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Abstract

In this paper we propose a spatio-temporal blockwise Euclidean likelihood method
for the estimation of covariance models when dealing with large spatio-temporal
Gaussian data. The method uses moment conditions coming from the score of the
pairwise composite likelihood. The blockwise approach guarantees considerable com-
putational improvements over the standard pairwise composite likelihood method. In
order to further speed up computation we consider a general purpose graphics pro-
cessing unit implementation using OpenCL. We derive the asymptotic properties of
the proposed estimator and we illustrate the finite sample properties of our meth-
odology by means of a simulation study highlighting the computational gains of the
OpenCL graphics processing unit implementation. Finally, we apply our estimation
method to a wind component data set.
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1 Introduction

With the advent and expansion of Geographical Information Systems (GIS) along with re-

lated software, statisticians today routinely encounter large spatial or spatio-temporal data

sets containing one or multiple variables observed across a large number of location sites.

This has generated considerable interest in statistical modeling for large geo-referenced

spatial and spatio-temporal data; see, for instance, Sherman (2011) and Cressie & Wikle

(2015).

Gaussian random fields (RFs) are the cornerstone for this kind of analysis and have

been largely used in the past years thanks to a well developed and rich theory. Moreover,

they represent the building block for more sophisticated models or non-Gaussian RFs (see,

for instance, De Oliveira et al. (1997), Xu & Genton (2017) and Bevilacqua et al. (2020)).

The covariance function is a crucial object in Gaussian RF analysis. It is well known,

in fact, that, together with the mean, the covariance function completely characterizes

the finite dimensional distribution of the RF. Furthermore, it is also well known that the

spatio-temporal kriging predictor depends on the knowledge of such covariance function.

Since a covariance function must be positive definite, practical estimation generally

requires the selection of some parametric classes of covariances and the corresponding es-

timation of these parameters. The maximum likelihood method is generally considered the

best option for estimating the covariance model parameters. Nevertheless, the evaluation

of the objective function under the Gaussian assumption requires the solution of a system

of linear equations. For a Gaussian RF observed in n spatio-temporal locations the compu-

tational burden is O(n3), making this method computationally impractical for large data

sets. This fact motivates the search for estimation methods with a good balance between

computational complexity and statistical efficiency.

Some solutions have been proposed involving approximations of the covariance matrix

(Kaufman et al., 2008; Cressie & Johannesson, 2008; Litvinenko et al., 2017), stochastic

approximations of the score function (Stein et al., 2013) or approximations based on Markov
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random fields (RFs) (Rue & Tjelmeland, 2002; Rue & Held, 2005; Lindgren et al., 2011)

or Gaussian predictive process (Banerjee et al., 2008) or on composite likelihood idea

(Bevilacqua et al., 2012; Bevilacqua & Gaetan, 2015; Eidsvik et al., 2014; Stein et al.,

2004; Bai et al., 2012) among others. For an extensive review see Heaton et al. (2019) and

the references therein.

The concept of composite likelihood (CL) refers to a general class of objective functions

based on the likelihood of marginal or conditional events (see Lindsay, 1988; Varin et al.,

2011, for a recent review). This kind of estimation method has two important features:

first, it is generally an appealing estimation method when dealing with large data sets;

second, it can be helpful when the specification of the likelihood is difficult. As outlined in

Bevilacqua & Gaetan (2015) the class of CL functions is very large and, to the best of our

knowledge, there are no clear guidelines on how to chose a specific member of this class

for a given estimation problem. In the Gaussian case, if the choice of the CL is driven by

computational concerns, the CL based on pairs has clear computational advantages with

respect to other types of CL functions.

In a purely spatial context, Bevilacqua et al. (2015) propose a blockwise Euclidean

likelihood (EU) method (Antoine et al., 2007; Owen, 2001) for the estimation of a latent

Gaussian RF when considering binary data. The moment conditions used in the EU

estimator derive from the score function of the CL based on marginal pairs. A feature

of this approach is that it is possible to obtain computational benefits over the standard

pairwise likelihood depending on the choice of the spatial blocks.

The main advantage of EU estimators is due to their computational simplicity. While

similar estimators, such as the empirical likelihood estimator and the exponential tilting

estimator (see, e.g.: Nordman & Caragea, 2008; Newey & Smith, 2004; Kitamura, 1997;

Qin & Lawless, 1994), are computed via the solution of complicated optimization problems

in the parameter of interest and an auxiliary parameter vector, EU estimators are char-

acterized by a closed form solution for the auxiliary parameter and a simple optimization

problem based on a quadratic form. This structure makes the EU estimator particularly
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appealing for the problem we want to tackle.

