to infinity. However, the rate of growth of the

instruments is slower than that in Chao et al. (2014). In a recent paper Bun et al. (2018)

propose a general version of the AR test based on an Edgeworth expansion argument both

for k fixed and, in the homoskedastic linear model case, for k →∞. We are not aware of

any other studies that generalize the AR test to the case of many instrumental variables

and heteroskedasticity.

The objective of this paper is to construct test statistics for the parameter vector of

a linear IV model in the presence of many, potentially weak instruments and heteroske-

dasticity. The starting point of our work is the paper by Bekker and Crudu (2015). The

analysis is closely related to the papers by Hausman et al. (2012) and Chao et al. (2014).

First of all, we show that the many-instrument results in Anatolyev and Gospodinov

(2011) are no longer valid under heteroskedasticity. Then, we propose a test statistic

to test null hypotheses on the full vector of parameters associated to both endogenous

and exogenous variables and a test statistic to test null hypotheses on a subset of the

parameters of the model (see e.g., Guggenberger et al., 2012). In the latter case we assume

the existence of a plug-in estimator that is consistent under the null hypothesis. We

also allow for heteroskedasticity of unknown form. In this sense, our test statistics may

be seen as generalizations of the AR test. The first statistic we introduce refers to the

whole parameter vector and, under the null, does not explicitly depend on the convergence

properties of the concentration parameter. On the other hand, the second test statistic is
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built to test a subset of the parameter vector and relies on a consistent plug-in estimator.

In this case, when the plug-in is an IV estimator, the concentration parameter plays a role

in the limiting properties of the test. The assumptions on the concentration parameter

match those in Bekker and Crudu (2015) and are rather similar to those in Hausman

et al. (2012). To the best of our knowledge there is no other test on only a subset of the

parameter vector in IV models with many, potentially weak instruments that allow for

the presence of heteroskedasticity (for the fixed instruments model see e.g., Guggenberger

et al., 2012,0).

The plan of the paper is as follows. Section 2 introduces the model, Section 3 describes

the test statistics, the main asymptotic results and the associated assumptions. Section 4

and Section 5 contain the simulation results and an empirical application using the college

proximity instruments of Card (1995), respectively. Section 6 concludes the paper. Proofs,

auxiliary results and figures are relegated to the Appendix and some additional material

is available in an online Supplemental Appendix.

2 The IV model

Let us consider the model

y = Xβ + ε (1)

X = ZΠ +U (2)

where y is a vector of dimension n and X is a n × g matrix. Throughout the paper it is

assumed that the n× k matrix of instruments Z is nonstochastic and E[X] = ZΠ , where

the components of Π are allowed to vary with the sample size n. Such assumptions are

made for convenience and may be generalized.1 The rows of the disturbance couple (ε,U),

1We may, for example, consider Z to be stochastic and in this case E[X] should be interpreted as a
conditional expectation with respect to Z. The linearity of E[X] may also be relaxed as suggested in, e.g.,
Bekker (1994) and Chao et al. (2014).
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say (εi,U
′
i) i = 1, . . . , n, are independent with zero mean and covariance matrices

Σi =

 σ2
i σi12

σi21 Σi22

 (3)

while the covariance matrix of the rows (yi,X
′
i) are

Ωi =

1 β′

0 Ig

Σi

1 0

β Ig

 . (4)

3 Asymptotic results

In this section we introduce a set of assumptions that are used to prove our asymptotic

results. Furthermore, we generalize a result due to Anatolyev and Gospodinov (2011)

to the heteroskedastic case and we introduce our main results. In addition to that, we

compare our assumptions with those introduced in other related papers and we comment

on the behavior of the proposed tests when some critical assumptions are violated.

The assumptions we use are similar to those in Bekker and Crudu (2015). Additional

assumptions are included to generalize some results due to Anatolyev and Gospodinov

(2011). In what follows it is understood that the generic positive constant cu may be

different in different situations.

Assumption 1. The generic diagonal element Pii of the projection matrix P = Z(Z ′Z)−1Z ′

satisfies maxi Pii ≤ 1− 1/cu, with 1 < cu <∞. In addition, k →∞ as n→∞.

Assumption 2. The variances satisfy σ2
i ≥ σ2 with 0 < σ2 <∞ , for any i.

Assumption 3. E[ε4i ] ≤ cu and E
[
‖Ui‖4

]
≤ cu with 0 < cu <∞, for any i.

Assumption 1 is a technical condition on the projection matrix P . It requires the main

diagonal elements of P to be bounded away from 1. This assumption is rather standard

in the literature (e.g., Hausman et al., 2012; Bekker and Crudu, 2015) and is strictly
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weaker than the so called asymptotic balanced design (see Anatolyev, 2018) imposed, for

example, in Anatolyev and Gospodinov (2011) and Bun et al. (2018) according to which

all the diagonal elements of the projection matrix converge to the same constant. The

assumption k → ∞ as n → ∞ formalizes the many instruments idea in a way that is

known as Bekker asymptotics. Assumption 2 and Assumption 3 are standard regularity

conditions; the former bounds variances of the disturbances away from zero, while the

latter bounds the fourth moments of the errors.

3.1 The AR test under heteroskedasticity

In this section we study the limiting distribution of the AR test statistics in the presence

of heteroskedasticity. In addition, our derivation implies that the test statistics we propose

in Section 3.2 are also valid under homoskedasticity.

The AR statistic is a popular choice to test a null hypothesis defined as H0 : β = β0.

The statistic is defined as

AR = (n− k)
ε′0Pε0

ε′0 (In − P ) ε0
(5)

and, under certain assumptions, it is asymptotically chi square distributed with k degrees

of freedom. In the many instruments context and in the presence of homoskedasticity, the

behavior of the AR test has been studied by Andrews and Stock (2007) and Anatolyev

and Gospodinov (2011), among others. The following result generalizes the results in

Lemma 1 of Anatolyev and Gospodinov (2011) to the heteroskedastic case. Let us define

σ2
n = 1

n

∑n
i=1 σ

2
i and Wn = 2

k

∑
i 6=j P

2
ijσ

2
i σ

2
j .

Proposition 1. Suppose that Assumption 3 is satisfied, λ = limn→∞
k
n
< 1 exists and

1
k

∑n
i=1(Pii−

k
n
)2 → 0, 1√

k

∑n
i=1(Pii−

k
n
)σi

2 → 0 hold.2 In addition, assume that limn→∞ σ
2
n =

2The assumption 1√
k

∑n
i=1(Pii− k

n )σi
2 → 0 is needed here in order for the expected value of the statistic

to converge to 0 because this does not always hold. In Example B.1 in the Supplemental Appendix we
provide an instance when this property is violated in the context of indicator instruments (Bekker and
Van der Ploeg, 2005).
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σ2
0 and limn→∞Wn = W0 exist. Then the statistic ARAG =

√
k
(
AR
k
− 1
)

proposed by

Anatolyev and Gospodinov (2011) has the limit 3

ARAG
d→ N

(
0,

W0

σ4
0 (1− λ)2

)
.

Remark 1. The asymptotic distribution result in Proposition 1 has two important implic-

ations. First, the asymptotic size of this test is

Pr
(
ARAG > Φ−1 (1− α)

)
= Pr

(
σ2
0 (1− λ)√

W0

ARAG <
σ2
0 (1− λ)√

W0

Φ−1 (α)

)
→ Φ

(
σ2
0 (1− λ)√

W0

Φ−1 (α)

)
.

Second, the test statistic T1 proposed in Section 3.2 has broader applicability than that

proposed by Anatolyev and Gospodinov even under homoskedasticity. This is because its

asymptotic distribution requires the assumption that the main diagonal elements Pii, i =

1, ..., n, of the projection matrix P should be bounded away from 1. The test statistic

proposed by Anatolyev and Gospodinov (2011) requires the stronger assumption that the

main diagonal elements of P converge to λ. This difference in the assumptions comes

from the fact that the former test statistic does not involve the diagonal elements of P

while the latter statistic does. The following example clarifies this concept.

Example 1. Consider indicator instruments with unequal group sizes (Bekker and Van

der Ploeg, 2005). Anatolyev and Yaskov (2017, Section 5.1) show that in this case the

main diagonal elements of P do not converge to λ. In the Supplemental Appendix we show

that under homoskedasticity the convergence in distribution
√
k
(
AR
k
− 1
) d→ N

(
0, 2

1−λ

)
is

violated.

3We note that under homoskedasticity

σ2
n√
Wn

→ σ2√
2 (1− λ)σ2

=
1√

2 (1− λ)
, so

√
k

(
AR

k
− 1

)
d→ N

(
0,

2

1− λ

)
,

which is exactly as in Lemma 1 of Anatolyev and Gospodinov (2011).
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3.2 Inference with heteroskedasticity and many instruments

In this section we present the main results. First, we present our test on the entire para-

meter vector. Then, we consider the more challenging case where we test the null on a

subset of the coefficients; in this case we assume that a consistent plug-in estimator exists

for the parameters not under test. Furthermore, we study our tests when the number of

instruments is fixed. Finally, we briefly discuss the behavior of our “subset” test for some

commonly encountered specific plug-in estimators and in some pathological situations.

The test statistics proposed in this paper are related to the symmetric jackknife in-

strumental variable estimator (SJIVE) proposed by Bekker and Crudu (2015). The SJIVE

estimates consistently, in the many (weak) instruments sense, the parameter vector β and

it is defined as

β̂SJIV E = arg min
β

QSJIV E(β) = arg min
β

(y −Xβ)′C(y −Xβ)

(y −Xβ)′B(y −Xβ)
(6)

and, given the projection matrix P and the diagonal matrix D containing the diagonal

elements of P ,

C = A−B, A = P +∆, B = (In − P )D(In −D)−1(In − P ),

∆ = PD(In −D)−1P − 1

2
PD(In −D)−1 − 1

2
D(In −D)−1P .

Consider now testing the null hypothesis H0 : β = β0, where β is the true parameter

vector.

The test statistic we propose is based on the numerator of the objective function in

equation (6), namely,

Q(β) = (y −Xβ)′C(y −Xβ), (7)
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and it is defined as

T1 =
1√
k

(y −Xβ0)
′C(y −Xβ0)√
V̂ (β0)

, V̂ (β0) =
2

k
ε
(2)′

0 C(2)ε
(2)
0 (8)

where ε0 = y−Xβ0 and the superscript “(2)” indicates the elementwise product of two con-

formable matrices or vectors. The following theorem provides the asymptotic distribution

of the T1 test statistic. 4

Theorem 1. If Assumptions 1, 2, 3 are satisfied, then under H0 : β = β0 we have

T1
d→ N (0, 1).

Let us now consider a nominal level α and let zα be the α-th quantile of the normal

distribution. Then, the null hypothesis is rejected if T1 ≥ z1−α.

Sometimes one is interested only in performing inference on a subset of parameters. In

particular, we would like to test the coefficients associated to the endogenous variables.

Let us now define the parameter vector as β = (β′1,β
′
2)
′ and suppose we want to test the

following null hypothesis

H0 : β1 = β10 (9)

in the model

y = Xβ + ε = X1β1 +X2β2 + ε

where the dimensions of X1 and X2 are n × g1 and n × g2 respectively with g = g1 + g2.

Let y0 = y −X1β1 so that under the null hypothesis the model becomes

y0 = X2β2 + ε.

4We could apply the same type of analysis by replacing C with P −D as in Chao et al. (2014). We do
not pursue that avenue since, as suggested in Bekker and Crudu (2015), C allows us to retain the whole
signal matrix.
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Accordingly, the reduced form model corresponding to X2 is

X2 = ZΠ2 +U2,

where Π2 and U2 both have g2 columns. Further, let

H = Π ′Z ′ZΠ =

 H11 H12

H ′12 H22

 ,

denote the signal matrix and let H22 = Π ′2Z
′ZΠ2, which has dimension g2 × g2.

We assume that a consistent estimator for β2, say β̃2, exists. If the variables associated

to β2 are exogenous, the OLS estimator is a valid candidate. However, if this is not the case,

we need a suitable IV estimator. Under the null, a consistent estimator is, for example,

the SJIVE. For the null hypothesis H0 : β1 = β10 consider β̃ =
(
β′10, β̃

′
2

)′
, ε̃ = y −Xβ̃

and let the modified test statistic, denoted as T2, be

T2 =
1√
k

ε̃′Cε̃√
V̂ (β̃)

, where V̂ (β̃) =
2

k
ε̃(2)

′
C(2)ε̃(2). (10)

Let now rmin = λmin(H22) and rmax = λmax(H22) be the smallest eigenvalue and the

largest eigenvalue of H22, respectively. Moreover, let us define a generic constant κ such

that 0 ≤ κ <∞.

Assumption 4. k/rmin → κ, rmax/k → κ when n→∞.

Assumption 5. rmax/k → κ, rmin/k → 0,
√
k/rmin → 0 when n→∞.

We have two remarks on these assumptions. First, Assumptions 4 and 5 are used in

conjunction with Assumption 1 (specifically, k → ∞ as n → ∞), and therefore, either of

them implies that rmin → ∞ and rmax → ∞ as n → ∞. Second, Assumptions 4 and 5

regulate the convergence of the plug-in IV estimator. When the growth rates of rmin and

rmax are the same, we are either in the many instruments framework of Bekker (1994) or
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in the many weak instruments framework of Chao and Swanson (2005). As in Chao et al.

(2014), the growth rates of rmin and rmax are allowed to vary.

The following theorem provides the asymptotic distribution of the T2 test.

Theorem 2. If Assumptions 1, 2, 3 and either 4 (many strong instruments case) or 5

(many weak instruments case) are satisfied, then T2
d→ N (0, 1).

Analogously to the T1 case, the null hypothesis is rejected if T2 ≥ z1−α.

It is important to derive the limiting distribution of our tests in case the number

of instruments does not grow with the sample size. The following theorem provides the

limiting distribution of T1 and T2 under the assumption that k is fixed and the error couple

(ε,U ) is homoskedastic.

Theorem 3. Let the disturbance couple (ε,U) be zero mean and homoskedastic and let

Assumption 3 hold. Furthermore, assume (i) k fixed and n → ∞, (ii) as n → ∞, Z′Z
n
→

ΣZZ a full rank non stochastic matrix, (iii) as n → ∞, X′Z
n
→p ΣXZ a non stochastic

matrix with rank(ΣXZ) = g, (iv) as n→∞, Z′ε√
n
→d N (0, σ2ΣZZ). Then

√
2kT1 + k →d

χ2
k. If β̃2 is the two-stage least squares estimator, then

√
2kT2 + k →d χ

2
k−g2 .

While the Gaussian approximation may work well in finite samples, it does not allow us

to control for the number of instruments. This, as stressed in Anatolyev and Gospodinov

(2011), may be an important issue. The following corollary shows how to obtain a chi

square approximation for T1 and T2.

Corollary 1. If the assumptions of Theorem 1 hold true, then (i)
√
kT1 + k →d χ

2
k. If the

assumptions of Theorem 2 hold true, then (ii)
√
kT2 + k →d χ

2
k, (iii)

√
kT2 + k →d χ

2
k−g2

or (iv)
√
k − g2T2 + k − g2 →d χ

2
k−g2.

Corollary 1 shows that there are different possible chi square approximations for T2.

While approximation (iii) seems to be a natural candidate, also because it matches the

result in Theorem 3, it may not deliver the best results in finite samples. We expect, for
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example, that, when k is small, approximations (ii) and (iv) enjoy better finite sample

properties.5

The convergence properties of T1 are determined by the behavior of the diagonal ele-

ments of P and by the properties of the disturbances. The T2 test also depends on the

properties of the plug-in estimator of the parameters not under test. When the OLS es-

timator β̃2 = (X ′2X2)
−1X ′2y0 is a consistent plug-in estimator, that is, X2 is exogenous,

it is easy to show that T2 converges to a standard normal basically under the same as-

sumptions as those imposed in Theorem 1. No further assumptions on the strength of the

instruments need to be imposed (see Theorem B.1 in the Supplemental Appendix for a

formal treatment). In the Supplemental Appendix (see Theorem B.2) we derive the limit-

ing distribution of T2 for the case when X2 is endogenous and the JIV1 estimator is used as

plug-in. The convenient expression of the JIV1 estimator allows us to explain why under-

rejection of the null hypothesis occurs in most cases (see Remark B.1 in the Supplemental

Appendix) and to better link the weak instrument assumption
√
k/rmin → 0 to the asymp-

totic distribution of T2 (see Remark B.2 in the Supplemental Appendix). Our derivation

suggests that the assumption
√
k/rmin → 0 is likely to be necessary for the asymptotic

standard normality of the statistic T2 (see Remark B.2). In Section 4.2 below we further

discuss the behavior of T2 in relation with the limiting behavior of
√
k/rmin. Specifically,

we illustrate that for relatively large
√
k/rmin the histogram of T2 differs substantially from

the standard normal density. Finally, in the case when the plug-in estimator converges

slowly to the true value we find that the density of T2 is shifted to the right causing the

test to overreject (see Example B.2 in the Supplemental Appendix).

3.3 Comparison with other tests

In this section we compare our set of assumptions with those used in some closely related

papers. Some papers provide a broad range of results and a certain degree of variation in

the specification of the assumptions. Therefore, for ease of presentation, some assumptions

5See Section C in the Supplemental Appendix for some Monte Carlo evidence.
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considered here are stronger than necessary (e.g., Newey and Windmeijer, 2009). In Table

1, we report the different assumptions imposed on the rate of convergence of the number

of instruments and the concentration parameter, and whether or not they are robust to

heteroskedasticity. Moreover, we distinguish between test statistics that consider null hy-

potheses on the full set of parameters or on a subset. We also report whether they allow for

instruments with unbalanced design. Finally, we only consider the case where the model

contains one endogenous variable. Thus, rmin = rmax = r and r = π′Z ′Zπ where r is the

scalar version of the signal matrix H and is proportional to the concentration parameter.

There is a certain degree of heterogeneity in the type of assumptions that we show

in Table 1. For example, Anatolyev and Gospodinov (2011) and Bun et al. (2018) use

Bekker’s framework. Our assumptions, on the other hand, are more in line with those

in Chao et al. (2014), with the difference that in our case r is bounded by k, while in

Chao et al. (2014) it is bounded by n.6 The assumptions in Andrews and Stock (2007)

and Newey and Windmeijer (2009) are to some extent similar to ours but generally their

rates tend to be slower. We also notice that only Newey and Windmeijer (2009) consider

AR-type tests that are robust to heteroskedasticity. Moreover, no test other than T2 seems

to explicitly consider the subset null hypothesis presented in Equation (9).

4 Monte Carlo simulations

In this Section we study the finite sample properties of the T1 and T2 tests in terms of size

and power (see Figures 1 and 2 for the results on size and Figures 3 to 6 for the results

on power).7 Further Monte Carlo results may be found in the Supplemental Appendix.

We make inference on the full parameter vector and on the sole parameter associated

to the endogenous variable. The proposed tests are compared to the version of the AR

test proposed by Anatolyev and Gospodinov (2011), denoted as ARAG, and the AR test

6They assume either n
r → κ or n

r → 0 and
√
k
r → 0 .

7The size properties of T1 and T2 are investigated by means of PP-plots as described in Davidson and
MacKinnon (1998).
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Table 1: Comparison of assumptions in the many instruments framework.

Subset k/n r Heteroskedasticity Unbalanced

instruments

Anatolyev and Gospodinov (2011) No k
n → λ, 0 < λ < 1 r

n → κ, κ ∈ (0,∞) No No

Andrews and Stock (2007) No k3

n → 0 r
kζ
→ κζ , κζ ∈ [0,∞) No Yes

ζ ∈ (0,∞)

Bun et al. (2018) No k
n → λ, 0 < λ < 1 – No No

Newey and Windmeijer (2009) No k2

n → 0 or k3

n → 0 n
r → κ or r

n → 0 Yes Yes
k
r bounded

T1 No k
n bounded – Yes Yes

T2 Yes k
n bounded k

r → κ or Yes Yes
r
k → 0,

√
k
r → 0

Notes: For simplicity we refer to the single endogenous variable case where r = π′Z ′Zπ = rmin = rmax and restrict ourselves
to tests that use k →∞. Bun et al. (2018) also propose tests for the fixed k case that are robust to heteroskedasticity. Andrews
and Stock (2007) and Newey and Windmeijer (2009) impose different set of assumptions depending on the problem considered
and the ones reported here might be stronger than necessary in some cases.

introduced in Bun et al. (2018) and defined as

ÃRdf = nĝ(β)′Ω̃df (β)−1ĝ(β) (11)

where Ω̃df (β) = n
n−kΩ̃(β), Ω̃(β) = Ω̂(β)−ĝ(β)ĝ(β)′ and Ω̂(β) = 1

n

∑n
i=1 g(β)g(β)′. The

moment condition model is defined as gi(β) = Zi(yi −X ′iβ) and ĝ(β) = 1
n

∑n
i=1 gi(β). In

the case of T1, T2 and ARAG, we use the corresponding chi square asymptotic distribution.8

This comparison is interesting for a number of reasons. First, we get a clearer idea on

how much we gain by using our tests in a heteroskedastic context. Second, we get some

important insights on how the considered test statistics work in the extreme cases where

k
n
≈ 0 and k

n
≈ 1. A priori, we may expect the ARAG to work well under homoskedasticity

and for moderately large values of k
n
, while it is probable that ÃRdf performs well also in

the heteroskedastic case.