The goal of the paper is to modify and extend the approach in Bevilacqua et al. (2015)

to the spatio-temporal context and Gaussian data. This generalization implies the con-

struction of (possibly overlapping) spatio-temporal blocks. Different types of blocks should

be considered depending on the type of data. For instance, for a few location sites observed

in a large number of temporal instants, the use of temporal blocks is the natural choice. The

asymptotic properties of the proposed estimator are established under increasing domain

asymptotics.

Since the proposed method is highly amenable to parallelization, we reduce the com-

putational complexity by considering an implementation based on the OpenCL language

(Stone et al., 2010) in a general purpose graphical processing unit (GPGPU) framework

(A. Lee et al., 2010; Suchard et al., 2010). This allows to considerably reduce the compu-

tational costs associated to the blockwise EU estimation of the spatio-temporal covariance

model.

The remainder of the paper is organized as follows. In Section 2, we introduce the

concept of spatio-temporal RF and the pairwise likelihood estimation method. In Section

3, we introduce the blockwise spatio-temporal EU method and we establish the associated

asymptotic properties. In Section 4, we investigate the performance of the spatio-temporal

blockwise EU estimator in terms of statistical and computational efficiency highlighting

the gains induced by the graphics processing unit (GPU) parallelization. In Section 5, we

apply our methodology to a data set on Mediterranean wind speed. Finally, in Section 6

we give some conclusions.

2 Spatio-temporal pairwise likelihood

Let l = (s>, t)> denote a generic spatio-temporal index with l ∈ L = S × T with S ⊂ Rd

and T ⊂ R+ being our sampling region, and let Z = {Zl, l ∈ L } be a real-valued

spatio-temporal RF (STRF) defined on L. When T = {t0} then L ≡ S and Zs ≡ Z(s>,t0)>
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is a purely spatial RF. When S= {s0} then L ≡ T and Zt ≡ Z(s>0 ,t)
> is a purely temporal

RF. The high order of complexity of spatio-temporal interactions calls for simplifying

assumptions, such as those of intrinsic or weak stationarity, that have implications on the

existence of the moments of the RF.

A STRF Z is second-order (weakly stationary) if E[Zl] = µ and Var[Zl] = σ2 are finite

constants for all l ∈ L and the covariance Cov[Zl, Zl′ ] = C(h, u) = σ2ρ(h, u) with ρ(·, ·)

a positive definite function such that ρ(0, 0) = 1 that only depends on h = s′ − s and

u = t′ − t. Isotropy is another very common assumption and also the building block for

more sophisticated models. Isotropic spatial RFs have the feature that, for a candidate

correlation function φ : [0,∞) → R and given s′, s, two arbitrary location sites in S, the

correlation function solely depends on the Euclidean distance (denoted ‖·‖ throughout) that

is ρ(h) = φ(‖h‖). Spatio-temporal modeling inherits the assumption of spatial isotropy

coupling, through a continuous function, spatial isotropy with temporal symmetry. This

is, φ : [0,∞)× [0,∞)→ R, with φ(0, 0) = 1, such that ρ(h, u) = φ (‖h‖, |u|).1

In the past years, many parametric models have been proposed in order to model the

covariance function of a Gaussian STRF. A possible simple construction is obtained as the

product of any valid isotropic spatial and temporal symmetric covariance as for instance:

C(h, u,θ) = σ2 exp

(
−||h||
αs
− |u|
αt

)
, (1)

where θ = (σ2, αs, αt)
>. Here αs and αt are positive spatial and temporal scale parameters

respectively. This kind of covariance model, called separable model, has been criticized for

its lack of flexibility. For such a reason, different classes of non separable covariance models

have been proposed, in order to capture possible spatio-temporal interactions. A special

1We will use the notation | · | to indicate both the cardinality of a set and the absolute value of a scalar.
Hence, for a generic set A, |A| is its cardinality, while for a generic scalar a, |a| is its absolute value. The
different notation for sets and scalars avoids any potential confusion.
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case of the celebrated Gneiting class (Gneiting, 2002) is given by:

C(h, u,θ) =
σ2

(1 + |u|/αt)
e
− ‖h‖
αs(1+|u|/αt)β/2 , (2)

where θ = (σ2, αs, αt, β)>. In this case, the parameter β ∈ [0, 1] is a (non) separability

parameter. When β = 0 the covariance model is separable.

Let us assume that z = {zl1 , . . . , zln}> is a realization of Z and define `ij(θ) ≡

log(fZij(zij),θ), θ ∈ Θ ⊂ Rdθ , the loglikelihood associated to the Gaussian bivariate

distribution random vector Zij = (Zli , Zlj)
>. The pairwise weighted composite likelihood

objective function is then given by

pl(θ) =
n−1∑
i=1

n∑
j=i+1

`ij(θ)wij, (3)

where wij are suitable positive weights not depending on θ. Then the maximum pairwise

weighted composite likelihood estimator is given by θ̂PL = argmaxθ∈Θ pl(θ).

A distinctive feature of pl(θ) is that the associated estimating function,

∇pl(θ) =
n−1∑
i=1

n∑
j=i+1

∇`ij(θ)wij,

where ∇ denotes the vector differential operator with respect to θ, is unbiased. Let us

then define gij(θ) := ∇`ij(θ)wij. Hence,

E[gij(θ0)] = 0 (4)

where θ0 is unique. Moreover, θ̂PL is consistent and its asymptotic distribution, under

increasing domain asymptotics, is Gaussian with asymptotic covariance matrix given by

G(θ)−1 = H(θ)−1J(θ)H(θ)−1> where G(θ) is the Godambe information matrix and

H(θ) = −E[∇2pl(θ)], J(θ) = E[∇pl(θ)∇pl(θ)>] (Bevilacqua et al., 2012).

The role of the weights wij in Equations (3) and (4) is to reduce computational time and
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to improve the statistical efficiency of the estimator. As shown in Joe & Lee (2009), Davis

& Yau (2011) and Bevilacqua & Gaetan (2015), compactly supported weight functions

depending on fixed spatial or spatio-temporal distance, i.e.

wij =


1 ‖si − sj‖ ≤ ds, |ti − tj| < dt,

0 otherwise

, (5)

can significantly improve both the statistical efficiency and the computational complexity

of the estimation method.

3 Spatio-temporal blockwise Euclidean likelihood

In what follows we introduce the spatio-temporal blockwise EU (STBEU) under a gen-

eral spatio-temporal framework for both evenly and unevenly spaced lattice. A similar

framework has been considered in Bai et al. (2012) and Nordman & Caragea (2008). The

approach is not exactly the same as that of Bevilacqua et al. (2012) and exploits the

limiting results of Jenish & Prucha (2009) for RFs.

Let us construct the blockwise version of the moment conditions described in Equation

(4). Let L ⊂ Rd × R+ be our sampling region, where the generic element l = (s>, t)>

includes both the spatial index and the time index and consider a block length bn where

b−1
n + b

2(1+d)
n

n
→ 0 as n → ∞ and a set U =

(
−1

2
, 1

2

]d × (0, 1]. Then, a (1 + d)-dimensional

block is defined as

Bbn(κ) = κ+ bnU

while the associated index set is defined as

Kbn = {κ : Bbn(κ) ⊂ L}
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with κ ∈ Rd×R+ and N = |Kbn|, the number of blocks. The blockwise version of Equation

(4) is

E[mκ (θ0)] = 0 (6)

where, for Dbn(i, j,κ) =
{

(i, j) : (li, lj) ∈ Bbn(κ) ∩ Rd × R+
}

and b1+d
n = |Dbn|,

mκ (θ) =
1

b1+d
n

∑
{i,j}∈Dbn (i,j,κ)

gij (θ)

and

m̂ (θ) =
1

N

∑
κ∈Kbn

mκ (θ) .

The STBEU objective function is defined as

Rn(θ,λ) =
1

2

∑
κ∈Kbn

(
1 + λ>mκ (θ)

)2
(7)

(see Antoine et al., 2007). From the first order conditions of Equation (7) we can compute

an estimator of the auxiliary parameter λ

λ̂(θ)

b1+d
n

= −Σ̂(θ)−1m̂ (θ) (8)

with

Σ̂(θ) =
b1+d
n

N

∑
κ∈Kbn

mκ (θ)mκ (θ)> . (9)

By plugging in Equation (8) into Equation (7) we find

Rn(θ, λ̂(θ)) =
N

2

(
1− b1+d

n m̂ (θ)> Σ̂(θ)−1m̂ (θ)
)

=
N

2

(
1− b1+d

n Qn(θ)
)
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where Qn(θ) is implicitly defined. Hence,

θ̂ = arg min
θ∈Θ

Qn(θ) (10)

is the STBEU estimator for the parameter vector θ.

3.1 Asymptotic results

The asymptotic results are derived by adapting to our problem some results in Jenish &

Prucha (2009) (see also Bai et al., 2012).

A1 Let L ⊂ Rd × R+ be a possibly unevenly spaced lattice. For any two points l and

k in L their distance is at least d0. This is, given a distance metric ρ(·, ·), we have

ρ(l,k) ≥ d0.