Furthermore, we introduce a two parameter model with two endogenous regressors; this

model is used to study the role played by the boundary condition
√
k/rmin → 0 and by the

8Due to the results in Figure C.2 in the Supplementary Appendix, for T2 we use approximation (ii) in
Corollary 1.
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plug-in estimator in determining the behavior of T2 (see Figure 7 and Figure 8 in Appendix

B).

4.1 Data generating processes

Let us consider the Monte Carlo set up of Hausman et al. (2012). One of the features

of this experiment is that the sum of the diagonal elements of P does not converge to

λ = lim k
n
, as shown in Anatolyev and Yaskov (2017). The DGP is given by

y = ιγ + xβ + ε (12)

x = zπ + v

where γ = β = 1, while π = 0.1 in the analysis of size and π ∈ {0.1, 1} in the analysis of

power. The sample size is n = 800, z ∼ N (0, In) and independently v ∼ N (0, 0.12 × In).

The disturbances vector ε is generated as

ε = ρv +

√
1− ρ2
φ2 + ψ4

(φw1 + ψw2), (13)

where ρ = 0.3, ψ = 0.86 and conditional on z, independent of v, w1 ∼ N (0, Diag(z)2)

where Diag(z) is a diagonal matrix where the diagonal elements are the elements of z

and w2 ∼ N (0, ψ2In). Notice that, φ = 1.38072 implies heteroskedasticity, while φ = 0

corresponds to the homoskedastic case. The instrument matrix Z is given by matrices with

rows (1, zi, z
2
i , z

3
i , z

4
i ) and (1, zi, z

2
i , z

3
i , z

4
i , zib1i, . . . , zib`i), ` = 95, 695, where, independent

of other random variables, the elements b1i, . . . , b`i are i.i.d. Bernoulli distributed with

p = 1/2.9 We consider also two rather extreme situations: k = 2 and k = 700. We

replicate our experiments 5000 times. When using the T1 test and the T2 test we consider

H0 : (γ, β)′ = (1, 1)′ and H0 : β = 1 respectively.10

9The same set of instruments is used throughout the various repetitions.
10We computed results also for ` = 5, 15, 35, 55, 75 and we noticed that the p-value curves would converge

from the p-value curve associated to k = 5 to the p-value curve with k = 100. This result replicates in all
cases, including the power curves.
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The following DGP is used to explore the properties of the T2 test when the boundary

condition
√
k/rmin → 0 is violated and when the plug-in estimator is inconsistent. Let us

consider the following model

y = xβ +wγ + ε (14)

x = Zπx + ux, w = Zπw + uw.

Let us now suppose we want to test the null H0 : β = β0, define ηi = (εi, uxi, uwi)
′ and

assume that

ηi ∼ N




0

0

0

 ,


1 ρ ξ

ρ 1 0

ξ 0 1



 , Zi ∼ N (0, Ik), i = 1, . . . , n. (15)

We consider two cases.

1. In the first case we consider n = 400. In addition to that, we set ρ = 0.2, ξ = 0.3,

πx = πw =
√

R2

k(1−R2)
ιk, k = n/2 and R2 is chosen in such a way that

√
k

nπ′wπw
= 0.1

and
√
k

nπ′wπw
= 1.11 Finally, as a plug-in estimator we use the JIV1 estimator. The

number of replications is 5000.

2. The sample size is set to n = 400. Moreover, ρ = 0.2, ξ ∈ {0, 0.1, 0.2, 0.3}, k ∈

{2, 20, 200}, πx = πw =
√

R2

k(1−R2)
ιk with R2 = 0.2. Finally, as a plug-in estimator

we use the OLS estimator. The number of replications is 5000.

4.2 Simulation results

We first provide some interpretation of the simulations by separately analyzing the results

on size and power. Then we discuss the behavior of T2 when an inconsistent plug-in is

11The condition
√
k

nπ′
wπw

= 1 replicates the idea that the boundary condition
√
k/rmin → 0 is violated.

We did run simulations also for
√
k

nπ′
wπw

= 10 and n = 100, 200 finding similar results.
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used.

Size. Analyzing Figure 1 and Figure 2 we observe that, in general, T1 and T2 work well

in all the considered cases.12 The ÃRdf test, on the other hand, works well for most of the

cases but tends overreject when k is large. Finally, as expected, the ARAG test overrejects

for any value of k and its performance deteriorates as k increases.

Power. The power properties of the various test statistics display some interesting

patterns. When k = 2, 5, the T1 and the T2 tests along with the ÃRdf test are able to

discriminate among alternatives (Figure 3 to Figure 6 panels (a) and (b)). To some extent

the same could be said about the case where k = 100 (Figure 3 to Figure 6 panel (c)).

Finally, when k = 700, π = 0.1, the T1 and the T2 tests are unable to discriminate among

alternatives. More precisely, no test statistic among those considered seems to work well in

this case. However, when π = 1, the T1 and T2 tests tend to outperform their competitors

(Figure 3 to Figure 6 panel (d)). It is interesting to notice that the properties of T1 and

T2 are affected by a trade off between size and power with respect to k: as k grows the

empirical size approaches the nominal size, but the power curves tend to get wider. This

may be a problem when the instruments are weak as the tests may eventually have no

power for k large. When the instruments are stronger the effect of such a trade-off is less

severe and our tests work well even in the extreme case with k = 700.

Over/underrejection. The comparison of the histograms and QQ–plots in Figure 7

displays how the T2 test behaves when the boundary condition
√
k/rmin → 0 is violated.

In particular, we notice that the (empirical) density tends to be more leptokurtic with

respect to its asymptotic counterpart. This feature induces the test to underreject. On the

other hand, the plots in Figure 8 show the behavior of the T2 statistic when a slow plug-in

estimator is used. We notice that the use of OLS instead of a more appropriate IV estimator

causes T2 to overreject. In particular, T2 overrejects more as ξ increases. Furthermore, we

notice that the overrejection tendency is mitigated by the increased number of instruments.

12It is worth noticing that, in general, for the hypothesis H0 : β1 = β10 all the tests tend to underreject
for small values of k.
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Violation of the boundary condition. Figure 7 illustrates the behavior of the T2

test with a small
√
k/rmin (Figure 7(a)) and a large

√
k/rmin (Figure 7(b)). In the latter

case, the histogram of T2 differs substantially from the one of a standard normal density,

suggesting that
√
k/rmin → 0 is important for the asymptotic normality of our test.

5 Empirical application

In this section we apply our methods to the data from the National Longitudinal Survey

of Young Men (NLSYM) used by Card (1995) to estimate the returns to education. The

data set includes 3010 observations and 35 variables.13

We consider two different models to estimate the returns of education. Both models

assume that the log of wages (wage) is a linear function of education measured in years of

schooling (school) and a set of exogenous variables x, namely

log(wagei) = βschooli + x′iγ + εi.

Similar to Kleibergen (2004), x includes a constant and binary variables for race, residence

in a metropolitan area, and residence in the south of the United States as well as IQ

test score. As experience is measured simply as age − school − 6 in this data, we do not

use it as a control variable in our models. 14 For the instruments, following once again

Kleibergen (2004), in our first specifications we use age and age square and two variables

that indicate college proximity. The exogeneity of the college proximity instruments is

somewhat questionable for several reasons. For example, areas with a high prevalence of

people with high unobserved ability may be more likely to have a college nearby. Card

(1995) argues that including other observable characteristics, as we do, should mitigate this

issue. However, we cannot completely exclude the potential endogeneity of our instruments.

13The data are from the R package ivmodel of Jiang et al. (2016).
14Another reason not to control for experience when estimating returns of education, at least in this

data, is that experience is mechanically an outcome of education and it is therefore a bad control as
discussed for example in Angrist and Pischke (2008).
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In our second specification, we generate additional excluded instruments by interacting age,

age squared, and the two college proximity variables with the geographical indicators and

race. In the first specification, the instrument set includes four variables, while in the

second it includes fourteen variables.

It is very likely that the variance of the error depends on the exogenous variables

which motivates the use of our T2 test for inference. For example, it appears very plausible

that the conditional variance of the unobservables driving wages differ by college proximity,

location as well as race. We run our T2 statistic, using both the chi square (T2) and Gaussian

(T gauss2 ) approximations, the ARAG statistic of Anatolyev and Gospodinov (2011), the ÃRdf

statistics of Bun et al. (2018), and the standard AR statistic to test 301 equidistant values

in the interval [0, 3] for the coefficient of education β. The results for the model with four

instruments are reported in Figure 9. With only 4 excluded instruments all the tests give

very similar results, in particular they are not able to reject values in the (approximate)

interval [.5, 1.5], at the 5% significance level, and in the (approximate) interval [.5, .1], at

the 10% significance level. The implied effects of education on wages are much higher than

the one found in Card’s study who, however, includes experience (which is arguably a “bad

control”) in his model. However, the large effects implied by our models are in line with

the one found in Imbens and Rubin (1997).

The results with fourteen instruments are reported in Figure 10. Probably due to the

presence of heteroskedasticity, adding instruments deteriorates the performances of the

AR, ARAG, and ÂRdf tests, which reject every single value of β at the 10% significance

level. On the other hand, increasing the number of instruments does not seem to have

a big impact on our T2 and T gauss2 tests. These results are in line with what we find in

our simulation study where, with strong heteroskedasticity, the performances of the ARAG

deteriorates when we increase the number of instruments and the ÂRdf tends to overreject

with many instruments.
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6 Conclusion

This paper introduces two test statistics for the parameters of a linear model in the presence

of endogeneity, heteroskedasticity and many, potentially weak, instruments. The tests

are easy to build as they are based on the numerator of the SJIVE estimator proposed

by Bekker and Crudu (2015). We prove that, after appropriate rescaling, the limiting

distribution of the test statistics are standard normal. Moreover, simulation evidence

shows that, in finite samples, the proposed tests generally outperform their competitors,

such as the AR tests proposed in Anatolyev and Gospodinov (2011) and in Bun et al.

(2018).

In our empirical application, the standard AR test and its modification by Anatolyev

and Gospodinov (2011), probably due to the presence of heteroskedasticity, reject every

single value chosen for the null when we increase the number of instruments from four to

fourteen. On the other hand, our proposed statistic provides similar results independently

of the number of instruments used.

The tests we propose can be applied broadly to any linear overidentified IV model

and they are particularly appealing for the growing literature using genetic markers as

instruments, see for example Von Hinke et al. (2016). In this literature, the number of

instruments is potentially very large and the instruments are typically weak, a framework

where our tests potentially outperform existing methods. Another potential field of ap-

plication for our tests is the framework of Kang et al. (2016) and Windmeijer et al. (2017)

where inference is carried out after a potentially large set of valid instruments is selected

via LASSO.
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Appendix

A Proofs of main results

This section contains the proofs of the main theorems and some auxiliary results. In what

follows it is understood that O is a conformable matrix of zeros and that the abbreviations

LLN, CLT and IID stand for law of large numbers, central limit theorem and independently

and identically distributed respectively. In addition to that,
∑

i 6=j is a double sum for

i, j = 1, . . . , n that excludes the same index elements and
∑

i,j,k,` replaces the quadruple

sum
∑n

i=1

∑n
j=1

∑n
k=1

∑n
`=1. Triple sums are defined similarly.

Proof of Proposition 1. Under H0 : β = β0 we have

√
k

(
AR

k
− 1

)
=

1√
k

(
n−k
k
ε′Pε− ε′ (I − P ) ε

)
1
k
ε′ (I − P ) ε

=
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

1
k
ε′ (I − P ) ε

. (16)

Note that

1√
k

(
ε′Pε− k

n
ε′ε

)
=

1√
k

∑
i 6=j

Pijεiεj +
1√
k

n∑
i=1

(
Pii −

k

n

)
ε2i ≡ E1 + E2. (17)

We can apply the CLT from (Chao et al., 2012, Lemma A2) to the quadratic form

R =
∑
i 6=j

Pijεiεj

involved in E1. We obtain that

R√
kWn

d→ N (0, 1) ,

where

Wn =
Var[R]

k
=

2

k

∑
i 6=j

P 2
ijσ

2
i σ

2
j

20



with the property that

1

k
Var[R] =

2

k

∑
i 6=j

P 2
ijσ

2
i σ

2
j ≥

2σ4

k

∑
i 6=j

P 2
ij ≥

2σ4

cu
,

(the latter inequality comes from (22)), which is bounded away from 0. Consequently, Wn

is bounded between two positive numbers. We obtain that E1/
√
Wn

d→ N (0, 1).

Regarding E2, by the assumption 1√
k

∑n
i=1(Pii −

k
n
)σi

2 → 0 we have

E[E2] =
1√
k

n∑
i=1

(
Pii −

k

n

)
σ2
i → 0.

Further, by Assumption 3

Var[E2] =
1

k

∑
i

(
Pii −

k

n

)2

Var
[
ε2i
]
≤ cu

k

n∑
i=1

(
Pii −

k

n

)2

.

Using the assumption 1
k

∑n
i=1

(
Pii − k

n

)2 → 0, we obtain that Var[E2] = o (1). Then by

Chebyshev’s inequality E2 = op (1). Therefore,

E1 + E2√
Wn

d→ N (0, 1) . (18)

Regarding the denominator involved in (16) we observe that

1

k
ε′ (I − P ) ε =

1

k

(
1− k

n

)
ε′ε− 1

k
ε′
(
P − k

n
I

)
ε.

The second term is just the expression from (17) divided by
√
k, that is,

1

k
ε′ (I − P ) ε =

1

k

(
1− k

n

)
ε′ε− 1√

k
(E1 + E2) =

1

k

(
1− k

n

)
ε′ε+Op

(
1√
k

)
.
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Using Assumption 3 and the LLN, using the notation

σ2
n =

1

n

n∑
i=1

σ2
i

we have that

1

n
ε′ε− σ2

n = Op

(
1√
k

)
. (19)

Consequently,

1

k
ε′ (I − P ) ε =

n

k

(
1− k

n

)
σ2
n +Op

(
1√
k

)
.

Now, from equation (16) and the fact that n
k

(
1− k

n

)
σ2
n is bounded between two positive

numbers, we have

√
k

(
AR

k
− 1

)
=
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

n
k

(
1− k

n

)
σ2
n

+
n

k

1√
k

(
ε′Pε− k

n
ε′ε
)

n
k

(
1− k

n

)
σ2
n

(
n
k

(
1− k

n

)
σ2
n

1
k
ε′ (I − P ) ε

− 1

)

=
E1 + E2(
1− k

n

)
σ2
n

+ op (1) .

Therefore, collecting the above results we obtain that

(
1− k

n

)
σ2
n√
Wn

√
k

(
AR

k
− 1

)
=
E1 + E2√

Wn

+ op (1) ,

which by (18) implies that

(
1− k

n

)
σ2
n√
Wn

√
k

(
AR

k
− 1

)
d→ N (0, 1) . (20)

Since we assume that limn→∞ σ
2
n = σ2

0 and limn→∞Wn = W0 exist, we obtain the result.

In the proof of Theorem 1 we use the following CLT, which, as argued by Bekker and

Crudu (2015, Appendix A.4) can be proved in a way similar to Lemma A2 from Chao et al.
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(2012).

Lemma A.1. Consider the quadratic form Q =
∑

i 6=j Cijεiεj, where Cij is the (i, j) element

of matrix C that is symmetric and has zero main diagonal elements. Suppose that there is

a matrix P that is symmetric, idempotent, Pii ≤ cu < 1, |Cij| ≤ cu|Pij| for any i 6= j, and

rank(P ) = k, where k → ∞ as n → ∞, and the following properties hold: (a) E [εi] = 0

and ε1, ..., εn are independent; (b) E [ε4i ] <∞; (c) 1
k

Var[Q] ≥ cu > 0. Then,

Q√
Var[Q]

d→ N (0, 1) .

Lemma A.2. Let V̂ (β0) = 2
k
ε
(2)′
0 C(2)ε

(2)
0 . If Assumptions 1, 3 hold, V̂ (β0) − Vn =

Op

(
1√
k

)
; consequently V̂ (β0)− Vn

p→ 0, where

Vn =
2

k

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j .

(For a proof see Supplemental Appendix A.)

Proof of Theorem 1. Under the null hypothesis we have

E [ε′0Cε0] = 0,

Var [ε′0Cε0] = E
[
(ε′0Cε0)

2
]

= 2
n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j ≡ kVn.

We verify the conditions of the CLT stated in Lemma A.1 for C and P defined in Sec-

tion 2. The properties of C and P hold by definition, Assumption 1 and the fact that

|Cij| =
|Pij |
2

(
1

1−Pii + 1
1−Pjj

)
≤ cu |Pij| for any i, j, (see the proof of Lemma A.2 in the

Supplemental Appendix).

Further, (a) is clearly satisfied; (b) is satisfied due to Assumption 3. Regarding (c) note

that by Assumption 2

1

k
Var [Q] ≡ Vn =

2

k

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j ≥

2σ4

k

n∑
i=1

n∑
j=1

C2
ij,
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where

n∑
i=1

n∑
j=1

C2
ij =

∑
i 6=j

P 2
ij

4

(
1

1− Pii
+

1

1− Pjj

)2

≥
∑
i 6=j

P 2
ij

4
(1 + 1)2 =

∑
i 6=j

P 2
ij

=
n∑
i=1

n∑
j=1

P 2
ij −

n∑
i=1

P 2
ii = tr (P )−

n∑
i=1

P 2
ii = k −

n∑
i=1

P 2
ii. (21)

By Assumption 1

n∑
i=1

P 2
ii ≤ maxPii

n∑
i=1

Pii ≤ (1− 1/cu) tr (P ) = (1− 1/cu) k. (22)

So

n∑
i=1

n∑
j=1

C2
ij ≥ k/cu,

therefore,

1

k
Var [Q] ≥ 2σ4

cu
,

which is bounded away from 0. In this case we can apply the CLT in Lemma A.1 and

complete the proof by using Lemma A.2.

For the proof of Theorem 2 we need the following results (for proofs see Supplemental

Appendix A).

Lemma A.3. Let V̂
(
β̃
)

= 2
k
ε̃(2)′C(2)ε̃(2). If β̃

p→ β and Assumptions 1, 3 hold, then

V̂
(
β̃
)
− Vn

p→ 0.

Lemma A.4. Under Assumptions 1, 3

1. E [X ′2CX2] = H22, Var [X ′2CX2] ≤ cuH22 + cukIg2 + curmaxIg2,

2. E [X ′2Cε] = 0, Var [X ′2Cε] ≤ cuH22 + cukIg2.

Before proceeding to the proof of Theorem 2 we present some general facts that are

used in the proofs of several results below. Consider a plug-in estimator β̃2 of β2 and, as
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above, let β̃ =
(
β′1, β̃

′
2

)′
. Notice that under H0 : β1 = β10 it holds that

X
(
β̃ − β

)
= X1 (β10 − β1) +X2

(
β̃2 − β2

)
= X2

(
β̃2 − β2

)
,

so the residual vector can be written as

ε̃ = y −Xβ̃ = ε−X
(
β̃ − β

)
= ε−X2

(
β̃2 − β2

)
.

The statistic T2 can be rewritten as

T2 =
1√
k

ε′Cε√
V̂ (β)


√
V̂ (β)√
V̂
(
β̃
) − 1

+
1√
k

∆√
V̂
(
β̃
) +

1√
k

ε′Cε√
V̂ (β)

(23)

≡ B1 +B2 +B3,

where

∆ =
(
β̃2 − β2

)′
X ′2CX2

(
β̃2 − β2

)
− 2

(
β̃2 − β2

)′
X ′2Cε. (24)

The first term is equal to

B1 =
1√
k

ε′Cε√
V̂ (β)

√
V̂ (β)−

√
V̂
(
β̃
)

√
V̂
(
β̃
) ,

where from Lemma A.3 and the consistency of the plug-in it follows that

√
V̂ (β) −√

V̂
(
β̃
)

= op (1), while since Vn is bounded away from 0 by Assumption 3, it follows

that 1/

√
V̂
(
β̃
)

= Op (1). Theorem 1 implies that 1√
k
ε′Cε√
V̂ (β)

= Op (1), so B1 = op (1).

Regarding B3, from Theorem 1 we have that B3 →d N (0, 1).

Consequently, if the plug-in estimator β̃ is consistent then under Assumptions 1, 3 we
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have B1 = op (1) and B3 →d N (0, 1). In order to derive the asymptotic distribution of T2

we need to study the term B2.

Proof of Theorem 2. Note that the first term from ∆ in (24) is

(
β̃2 − β2

)′
X ′2CX2

(
β̃2 − β2

)
=
(
β̃2 − β2

)′
H

1/2
22 H

−1/2
22 X ′2CX2H

−1/2
22 H

1/2
22

(
β̃2 − β2

)
.

(25)

First we show that H
−1/2
22 X ′2CX2H

−1/2
22

p→ Ig2 . Lemma A.4 implies that

E
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
= Ig2 (26)

and

Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
≤ 1

rmin

H
−1/2
22 (cuH22 + cukIg2 + curmaxIg2)H

−1/2
22

=
1

rmin

(
cu + cu

k

rmin

+ cu
rmax

rmin

)
Ig2 ,

where the inequality holds due to H−122 ≤ 1
rmin
Ig2 . Therefore, Assumption 4 (many strong

instruments case) implies that Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
= O

(
1
k

)
while Assumption 5

(many weak instruments case) implies that Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
= o (1). In either

case we obtain that Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
→ 0, which together with (26) implies that

H
−1/2
22 X ′2CX2H

−1/2
22

p→ Ig2 .