A2 Let Ln be a sequence of arbitrary subsets of L such that |Ln| → ∞ as n→∞.

A3 The parameter set Θ ⊂ Rdθ is compact and θ0 is an interior point of Θ.

A4 For some δ > 0 and e > 0 and for all κ ∈ Ln,

lim
e→∞

E

[
sup
θ∈Θ
‖mκ(θ)‖2+δ1{sup

θ∈Θ
‖mκ(θ)‖ > e}

]
= 0

where 1{·} is the indicator function.

A5 Define ∇`
θ the `-th derivative operator with respect to θ and ` = 0, 1, 2. Then, (i)

E [‖∇θmκ(θ)‖1+η] <∞ for all l ∈ Ln, with η > 0; (ii) E
[
supθ∈Θ ‖∇`

θml(θ)‖
]
<∞;

(iii) let∇`
θm(θ) = E

[
∇`
θml(θ)

]
, then∇θm(θ0) is full column rank; (iv) lim Σ̂(θ)→

Σ(θ) as n→∞, a positive definite matrix.

A6 Consider V ⊆ Ln and W ⊆ Ln, let σ(V) = σ(zl, l ∈ V) and σ(W) = σ(zl, l ∈ W)

and α(V ,W) = α(σ(V), σ(W)). Consider also the set Rd × R+ endowed with the

metric ρ(l,k) = max1≤i≤1+d |li − ki|. In addition to that define the set distance as

8



ρ(V ,W) = inf {ρ(l,k) : l ∈ V ,k ∈ W} for any subset V ,W ⊂ Rd × R+. Then, the

α-mixing coefficient for the random field is given by

αp,q(r) = sup (α(V ,W), |V| ≤ p, |W| ≤ q, ρ(V ,W) ≥ r) .

We assume that the following conditions hold:

(a)
∑∞

h=1 h
(1+d)−1α1,1(h)

δ
2+δ <∞,

(b)
∑∞

h=1 h
(1+d)−1αp,q(h) <∞ for p+ q ≤ 4,

(c) α1,∞(h) = O(h−(1+d)−ε) for some ε > 0.

Theorem 1. Assume A1 to A6 hold. Then,

1. θ̂ →p θ0,

2.
√
n
(
θ̂ − θ0

)
→d N (0,Ω(θ0))

where Ω(θ0) = (∇θm(θ0)>Σ(θ0)−1∇θm(θ0))−1.

In what follows we discuss some important features of the assumptions used to derive

Theorem 1. Assumption A1 defines the structure of the lattice. Even though we allow the

lattice to be unevenly spaced, we do not want the points to be too close to each other. Under

Assumption A2 the number of points in any subset of L grows as n grows. Assumption A3

is a standard condition on the parameter space. A4 is an assumption on the tail behavior

of the moment condition and it is called uniform Lδ+2 integrability. Together with A1, A2

and the α-mixing condition A6 allow us to use a central limit theorem for RFs. A5 is a

set of regularity conditions. In particular, A5(i) and A5(ii) allow us to use a uniform law

of large numbers, A5(iii) is necessary to guarantee invertibility of the variance covariance

matrix of the estimator, while A5(iv) is a condition on the finiteness of the limiting variance

covariance matrix of the moment conditions and it is used in the consistency proof.
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4 Numerical experiments

4.1 Statistical efficiency

This section compares the relative efficiency of the STBEU with respect to the pairwise

likelihood (PL). To this end, we configure two sampling schemes, a regular sampling scheme

and an irregular sampling scheme. In the first case, we set a regular grid with unit spacing

[−a, a]2 and with ns = (2a + 1)2 locations in space and nt in time. In the second case,

the setting involves an irregular grid with ns = (2a+1)2

2
× 2 locations in space uniformly

distributed on [−a, a]2 and nt in time. In both cases we have N = nt× ns spatio-temporal

locations and a ∈ R. In what follows we consider three specific simulation settings:

1. spatial blocks: more space than time locations, [−8, 8]2 and nt = 19, that is ns = 289

and nst = 5202;

2. temporal blocks: more time than space locations, [−2, 2]2 and nt = 210, that is

ns = 25 and nst = 5250;

3. spatio-temporal blocks: balanced spatio-temporal locations, [−5, 5]2 and nt = 50,

that is ns = 121 and nst = 6050.