Note that under Assumption 4 H
1/2
22

(
β̃2 − β2

)
= Op (1) while under Assumption 5

1√
k
H22

(
β̃2 − β2

)
= Op (1) (see Section 4 in Bekker and Crudu, 2015). Therefore, under

either Assumption 4 or Assumption 5, from (25) we conclude that

1√
k

(
β̃2 − β2

)′
X ′2CX2

(
β̃2 − β2

)
= op (1) . (27)
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The second term from ∆ in (24) involves

(
β̃2 − β2

)′
X ′2Cε =

(
β̃2 − β2

)′
H22H

−1
22 X

′
2Cε.

Lemma A.4 implies that

E [X ′2Cε] = 0 (28)

and

Var
[
H−122 X

′
2Cε

]
≤ cu

(
1

rmin

+
k

r2min

)
Ig2 , (29)

where the latter inequality is due to H−122 ≤ 1
rmin
Ig2 . We also obtain that

Var

[
1√
k
H
−1/2
22 X ′2Cε

]
≤ cu

(
1

k
+

1

rmin

)
Ig2 . (30)

Under Assumption 4 (many strong instruments case) we get Var
[

1√
k
H
−1/2
22 X ′2Cε

]
=

O
(
1
k

)
, which together with (28) implies that 1√

k
H
−1/2
22 X ′2Cε = op (1). SinceH

1/2
22

(
β̃2 − β2

)
=

Op (1) holds, we obtain

1√
k

(
β̃2 − β2

)′
X ′2Cε = op (1) .

Under Assumption 5 (many weak instruments case) (29) implies Var
[
H−122 X

′
2Cε

]
= o (1),

which together with (28) implies that H−122 X
′
2Cε = op (1). Since 1√

k
H22

(
β̃2 − β2

)
=

Op (1) holds, we obtain

1√
k

(
β̃2 − β2

)′
X ′2Cε = op (1) .

Regarding B3, from Theorem 1 we have that B3
d→ N (0, 1).
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Proof of Theorem 3. Note that

∑
i 6=j

Cijεiεj =
∑
i 6=j

Pij
2

(
1

1− Pii
+

1

1− Pjj

)
εiεj = (1 + o(1))

∑
i 6=j

Pijεiεj

as maxi Pii → 0. Further,

∑
i 6=j

Cijεiεj = (1 + o(1))ε′Pε− (1 + o(1))
n∑
i=1

Piiε
2
i .

By assumptions (ii) and (iv), ε′Pε→d σ
2χ2

k. Moreover, by independence of εi, Assumption

3 and the properties of Pii

E

( n∑
i=1

Piiε
2
i − kσ2

)2
→ 0,

which implies
∑n

i=1 Piiε
2
i →p kσ

2 (see Chao et al., 2014). Consider now

Vn =
2

k

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j =

2σ4

k

n∑
i=1

n∑
j=1

C2
ij =

2σ4

k

n∑
i=1

n∑
j=1

P 2
ij

4

(
1

1− Pii
+

1

1− Pjj

)2

.

Since
∑n

i=1

∑n
j=1 P

2
ij = k is fixed and maxi Pii → 0, Vn → 2σ4. Hence, by Lemma A.2,

V̂ (β0)→p 2σ4. Finally,

T1 =
1√
k

ε′0Cε0√
2
k
ε
(2)′

0 C(2)ε
(2)
0

→d
χ2
k − k√

2k
.

Thus,
√

2kT1+k →d χ
2
k. Let us consider now the T2 statistic. Notice that ε̃ = y−X1β10−

X2β̃2 where β̃2 = (X ′2PX2)
−1X ′2P (y −X1β10), the two-stage least squares under the

null. By standard manipulations, CLT and Slutsky’s theorem we get

ε̃′P ε̃ = ε′
(
P − PX2(X

′
2PX2)

−1X ′2P
)
ε = ε′Z∗

(
Ik − PX′2Z∗

)
Z∗
′
ε→d σ

2χ2
k−g2

where Z∗ = Z(Z ′Z)−1/2. Using the results in Lemma A.3 we get
∑n

i=1 Piiε̃
2
i →p kσ

2 and
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V̂ (β̃)→p 2σ4. So, by the usual standard arguments
√

2kT2 + k →d χ
2
k−g2 .

Proof of Corollary 1. The proof mimics that of Theorem 1 in Chao et al. (2014). Let

q
χ2
k

α be the generic α-th quantile of the chi square distribution with k degrees of freedom.

As k → ∞, q
χ2k
α −k√
2k
→ zα, where zα is the generic α-th quantile of the standard normal

distribution. This proves parts (i) and (ii). With respect to part (iii) and part (iv), notice

that
√

k−g2
k

q
χ2k−g2
α −(k−g2)√

2(k−g2)
− g2√

2k
→ zα as k →∞.
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B Figures

(a) T1 (b) ARAG

(c) ÃRdf

Figure 1: PP-plots with heteroskedasticity, H0 : β = β0.
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(a) T2 (b) ARAG

(c) ÃRdf

Figure 2: PP-plots with heteroskedasticity, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure 3: Power curves with heteroskedasticity and π = 0.1, H0 : β = β0.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure 4: Power curves with heteroskedasticity and π = 0.1, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure 5: Power curves with heteroskedasticity and π = 1, H0 : β = β0.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure 6: Power curves with heteroskedasticity and π = 1, H0 : β1 = β10.
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(a) n = 400,
√
k

nπ′wπw
= 0.1

(b) n = 400,
√
k

nπ′wπw
= 1

Figure 7: Histograms and QQ-plots for T2 and JIV1 plug-in. The blue curve superimposed
on the histograms is the standard normal distribution.

36



(a) ξ = 0 (b) ξ = 0.1

(c) ξ = 0.2 (d) ξ = 0.3

Figure 8: PP-plots for T2 with a slow (inconsistent) plug-in.
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Figure 9: T2, ARAG and AR P-values for different values of β for the model with four
instruments. 38
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Figure 10: T2, ARAG and AR P-values for different values of β for the model with fourteen
instruments. 39
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A Proofs of Lemmas

This Section contains some auxiliary lemmas that are useful to prove the main results of

the paper.

Lemma A.2. Let V̂ (β0) = 2
k
ε

(2)′
0 C(2)ε

(2)
0 . If Assumptions 1, 3 hold, V̂ (β0) − Vn =

Op

(
1√
k

)
; consequently V̂ (β0)− Vn

p→ 0, where

Vn =
2

k

n∑
i=1

n∑
j=1

C2
ijσ

2
i σ

2
j .

Proof. Let ηi = ε2
i − σ2

i ; then

V̂ (β0)− Vn =
2

k

n∑
i=1

n∑
j=1

C2
ij

(
ε2
i ε

2
j − σ2

i σ
2
j

)
=

2

k

n∑
i=1

n∑
j=1

C2
ij

(
ηiηj + σ2

i ηj + σ2
j ηi
)
.

So

∣∣∣Vn − V̂ (β0)
∣∣∣ ≤ 2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijηiηj

∣∣∣∣∣+
2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijσ

2
i ηj

∣∣∣∣∣+
2

k

∣∣∣∣∣
n∑
i=1

n∑
j=1

C2
ijσ

2
j ηi

∣∣∣∣∣
≡ A1 + A2 + A3.

Since

E
[
η2
i

]
= E

[
ε4
i

]
− σ4

i ,

from Assumption 3 we have E [η2
i ] ≤ cu. So

E
[
A2

1

]
=

8

k2

n∑
i=1

n∑
j=1

C4
ij E

[
η2
i

]
E
[
η2
j

]
≤ cu
k2

n∑
i=1

n∑
j=1

C4
ij.

Note that for i 6= j we have

Cij =
Pij
2

(
1

1− Pii
+

1

1− Pjj

)
,

1



which from Assumption 1 implies

|Cij| =
|Pij|

2

(
1

1− Pii
+

1

1− Pjj

)
≤ cu |Pij| for any i, j, (A.1)

so

E
[
A2

1

]
≤ cu
k2

n∑
i=1

n∑
j=1

P 4
ij.

From Assumption 1 and the fact that P = P 2, we have

Phh ≥ P 2
hh =

(
n∑
i=1

P 2
hi

)2

=
n∑
i=1

n∑
j=1

P 2
hiP

2
hj ≥

n∑
i=1

P 4
hi,

so

n∑
i=1

n∑
j=1

P 4
ij ≤ tr (P ) = k and

∑
i,j,h

P 2
hiP

2
hj ≤ k. (A.2)

Therefore,

E
[
A2

1

]
≤ cu

k
.

Now, by Cauchy-Schwarz (E [ε2
i ])

2 ≤ E [ε4
i ], thus σ2

i ≤ cu, so from Assumption 3, (A.1) and

(A.2)

E
[
A2

2

]
=

4

k2

∑
i,j,h

C2
hiC

2
ijσ

2
hσ

2
j E
[
η2
i

]
≤ 4c2

u

k2

∑
i,j,h

C2
hiC

2
ij ≤

cu
k2

∑
i,j,h

P 2
hiP

2
ij ≤

cu
k
.

We can obtain a similar inequality for A3, so by the Markov and triangle inequalities we

obtain that V̂ (β0)− Vn = Op

(
1√
k

)
, therefore, V̂ (β0)− Vn

p→ 0.

Lemma A.3. Let V̂
(
β̃
)

= 2
k
ε̃(2)′C(2)ε̃(2). If β̃

p→ β and Assumptions 1, 3 hold, then

V̂
(
β̃
)
− Vn

p→ 0.

2



Proof. Let

Ṽn =
2

k

n∑
i=1

n∑
j=1

C2
ijε

2
i ε

2
j .

Then

V̂
(
β̃
)
− Ṽn =

2
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n∑
i=1

n∑
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ij

(
ε̃2
i ε̃

2
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i ε
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.
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≡ di

∥∥∥(β − β̃)∥∥∥ ,
where
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∥∥∥(β − β̃)∥∥∥ ≤ 1 with probability approaching 1 as n→∞. So
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therefore,

∣∣∣V̂ (β̃)− Ṽn∣∣∣ ≤ 2
∥∥∥(β − β̃)∥∥∥2

k
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Note that by the Cauchy-Schwarz inequality

E [didj] ≤
√

E [d2
i ] E

[
d2
j

]
,

where

E
[
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i

]
= E
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Assumption 3 and Minkowski’s inequality imply E
[
‖Xi‖4] ≤ cu. Hence

E [didj] ≤ cu, E
[
d2
i

]
≤ cu,

so by Assumption 1 and (A.1)
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ijdidj
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≤ cu

and

E

[
1
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n∑
j=1

C2
ijd

2
i

]
≤ cu.