Note that more means roughly 10 times (or higher) locations more than the other and

balanced means less than 2 times. Under these settings, we perform 500 simulations of

a Gaussian random field with Double Exponential and Gneiting covariance functions as

defined in Equations (1) and (2). In both cases we estimate the spatial and temporal

scale parameters and the variance parameters that is αs, αt and σ2 respectively. For each

simulation setting and covariance model we consider two combinations of parameters, so

that we can evaluate the effect of an increasing spatial and temporal dependence through

αs, αt (specific parameter values are found in Tables 2, 3 and 4).

We also consider the effect of the block length on the efficiency of the STBEU estimator.

Following Y. D. Lee & Lahiri (2002) and Bevilacqua et al. (2015), spatial blocks are formed

10



by the set [C
√
γ, C
√
γ]2 in overlapping and non overlapping cases with C being a positive

constant and we chose γ to be the range of the spatial coordinates. Temporal blocks are

formed by a sequence of the temporal length spaced by bt. For example, if the spatial block

has length bs = 2, the temporal block length bt = 10, γ = 16 and nt = 50, then C = 1/2

and the prototype spatio-temporal block U is equal to (−1/8, 1/8]2 × 5.

We chose bs = {2, 4} for space, bt = {2, 3} for time and bst = {4, 9} for spatio-temporal

blocking. In the overlapping version, constants os and ot are needed to tune the degree of

overlapping. A possible choice for these constants is os = bsps and ot = btpt with 0 < ps ≤ 1

and 0 < pt ≤ 1. We set p = ps = pt = 0.5 for the overlapping case while p = ps = pt = 1

corresponds to the non overlapping case. Table 1 shows the number of spatio-temporal

blocks associated with three settings under the overlapping and non-overlapping version.

Finally, the distances ds and dt in the weight function (5) are chosen to be 25% of its

corresponding block length.

Blocking p

1 0.5

Spatial
bs = 2 64 225

bs = 4 16 49

Temporal
bt = 2 105 209

bt = 3 70 139

Spatio-temporal
bst = 4 625 3969

bst = 9 144 800

Table 1: Number of spatial, temporal and spatio-temporal blocks resulting from fixing
the block length b and the overlapping parameter p = ps = pt used in the simulation study

Figure 1 shows the intuition behind the spatio-temporal blocking procedure. Think

of spatio-temporal locations as being a dense block as showed in the upper-left panel of

Figure 1 with time represented by depth. Spatial blocking is the upper-right panel: space

is divided by the blocking procedure mentioned above such that every block considers

all time locations. The lower-left panel represents temporal blocking: time is divided

uniformly and all space locations are considered in each block. Finally, the lower-right

panel is the spatio-temporal blocking which is a combination of both spatial and temporal
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blocking. Note that, regardless of the procedure, every block considers spatio-temporal

locations. Say we have more space locations than time locations, then better performance

is expected by choosing spatial blocking. The same reasoning applies for temporal blocking

or spatio-temporal blocking.

Figure 1: Intuition behind the spatio-temporal blocking procedure

Tables 2, 3 and 4 report the simulation results for the spatial, temporal and spatio-

temporal blocking respectively. We measure efficiency in two ways. The first one corres-

ponds to the simulated relative efficiency defined as SRE = msePL
mseSTBEU

. SRE is reported

for every parameter and scenario. The second approach is the simulated total relative

efficiency (STRE) as a measure of overall efficiency for the multi-parameter case (Bevilac-

qua & Gaetan, 2015). The STRE is defined as STRE =
(

DPL
DSTBEU

)1/p

where p = 3 is the

number of parameters of the model, DPL and DSTBEU are the determinants of the variance

covariance matrices of the PL and STBEU estimators respectively.

The simulation results allow us to make some interesting comments on the performance

of the estimators under scrutiny. First of all, we notice that it is difficult to have a clear

ranking between STBEU and PL in absolute terms. However, we notice that for certain
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4

αs = 1.2/3 αt = 1.2/3 αs = 1.8/3 αt = 1.8/3

αs 0.982 0.894 0.545 0.636 1.213 1.055 0.645 0.749

(1.035) (0.979) (0.354) (0.472) (1.218) (1.23) (0.426) (0.659)

αt 0.896 0.834 0.339 0.563 1.171 0.998 0.579 0.743

(0.828) (0.838) (0.216) (0.439) (1.115) (1.109) (0.383) (0.612)

σ2 0.934 0.898 0.405 0.662 0.917 0.852 0.402 0.662

(0.918) (0.957) (0.288) (0.444) (0.898) (0.945) (0.284) (0.544)

STRE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778

(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68)

αs = 1.2/3 αt = 1.2/19 αs = 1.8/3 αt = 1.8/19

αs 1.142 0.928 0.552 0.619 1.791 1.4 0.788 0.881

(1.192) (1.085) (0.338) (0.532) (1.856) (1.634) (0.502) (0.799)

αt 1.057 0.886 0.483 0.638 1.58 1.245 0.716 0.848

(1.027) (0.98) (0.316) (0.538) (1.638) (1.417) (0.475) (0.737)

σ2 0.918 0.845 0.386 0.624 0.914 0.851 0.381 0.624

(0.91) (0.962) (0.27) (0.527) (0.907) (0.954) (0.267) (0.53)

STRE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832

(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742)

Table 2: Simulated relative efficiency (with respect to the PL) of STBEU estimator
under spatial blocking. Relative efficiency is presented for different values of the block
length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows
with STRE caption shows the overall performance.

specifications STBEU clearly outperforms PL. For example, this happens in Table 2 for the

STRE when using the Double Exponential correlation function with b = 2 in the regular

case and for the Gneiting correlation function for almost all the results (STRE and SRE)

in the regular case. Similar results are found in Tables 3 and 4. It is worth mentioning

that STBEU outperforms PL in some irregular cases as well. Particularly, for αt in the

temporal blocking case using the Gneiting correlation function.

In addition to that, since the computation of STBEU is comparatively time saving, a

researcher concerned with speed may be willing to trade off some statistical efficiency in

favor of higher computational efficiency. Further details on computational efficiency are

presented in Section 4.2. Moreover, consistently with the results in Bevilacqua et al. (2015),
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3

αs = 3.1/3 αt = 3.1/3 αs = 4/3 αt = 4/3

αs 1.195 0.704 1.121 0.675 1.125 0.694 1.031 0.622

(0.572) (0.393) (0.516) (0.361) (0.528) (0.377) (0.462) (0.332)

αt 1.427 0.965 1.359 0.852 2.841 2.022 2.103 1.423

(0.818) (0.506) (0.665) (0.462) (1.613) (1.12) (1.048) (0.78)

σ2 1.02 0.655 1.000 0.624 1.018 0.643 1.007 0.613

(0.462) (0.32) (0.44) (0.309) (0.454) (0.322) (0.436) (0.304)

STRE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884

(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533)

αs = 3.1/3 αt = 3.1/19 αs = 4/3 αt = 4/19

αs 1.216 0.709 1.147 0.689 1.069 0.648 1.01 0.617

(0.576) (0.39) (0.535) (0.374) (0.492) (0.352) (0.462) (0.329)

αt 1.763 1.166 1.544 0.967 3.379 2.365 2.542 1.695

(1.013) (0.616) (0.764) (0.523) (1.935) (1.318) (1.284) (0.926)

σ2 1.012 0.647 1.008 0.63 1.02 0.63 1.015 0.617

(0.463) (0.323) (0.452) (0.32) (0.45) (0.321) (0.441) (0.304)

STRE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936

(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559)

Table 3: Simulated relative efficiency (with respect to the PL) of STBEU estimator
under temporal blocking. Relative efficiency is presented for different values of the block
length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows
with STRE caption shows the overall performance.

the STBEU tends to perform better when the spatial data are on a regular grid. Finally,

we notice that the effect of the block length has a considerable impact on the results. In

general, we notice that smaller block lengths tend to provide better results. This suggest

that, given an adequate procedure for the selection of the block length in conjunction

with our computationally efficient approach, we may obtain further improvements. This

problem is relevant and it is the object of future research.

4.2 Computational efficiency

The STBEU estimator is implemented in C and OpenCL (OCL) standard, both interfacing

with R. We used a MacBook Pro laptop that has three devices, an Intel Core CPU and
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Double exponential Gneiting

Regular Irregular Regular Irregular

bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9

αs = 0.4/3 αt = 3/3 αs = 0.4/3 αt = 3/19

αs 1.491 0.634 1.028 0.711 1.622 0.895 1.189 0.918

(0.826) (0.4) (0.332) (0.406) (1.029) (0.553) (0.428) (0.564)

αt 1.968 0.896 1.143 0.956 3.257 1.492 1.747 1.422

(1.08) (0.502) (0.385) (0.534) (1.78) (0.844) (0.647) (0.844)

σ2 0.902 0.551 0.557 0.513 0.91 0.543 0.565 0.512

(0.579) (0.362) (0.205) (0.316) (0.576) (0.356) (0.207) (0.315)

STRE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92

(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582)

αs = 1.2/3 αt = 6/3 αs = 1.2/3 αt = 6/19

αs 1.576 0.666 1.086 0.718 0.776 0.52 1.125 0.799

(0.854) (0.417) (0.375) (0.417) (0.471) (0.258) (0.381) (0.483)