Then by Markov’s and the triangle inequalities V̂
(
β̃
)
− Vn

p→ 0.

Lemma A.4. Under Assumptions 1, 3

1. E [X ′2CX2] = H22, Var [X ′2CX2] ≤ cuH22 + cukIg2 + curmaxIg2,

2. E [X ′2Cε] = 0, Var [X ′2Cε] ≤ cuH22 + cukIg2.
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Proof. The model X2 = ZΠ2 +U2 implies that

X ′2CX2 = (ZΠ2)′CZΠ2 + (ZΠ2)′CU2 +U ′2CZΠ2 +U ′2CU2. (A.4)

Therefore,

E [X ′2CX2] = Π ′2Z
′CZΠ2 +E [U ′2CU2] .

Since Z ′CZ = Z ′Z we have that

Π ′2Z
′CZΠ2 = H22. (A.5)

Also,

E [U ′2CU2] =
n∑
i=1

n∑
j=1

E
[
U ′2eie

′
iCeje

′
jU2

]
=

n∑
i=1

n∑
j=1

CijE
[
U2iU

′
2j

]
= O

because the main diagonal elements of C are 0, so E [X ′2CX2] = H22. Further,

Var
[
X ′2CX2

]
= E

[{
(ZΠ2)′CU2 +U ′2CZΠ2 +U ′2CU2

}{
(ZΠ2)′CU2 +U ′2CZΠ2 +U ′2CU2

}′]
≤ 3 E

[
(ZΠ2)′CU2U

′
2CZΠ2

]
+ 3 E

[
U ′2CZΠ2 (ZΠ2)′CU2

]
+ 3 E

[
U ′2CU2U

′
2CU2

]
by the Cauchy-Schwarz inequality. By Assumption 3 E [U2U

′
2] ≤ cuIn and from the defin-

ition of C it holds that (see Bekker and Crudu (2015), p.337)

Z ′C2Z = Z ′
{
In +

1

4
(In −D)−1 (In − P ) (In −D)−1

}
Z.

Further, by Assumption 1 (In −D)−1 ≤ cuIn, and therefore,

Z ′C2Z ≤ cuZ
′Z, (A.6)
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so the first expectation is

E
[
(ZΠ2)′CU2U

′
2CZΠ2

]
≤ cu (ZΠ2)′C2ZΠ2 ≤ cuH22. (A.7)

The second expectation is

E
[
U ′2CZΠ2 (ZΠ2)′CU2

]
=

n∑
i=1

aii E [U2iU
′
2i] ,

where aii denotes the i-th main diagonal component of CZΠ2 (ZΠ2)′C and U ′2i is the

i-th row of U2. By Assumption 3 and (A.6) we obtain that

E
[
U ′2CZΠ2 (ZΠ2)′CU2

]
≤ cu tr

(
CZΠ2 (ZΠ2)′C

)
Ig2 = cu tr

(
(ZΠ2)′C2ZΠ2

)
Ig2

≤ cu tr (H22) Ig2 ≤ curmaxIg2 . (A.8)

E [U ′2CU2U
′
2CU2] =

∑
i,j,k,`

E
[
U ′2eie

′
iCeje

′
jU2U

′
2eke

′
kCe`e

′
`U2

]
=
∑
i,j,k,`

CijCk` E
[
U2iU

′
2jU2kU

′
2`

]
=
∑
i 6=j

C2
ij E

[
U2iU

′
2jU2iU

′
2j

]
+
∑
i 6=j

C2
ij E

[
U2iU

′
2jU2jU

′
2i

]
.

By Assumption 3, the Cauchy-Schwarz inequality and (21) we obtain that

E [U ′2CU2U
′
2CU2] ≤ cu

(∑
i 6=j

C2
ij

)
Ig2 ≤ cukIg2 . (A.9)

By collecting the results from (A.7), (A.8), (A.9) we obtain the first result.

2. The model X2 = ZΠ2 + U2 implies X ′2Cε = Π ′2Z
′Cε + U ′2Cε. Similar to part

1., since the main diagonal elements of C are 0, we have E [X ′2Cε] = 0. Regarding the

6



variance we have

Var
[
X ′2Cε

]
= (ZΠ2)′C E

[
εε′
]
CZΠ2 + E

[
U ′2Cεε

′]CZΠ2 + (ZΠ2)′C E
[
εε′CU2

]
+ E

[
U ′2Cεε

′CU2

]
. (A.10)

By Assumption 3 and (A.6) the first term is

H
−1/2
22 (ZΠ2)′C E [εε′]CZΠ2H

−1/2
22 ≤ cuH

−1/2
22 (ZΠ2)′ZΠ2H

−1/2
22 = cuIg2 .

(A.11)

The second and third terms from (A.10) are 0. This is because

E [U ′2Cεε
′]C =

∑
i,j,k

E
[
U ′2eie

′
iCeje

′
jεε

′ek
]
e′kC =

∑
i,j,k

E [U2iCijεjεk] e
′
kC.

Since the main diagonal elements of C are 0, the expectations from the above sum are 0.

Consequently, C E [εε′CU2] = O as well. The fourth term from the expression in (A.10)

is

E [U ′2Cεε
′CU2] =

∑
i,j,k,`

E
[
U ′2eie

′
iCeje

′
jεε

′eke
′
kCe`e

′
`U2

]
=
∑
i,j,k,`

E [U2iCijεjεkCk`U
′
2`]

=
∑
i 6=j

C2
ij

(
E
[
ε2
jU2iU

′
2i

]
+ E

[
εiU2iεjU

′
2j

])
=
∑
i 6=j

C2
ij

(
σ2
jΣ22i + σ12iσ

′
12j

)
.

By the Cauchy-Schwarz inequality, Assumption 3, and Equation (21) in the main text we

obtain that

E [U ′2Cεε
′CU2] ≤ cu

∑
i 6=j

C2
ijIg2 ≤ cukIg2 . (A.12)

Collecting the results from (A.11) and (A.12), we obtain the result.
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B Auxiliary Results

This Section includes a set of theorems, examples, remarks and propositions associated to

the main results of the paper. First we discuss the case when the OLS estimator β̃2 =

(X ′2X2)−1X ′2y0 can be used as a plug-in estimator. This occurs in the practically relevant

situation where the null hypothesis contains all parameters corresponding to endogenous

variables. The case when there is a single endogenous regressor in the model and the null

hypothesis contains exactly its coefficient is a common example.

Theorem B.1. Suppose that X2 is exogenous, H22/n = O (1) and (X ′2X2/n)−1 = Op (1).

Then under Assumptions 1, 2, 3 we have that T2 →d N (0, 1).

Proof. We need to show that ∆√
k

= op (1) where ∆ is defined in Equation (24). First note

that E
[
X′

2ε√
n

]
= 0 because X2 is exogenous, and

Var

[
X ′2ε√
n

]
≤ cu

H22

n
+

1

n

n∑
i=1

σ2
iΣi22 = O (1)

due to Assumption 3 and H22/n = O (1). Consequently,

√
n
(
β̃2 − β2

)
= (X ′2X2/n)

−1 (
X ′2ε/

√
n
)−1

= Op (1) . (B.1)

Using H22/n = O (1) and by Lemma A.4 we have

E

[
X ′2CX2

n
√
k

]
= o (1) , Var

[
X ′2CX2

n
√
k

]
= o (1)

and

E

[
X ′2Cε√
kn

]
= 0, Var

[
X ′2Cε√
kn

]
= o (1) .
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Therefore,

1√
k

∆ =
1√
k

(
β̃2 − β2

)′
X ′2CX2

(
β̃2 − β2

)
− 2√

k

(
β̃2 − β2

)′
X ′2Cε = op (1) ,

so B2 in (23) is op (1). B1 from (23) is op (1) due to the consistency of β̃2 from (B.1) and

the result follows.

The following theorem provides sufficient conditions for the asymptotic distribution of

the T2 statistic when the JIV1 estimator is used as plug-in. Recall that rmin = λmin(H22)

and rmax = λmax(H22).

Theorem B.2. If Assumptions 1, 2, 3 and
√
k/rmin → 0, rmax/k = O(1) are satisfied,

then the JIV1 estimator β̃2 = (X ′2CX2)−1X ′2Cy0 is consistent and T2 →d N (0, 1).

Proof. First we show consistency, that is, β̃2 − β2 = (X ′2CX2)−1X ′2Cε = op (1). From

Lemma A.4 it follows that

E
[
H−1

22 X
′
2CX2

]
= Ig2 , Var

[
H−1

22 X
′
2CX2

]
≤ cuH

−1
22 + cukH

−2
22 + curmaxH

−2
22 .

SinceH−1
22 ≤ 1

rmin
Ig2 and by assumptions

k

r2
min

→ 0, rmax/k = O(1) we have that Var
[
H−1

22 X
′
2CX2

]
→

O, so H−1
22 X

′
2CX2 →p Ig2 , and therefore,

(
H−1

22 X
′
2CX2

)−1
= Op (1). From Lemma A.4

it also follows that

E
[
H−1

22 X
′
2Cε

]
= 0, Var

[
H−1

22 X
′
2Cε

]
≤ cuH

−1
22 + cukH

−2
22 .

This variance goes to O for the same reason as above, so H−1
22 X

′
2Cε = op (1). Therefore,

β̃2 − β2 = op (1).

Let now

V̂ (β) =
2

k
ε(2)′C(2)ε(2), ε = y −Xβ.

9



Note that ∆ in (23) now is

∆ = −ε′CX2 (X ′2CX2)
−1
X ′2Cε.

This can be written as

∆ = −ε′CX2H
−1/2
22

(
H
−1/2
22 X ′2CX2H

−1/2
22

)−1

H
−1/2
22 X ′2Cε. (B.2)

From Lemma A.4 we know that

E
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
= Ig2 ,

Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
≤ cuH

−1
22 + cukH

−2
22 + curmaxH

−2
22 .

Since H−1
22 ≤ 1

rmin
Ig2 and by assumptions

k

r2
min

→ 0, rmax/k = O(1) we have that

Var
[
H
−1/2
22 X ′2CX2H

−1/2
22

]
→ O,

so H
−1/2
22 X ′2CX2H

−1/2
22 →p Ig2 . Consequently,

(
H
−1/2
22 X ′2CX2H

−1/2
22

)−1

= Op (1). By

Lemma A.4 we know that

E
[
H
−1/2
22 X ′2Cε

]
= 0. (B.3)

Next we show that under

√
k

rmin

→ 0 it holds that

1√
k

Var
(
H
−1/2
22 X ′2Cε

)
= o (1) . (B.4)

From Lemma A.4 we know that

1√
k

Var
[
H
−1/2
22 X ′2Cε

]
≤ cu√

k
Ig2 + cu

√
kH−1

22 ≤

(
cu√
k

+ cu

√
k

rmin

)
Ig2 ,
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where the last inequality follows fromH−1
22 ≤ 1

rmin
Ig2 . So (B.4) holds under k →∞,

√
k

rmin
→

0, and therefore, taking also (B.3) into account we obtain

1

k1/4
H
−1/2
22 X ′2Cε = op (1) .

Consequently,

B2 =
1√
k

∆√
V̂
(
β̃
) =

(
1

k1/4
H
−1/2
22 X ′2Cε

)′
1

k1/4
H
−1/2
22 X ′2Cε ·Op (1) = op (1) .

This result is not very different from Theorem 2 in the main text, but it is useful

because, on the one hand, the convenient expression of the JIV1 estimator allows us to

explain why underrejection of the null hypothesis occurs in most cases.1 On the other

hand, this result allows us to better link the weak instrument assumption
√
k/rmin → 0 to

the asymptotic distribution of T2. Specifically, the proof of this result suggests that the

assumption
√
k/rmin → 0 appears to be necessary for the asymptotic standard normality

of the statistic T2.2

Derivation of Example 1. Suppose that there are ` groups with group g having ng obser-

vations and

Z =


ιn1 · · · 0

...
. . .

...

0 · · · ιn`

 ,

1We discuss this in more detail in Remark B.1 below.
2See also Remark B.2.

11



where ιm is an m× 1 vector of ones. In this case

P =


1
n1
ιn1ι

′
n1

O

. . .

O 1
n`
ιn`
ι′n`

 .

The expression

E2 =
1√
k

n∑
i=1

(
Pii −

k

n

)
ε2
i

from (17) can be written as

E2 =
1√
`

∑̀
g=1

∑
i∈Gg

(
1

ng
− `

n

)
ε2
i ,

where Gg is the set of observations belonging to group g.

Suppose now that the groups have either 2 or 3 observations. In this case

E2 =
1√
`

∑
g:ng=2

∑
i∈Gg

(
1

2
− `

n

)
ε2
i +

1√
`

∑
g:ng=3

∑
i∈Gg

(
1

3
− `

n

)
ε2
i

=

(
1

2
− `

n

)
1√
`

∑
g:ng=2

∑
i∈Gg

ε2
i +

(
1

3
− `

n

)
1√
`

∑
g:ng=3

∑
i∈Gg

ε2
i .

Suppose homoskedasticity with E [ε2
i ] = σ2 and let `2 and `3 denote the number of 2-

observation and 3-observation groups, respectively. In this case

E2 =

(
1

2
− `

n

)
2`2√
`

∑
g:ng=2

∑
i∈Gg

ε2
i

2`2

+

(
1

3
− `

n

)
3`3√
`

∑
g:ng=3

∑
i∈Gg

ε2
i

3`3

Note that ` = `2 + `3 and n = 2`2 + 3`3, so

E2 =
`3

2`2 + 3`3

`2√
`

∑
g:ng=2

∑
i∈Gg

ε2
i

2`2

− `2

2`2 + 3`3

`3√
`

∑
g:ng=3

∑
i∈Gg

ε2
i

3`3

=
`2`3

`n

√
`

(∑
g:ng=2

∑
i∈Gg

ε2
i

2`2

− σ2 −

[∑
g:ng=3

∑
i∈Gg

ε2
i

3`3

− σ2

])
. (B.5)
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By the CLT for IID observations

√
2`2

(∑
g:ng=2

∑
i∈Gg

ε2
i

2`2

− σ2

)
d→ N (0, v) and

√
3`3

(∑
g:ng=3

∑
i∈Gg

ε2
i

3`3

− σ2

)
d→ N (0, v) ,

where v = Var [ε2
i ]. The limit `

n
→ λ ∈ (0, 1) implies that `

2`2
→ λ

6λ−2
and `

3`3
→ λ

3−6λ
, so

we obtain

√
`

(∑
g:ng=2

∑
i∈Gg

ε2
i

2`2

− σ2

)
d→ N

(
0,

λ

6λ− 2
v

)
and

√
`

(∑
g:ng=3

∑
i∈Gg

ε2
i

3`3

− σ2

)
d→ N

(
0,

λ

3− 6λ
v

)
.

Therefore, from (B.5) we obtain

E2
d→ N

(
0,

(3λ− 1) (1− 2λ)

6λ
v

)
.

Since its variance does not vanish in the limit, E2 will not converge to 0 in probability.

Example B.1. In this example we consider the indicator instruments discussed in Example

1 under heteroskedasticity when there are only groups of size 2 and 3, and we study whether

E2 defined in B.5 has convergent or divergent mean. That is, we study the limit of

E [E2] =
1√
`

`2`3

n

(∑
g:ng=2

∑
i∈Gg

σ2
i

2`2

−
∑

g:ng=3

∑
i∈Gg

σ2
i

3`3

)

with respect to the growth rate of `2 and `3. First note that the assumption 1
k

∑
i

(
Pii − k

n

)2 →

0 from Proposition 1 is equivalent to

1

`

 ∑
g:ng=2

∑
i∈Gg

(
1

2
− `

n

)2

+
∑
g:ng=3

∑
i∈Gg

(
1

3
− `

n

)2
→ 0.
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Further, since

∑
g:ng=2

∑
i∈Gg

(
1

2
− `

n

)2

+
∑
g:ng=3

∑
i∈Gg

(
1

3
− `

n

)2

=
`2`3

6n
,

this is equivalent to

`2`3

`n
→ 0.

Recalling that ` = `2 + `3 and n = 2`2 + 3`3, we conclude that this can only happen if either

`2/`3 → 0 or `3/`2 → 0. Suppose `3/`2 → 0, which implies `2 →∞.

Suppose that the variance averages
∑

g:ng=2

∑
i∈Gg

σ2
i

2`2
and

∑
g:ng=3

∑
i∈Gg

σ2
i

3`3
converge as n→

∞; let

σ2
2 = lim

n→∞

∑
g:ng=2

∑
i∈Gg

σ2
i

2`2

, σ2
3 = lim

n→∞

∑
g:ng=3

∑
i∈Gg

σ2
i

3`3

.

Note that

1√
`

`2`3

2`2 + 3`3

=
1√

`2 + `3

`2`3

2`2 + 3`3

=
1√

1 + `3/`2

`3/
√
`2

2 + 3`3/`2

.

Therefore, if `3/
√
`2 → 0 then 1√

`

`2`3
2`2+3`3

→ 0. In this case

E [E2]→ 0.

If `3/
√
`2 →∞ then 1√

`

`2`3
2`2+3`3

→∞. In this case E [E2] can be unbounded; specifically

E [E2]→

 ∞ if σ2
2 > σ2

3,

−∞ if σ2
2 < σ2

3,

and therefore, E2 is not bounded in probability. Consequently, the statistic ARAG is not

bounded in probability. We summarize our findings in the following.
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Proposition B.1. Suppose that `3/`2 → 0 and that the variance averages
∑

g:ng=2

∑
i∈Gg

σ2
i

2`2

and
∑

g:ng=3

∑
i∈Gg

σ2
i

3`3
converge to σ2

2 and σ2
3, respectively. Then, if `3/

√
`2 → 0, E2 = op (1);

if `3/
√
`2 →∞ and σ2

2 6= σ2
3, E2 is not bounded in probability.

Remark B.1. When the plug-in is the JIV1 estimator β̃2 = (X ′2CX2)−1X ′2Cy0 we obtain

that

T2 =
1√
k

ε′Cε− ε′CX2(X ′2CX2)−1X ′2Cε√
V̂
(
β̃
) . (B.6)

The formula in (B.6) suggests that T2 is more likely to be negative than positive in finite

samples, which may explain the underrejection results in our Monte Carlo simulations.

See, e.g., Figures C.7 and C.8 in Section B. Indeed, we know that E [ε′Cε] = 0 and since

H
−1/2
22 X ′2CX2H

−1/2
22 →p Ig2,

(
H
−1/2
22 X ′2CX2H

−1/2
22

)−1

is likely to be positive definite in

sufficiently large finite samples. Therefore, ε′CX2(X ′2CX2)−1X ′2Cε ≥ 0, so the numer-

ator of T2 is more likely to take negative values, unless the sign of ε′Cε interacts with the

magnitude of V̂
(
β̃
)

in a special way. This suggests that the density of T2 is shifted to the

left, which leads to underrejection.

Remark B.2. The assumption
√
k

rmin
→ 0 in Theorem B.2 appears to be necessary. Suppose

that this assumption is violated while Assumptions 1, 2, 3 hold; for simplicity consider

the case when g2 = 1 and denote the single endogenous variable as x2. Moreover, x2 =

Zπ2 + u2. In this case r = rmin = H22 and suppose that
√
k/r = τn with τn ≥ cτ > 0

for any n. One important special case is when τn converges to a positive number; another

special case is when τn goes to ∞.

1. We note first that in this case the JIV1-type estimator β̃2 = β2 + (x′2Cx2)−1x′2Cε is

not consistent. Indeed, by (A.4)

1√
k
x′2Cx2 =

1√
k

(Zπ2)′CZπ2 +
1√
k

(Zπ2)′Cu2 +
1√
k
u′2CZπ2 +

1√
k
u′2Cu2.
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Note that

E

[
1√
k

(Zπ2)′Cu2

]
= 0,

Var

[
1√
k

(Zπ2)′Cu2

]
=

1

k
E
[
(Zπ2)′Cu2u

′
2CZπ2

]
≤cu
k
r≤ cu

cτ
√
k
,

where the first inequality follows from (A.7), so

1√
k
x′2Cx2 =

1

τn
+

1√
k
u′2Cu2 + op (1) .

Since by Lemma A.1 1√
k
u′2Cu2 →d N1 with N1 normal with mean 0, we obtain that

1√
k
x′2Cx2 =

1

τn
+N1 + op (1) . (B.7)

Further,

1√
k
x′2Cε =

1√
k

(Zπ2)′Cε+
1√
k
u′2Cε,

where the first term is op (1) for similar reasons as above and the second term is

asymptotically normal with mean 0 (from Lemma A2 in Chao et al., 2012). There-

fore, we can write

1√
k
x′2Cε = N2 + op (1) , (B.8)

with N2 normal with mean 0. So, from (B.7) and (B.8)

β̃2 − β2 =
N2 + op (1)

1/λn +N1 + op (1)
,

which in general is not op (1), so β̃2 is not consistent. Therefore, we cannot prove

that V̂
(
β̃
)
− V̂ (β) = op (1) in the way we do above (Lemmas A.2 and A.3).
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2. In order to derive the limit of T2 in Theorem B.2 we proved that 1√
k
ε′Cx2(x′2Cx2)−1x′2Cε =

op (1). In this case (B.7) and (B.8) imply

1√
k
ε′Cx2(x′2Cx2)−1x′2Cε =

(
1√
k
ε′Cx2

)2(
1√
k
x′2Cx2

)−1

=
(N2 + op (1))2

1/λn +N1 + op (1)
,

which is not op (1) in general.