αt 2.581 1.165 1.567 1.226 1.675 1.124 2.123 1.575

(1.435) (0.644) (0.554) (0.688) (0.938) (0.555) (0.811) (0.928)

σ2 0.897 0.539 0.568 0.502 0.534 0.463 0.582 0.506

(0.56) (0.351) (0.222) (0.317) (0.348) (0.23) (0.227) (0.32)

STRE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953

(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605)

Table 4: Simulated relative efficiency (with respect to the PL) of STBEU estimator under
spatio-temporal blocking. Relative efficiency is presented for different values of the block
length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows
with STRE caption shows the overall performance.

two GPU devices: Intel Iris Pro and AMD Radeon R9 M370X Compute Engine, but we

worked in CPU and AMD since they support double precision. Computational efficiency

performance is evaluated comparing C vs OpenCL (through R) in two ways: evaluation of

gij from Equation (4) in one block, and the full blockwise approach.

Our AMD device supports OpenCL version 1.2. There are 10 Compute Units (CUs),

where each CU contains 16 stream cores, and each stream core houses four processing

elements. Thus, each compute unit in the Radeon R9 M370X has 64 (16 × 4) processing

elements (i.e. 640 PE in total)2. Our CPU (called the host in OpenCL) has access to 16

Gb of the main memory, while the GPU has 2 Gb of memory from which it can directly

2All GPU vendors have some fundamental building block they scale up/down to hit various perform-
ance/power/price targets. AMD calls theirs a Compute Unit, NVIDIA’s is known as an SMX, and Intel’s
is called a sub-slice.
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process data.

Now, in order to evaluate the correlation functions, we need to compute nst(nst − 1)/2

distances for the upper triangular matrix formed by all possible pairs of nst spatio-temporal

locations. At first glance, this would mean that the problem size (called NDrange in

OpenCL where ND stands for N−dimensional, N = 1, 2, 3) is nst(nst−1)/2 too. Say, for

example, we have ns = 1024 locations in space and nt = 32 in time, that makes nt = 32768

spatio-temporal locations. Double precision requires 8 bytes per location, that means that

our host and device memory requirement would be 8 × (32768 × (32767)/2) ≈ 4.3Gb. To

overcome this memory requirement issue, we set the NDrange to have two dimensions with

sizes ns and nt. It means that our device memory requirement is now 8×1024×32 ≈ 33kB,

roughly 0.0007% of the initial requirement in our example. The latter was possible due to

the workgroup concept in OpenCL.

Figure 2 compares C and OpenCL performance of equations (1) and (2) as specified

before. Space locations vary from 4 to 9409 and time locations from 2 to 97 on the left

panel, the opposite in the right panel. These results are dependent on the characteristics

of the computer, such as the graphic card, OpenCL version, hardware specs, and so on.

Nonetheless, it provides a relative sense of the computational improvement potential. We

used AMD in this case, local size is 16 work-items in each dimension, which makes our

total max Work Group Size (256). In both panels, OpenCL GPU timing outperforms

C from roughly nst ≈ 10000 reaching approximately 6 and 3 times faster for the double

exponential and Gneiting case respectively.

Rows from Figure 3 compare spatial blocking against temporal blocking and columns

compare Double Exponential (1) and Gneiting (2) correlation models. In the spatial block-

ing procedure, nt is fixed to 100 and ns maximum is 29584, meaning nst = 2958400, and

ns is fixed to 100 and the maximum value of nt is 29600 (nst = 2960000) in the temporal

blocking case. We can see that OpenCL outperforms C in all cases. An important con-

clusion from Figure 3 is that OpenCL should be used when having more locations per

block. In the blockwise context, this implies that having a denser block improves the

16
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Figure 2: Gradient (gij) evaluation time performance comparison C vs OpenCL (denoted
OCL) for Double Exponential and Gneiting covariance functions. Space locations vary
from 4 to 9409 and time locations from 2 to 97 on the left panel, the opposite in the right
panel.

time performance. Rows from Figure 3 reinforce this conclusion as we set 50 temporal

blocks and approximately 11 spatial blocks. Comparing the correlation function used in

the blockwise procedure (i.e. the columns from Figure 3) suggests that using the Double

Exponential covariance function outperforms the Gneiting covariance function. Finally,

note that OpenCL GPU outperforms OpenCL CPU in three out of for panels. The upper

right panel is the exception, but their difference seems to converge around the maximum.
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Figure 3: Blockwise time performance comparison for C vs OpenCL (denoted OCL with
CPU and GPU). The x axis is divided to 10e4. Rows compare spatial vs temporal blocking
and columns compare the correlation model.