Example B.2. This example is motivated by the fact that, in practice, applied researchers

may erroneously choose an inconsistent plug-in estimator. It is reasonable to think that

such a choice may affect the behaviour of T2. In order to simplify the analysis we assume

that the plug-in is consistent but it converges at an arbitrary slow rate to the true value.

The assumption of consistency allows us to use Lemma A.3. Let us consider a simple

two-regressor model

y = x1β1 + x2β2 + ε

where x1 and x2 may both be endogenous and suppose that we want to test the following

null H0 : β1 = β10. Let us assume that there exists an estimator for β2, say β̃2, such that

√
an(β̃2 − β2) = Op(1) where an → ∞ as n → ∞. This situation defines a consistent but

potentially slowly converging estimator. Let us also define

x2 = Zπ2 + u2

with H22 = π′2Z
′Zπ2, in this case r = rmin = H22 and r →∞ as n→∞. Let us suppose

that an and r diverge to infinity possibly at different rates. If we assume that β̃ = (β10, β̃2)′

is consistent we can use Lemmas A.2 and A.3. From Equation (23) in the main text we

notice that the fact that T2 converges to a standard normal would now depend only on the

behaviour of ∆ (see Equation (24) in the main text), which in this case is

∆ =
(
β̃2 − β2

)
x′2Cx2

(
β̃2 − β2

)
− 2

(
β̃2 − β2

)
x′2Cε.
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Since
x′
2Cx2

r
→p 1, we get

1√
k

(
β̃2 − β2

)
x′2Cx2

(
β̃2 − β2

)
=

1√
k

r

an

√
an

(
β̃2 − β2

) x′2Cx2

r

√
an

(
β̃2 − β2

)
= Op

(
r

an
√
k

)
.

(B.9)

Moreover,

1√
k

(
β̃2 − β2

)
x′2Cε =

√
r√
kan

√
an

(
β̃2 − β2

) x′2Cε√
r

= op

( √
r

√
ank1/4

)
. (B.10)

This means that if r
an
√
k

diverges, ∆ does not go to zero and T2 would not converge to a

standard normal. Notice that ∆ does not go to zero when an grows slower or at the same

rate of the boundary condition r/
√
k. In this case the distribution of T2 will be shifted to

the right causing the test to overreject.

C Monte Carlo Experiments

This Section collects some complementary Monte Carlo results on the finite sample prop-

erties of T1 and T2. The simulations consider two DGPs and both the homoskedastic and

heteroskedastic case. Apart from the T1 and T2 statistics we include the ARAG test of

Anatolyev and Gospodinov (2011) and three test statistics due to Bun et al. (2018)

ÂR = nĝ(β)′Ω̂(β)−1ĝ(β)

ÃR = nĝ(β)′Ω̃(β)−1ĝ(β)

ÃRdf = nĝ(β)′Ω̃df (β)−1ĝ(β)

where Ω̂(β) = 1
n

∑n
i=1 g(β)g(β)′, Ω̃(β) = Ω̂(β) − ĝ(β)ĝ(β)′ and Ω̃df (β) = n

n−kΩ̃(β).

In our case the moment condition model is defined as gi(β) = Zi(yi −X ′iβ) and ĝ(β) =

1
n

∑n
i=1 gi(β). The evaluation of the performance is made in terms of size and power.

Furthermore, the second DGP is also used to assess the quality of the asymptotic approx-
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imations as presented in Corollary 1 in the main text.

The first DGP (DGP I) is similar to Bekker and Van der Ploeg (2005) where the

instruments are dummies. In this experiment the observations are stratified in k groups

where each group contains nj observations and n =
∑k

j=1 nj and each group contains a

different number of observations. Let us define the model

y = xβ + ε (C.1)

x = Zπ + v

where the true value of β is zero and Z is a n × k matrix of dummy variables, such that

each of its rows is a versor. Moreover, for each group, the disturbances are jointly normally

distributed with zero mean and variance covariance matrix equal to

Σj =

 σ2
j ρσjσvj

ρσjσvj σvj

 , j = 1, . . . , k.

We choose ρ = 0.5 and (k, n) ∈ {(7, 146), (40, 140), (60, 168)}. The parameters σj and σvj

are sampled independently from a uniform distribution U(0.5, 1). We consider both the

homoskedastic case where Σj is the same for any j and the corresponding heteroskedastic

case. Furthermore, the elements of π are sampled from U(0.05, 0.1). The experiment is

replicated 5000 times.

The second DGP (DGP II) (Hausman et al., 2012) is given by

y = ιγ + xβ + ε (C.2)

x = zπ + v

where γ = β = 1, while π = 0.1 in the analysis of size and π ∈ {0.1, 1} in the analysis of

power. The sample size is n = 800, z ∼ N (0, In) and independently v ∼ N (0, 0.12 × In).
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The disturbances vector ε is generated as

ε = ρv +

√
1− ρ2

φ2 + ψ4
(φw1 + ψw2), (C.3)

where ρ = 0.3, ψ = 0.86 and conditional on z, independent of v, w1 ∼ N (0, Diag(z)2)

where Diag(z) is a diagonal matrix where the diagonal elements are the elements of z

and w2 ∼ N (0, ψ2In). Moreover, φ ∈ {0, 1.38072}, where φ = 0 is the homoske-

dastic case. The instrument matrix Z is given by matrices with rows (1, zi, z
2
i , z

3
i , z

4
i )

and (1, zi, z
2
i , z

3
i , z

4
i , zib1i, . . . , zib`i), ` = 95, 695, where, independent of other random vari-

ables, the elements b1i, . . . , b`i are i.i.d. Bernoulli distributed with p = 1/2.3 We consider

also two rather extreme situations: k = 2 and k = 700. We replicate our experiments

5000 times. When using the T1 test and the T2 test we consider H0 : (γ, β)′ = (1, 1)′ and

H0 : β = 1 respectively.

C.1 Simulation results

We first discuss the quality of the potential approximations for T1 and T2 when k = 2, then

we provide some interpretation of the simulations by separately analysing the results on

size and power. We also discuss the behaviour of T2 when an inconsistent plug-in is used.

Approximations. In Figure C.1, we explore the behaviour of T1 for k = 2 and

n = 50, 100, 200, 400, 800. It seems clear that, in this case, the chi square approximation

for T1 is more accurate than its Gaussian counterpart. This result is less evident in the

case of T2, since, as shown in Corollary 1, three alternative chi square approximations are

available. Nonetheless, Figure C.2 panel (c) suggests that result (iii) in Corollary 1 may

cause the test to reject too often. On the other hand, the approximations in (ii) and (iv)

of Corollary 1 deliver more reliable results (Figure C.2 panels (b) and (d)).

Size. In the case of DGP I (Figure C.3 and Figure C.4), heteroskedasticity is rather

mild and, as expected, the various statistics perform quite similarly in the homoskedastic

3The same set of instruments is used throughout the various repetitions.
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and heteroskedastic case. In addition, we observe that T1, ARAG and ÃRdf work well for the

three combinations of k and n considered. On the other hand, ÂR tends to underreject as k
n

gets larger, while ÃR tends to underreject. The case of DGP II (Figure C.5 to Figure C.8)

is more complex, as the type of heteroskedasticity introduced in the model may have a non

trivial impact on the performance of the tests. In general, we observe that T1 and T2 work

well in all the considered cases and ARAG performs well in general under homoskedasticity

and, as it is expected, it shows some tendency to overreject when k = 700.4 As we

introduce heteroskedasticity, the performance of the ARAG test dramatically deteriorates.

The tests introduced in Bun et al. (2018) work well for most of the cases but tend to either

underreject (ÂR, ÃR) or overreject (ÃRdf ) when k is large.

Power. Under homoskedasticity and k small the tests are indistinguishable (Figure

C.9 to Figure C.12 panels (a) and (b)). The picture gets more complicated as k increases.

In particular, with π = 1 all the test apart from ÃR can control size and have excellent

power properties (Figure C.11 and Figure C.12 panel (c)). However, when π = 0.1, the

power properties of all the tests, in particular ÂR and ÃRdf , deteriorate (Figure C.9 and

Figure C.10 panel (c)). In the heteroskedastic case and when k = 2, 5, the T1 and the T2

tests along with the tests of Bun et al. (2018) are able to discriminate among alternatives

(Figure C.13 to Figure C.16 panels (a) and (b)). To some extent the same could be said

about the case where k = 100 (Figure C.13 to Figure C.16 panel (c)). When k = 700,

π = 0.1 no test statistic among those considered seems to work well in this case. Only the

ARAG test has some power in the homoskedastic case (Figure C.9 and C.10 panel (d)).

However, when π = 1, the T1 and T2 tests tend to outperform their competitors (Figure

C.9 to Figure C.16 panel (d)).

4It is worth noticing that, in general, for the hypothesis H0 : β1 = β10 all the tests tend to underreject
for small values of k.
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C.2 Figures

(a) T1, N (0, 1) (b)
√
kT1 + k, χ2

k

Figure C.1: PP-plots for T1 under DGP II with heteroskedasticity, k = 2 and n =
50, 100, 200, 400, 800.
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(a) T2, N (0, 1) (b)
√
kT2 + k, χ2

k

(c)
√
kT2 + k, χ2

k−g2 (d)
√
k − g2T2 + (k − g2), χ2

k−g2

Figure C.2: PP-plots for T2 under DGP II with heteroskedasticity, k = 2 and n =
50, 100, 200, 400, 800.
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(a) T1 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.3: PP-plots with homoskedasticity under DGP I, H0 : β = β0.
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(a) T1 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.4: PP-plots with heteroskedasticity under DGP I, H0 : β = β0.
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(a) T1 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.5: PP-plots with homoskedasticity under DGP II, H0 : β = β0.
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(a) T1 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.6: PP-plots with heteroskedasticity under DGP II, H0 : β = β0.
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(a) T2 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.7: PP-plots with homoskedasticity under DGP II, H0 : β1 = β10.
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(a) T2 (b) ARAG

(c) ÂR (d) ÃR

(e) ÃRdf

Figure C.8: PP-plots with heteroskedasticity under DGP II, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.9: Power curves with homoskedasticity and π = 0.1, H0 : β = β0.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.10: Power curves with homoskedasticity and π = 0.1, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.11: Power curves with homoskedasticity and π = 1, H0 : β = β0.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.12: Power curves with homoskedasticity and π = 1, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.13: Power curves with heteroskedasticity and π = 0.1, H0 : β = β0.

34



(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.14: Power curves with heteroskedasticity and π = 0.1, H0 : β1 = β10.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.15: Power curves with heteroskedasticity and π = 1, H0 : β = β0.
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(a) k = 2 (b) k = 5

(c) k = 100 (d) k = 700

Figure C.16: Power curves with heteroskedasticity and π = 1, H0 : β1 = β10.
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