5 Application: Mediterranean winds

The Mediterranean winds data set contains wind component observations (east-west) for

1175 space locations and 28 time periods taken every 6 hours from 00:00 UTC on 29

January 2005 to 18:00 UTC on 04 February 2005. These data are available in Wikle et al.

(2019). Figure 4 shows a map of the spatial locations. For reproducible research purposes,

we developed the R package STBEU (Morales-Oñate et al., 2019) that includes the full code

18



STBEU

Parameters αs αt σ2 Objective

β = 0 364.19 29.58 11.65 5.813082e− 16

β = 0.5 373.97 38.06 12.47 2.503008e− 16

β = 1 372.03 36.94 12.28 5.642065e− 16

PL

β = 0 338.54 18.45 13.01 −2816935.05

β = 0.5 338.75 18.54 13.02 −2816938.93

β = 1 339.00 18.63 13.02 −2816944.73

Table 5: Estimation results of the spatio-temporal Gaussian process with Wendland model
(11) to Mediterranean winds data with SBEU and PL for β = 0, 0.5, 1.

for this application.
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Figure 4: Mediterranean region. The light blue dots are the space locations where the
wind component data are recorded in the region from 6.5◦ W-16.5◦ E and 33.5◦ N-45.5◦ N.

We assume data to be a realization of an isotropic in space and symmetric in time

spatio-temporal Gaussian RF with spatio-temporal Wendland correlation function (Porcu
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Scenario Elapsed time Time Gain (respect to i))

i) 16.6696 1.0000

ii) 2.5202 6.6144

iii) 1.0604 15.7201

iv) 0.4764 34.9908

v) 0.2237 74.5177

Table 6: Estimation elapsed times (minutes) of the spatio-temporal Gaussian process
with Wendland covariance model (11) to Mediterranean winds data. Scenarios are i) PL
using CPU one core (default in R), ii) PL using OpenCL framework with CPU (Intel(R)
Core(TM) i7-4980HQ), iii) STBEU using CPU one core (default in R), iv) STBEU using
OpenCL framework with GPU (AMD Radeon R9 M370X) and v) STBEU using OpenCL
framework with CPU (Intel(R) Core(TM) i7-4980HQ).

et al., 2020; Bevilacqua et al., 2019):

φ(h, u,θ) =
σ2

(1 + ||h||/αs)2.5

(
1− |u|

αt(1 + ||h||/αs)−β

)4.5

+

, (11)

where θ = (σ2, αs, αt, β)>. Here β ∈ [0, 1] is a separability parameter. The case β = 0

implies a separable spatio-temporal covariance and the case 0 < β ≤ 1 leads to a non

separable parameter. Since the data set has more space than time locations, spatial (non

overlapping) blocks are constructed in the following manner: [0, 400]2 and nt = 28, that

is ns = 1175 and nst = 32900. We estimate the model with STBEU considering the cases

β = 0, 0.5, 1 and with weights such that only pairs with spatial and temporal distances lower

than 50 and 6 respectively are considered for each block, that is ds = 50 and dt = 6 in the

weight function (5). The results reported in Table 5 show that the objective function of the

STBEU is minimized for β = 0.5. Additionally, in Figure 5, the empirical marginal spatial

and temporal semi-variograms are compared with their estimated theoretical counterparts

using STBEU and PL estimates with β = 0.5 and they show a satisfactory fitting in

particular for the STBEU estimation.

Finally we show the computational benefits of the STBEU method. Results in Table 6

show the elapsed time (in minutes) of the entire optimization process (we use the simplex

method proposed in Nelder & Mead (1965) as implemented in the R function optim) for
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Figure 5: Empirical spatial and temporal marginal semi-variogram versus the estimated
semi-variograms using model (11) with β = 0.5 using STBEU (solid line) and PL (dotted
line) estimates.

five setups:

i) PL using CPU one core (default in R),

ii) PL using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ),

iii) STBEU using CPU one core (default in R),

iv) STBEU using OpenCL framework with GPU (AMD Radeon R9 M370X) and

v) STBEU using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ).

Using the Wendland covariance function and comparing against the PL (CPU-only)

setup, the STBEU method is approximately 35 and 75 times faster in setups iv) and v)

respectively.
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6 Conclusions

In this paper we introduce a blockwise Euclidean likelihood method based on the score of

the pairwise likelihood objective function for the estimation of spatio-temporal covariance

models of Gaussian random fields. This approach is particularly useful when dealing with

large data sets. We show that the proposed estimator, denoted as STBEU, is consistent

and asymptotically normal. Furthermore, a set of simulation results and an application on

a wind speed data set suggest that the STBEU works well in finite samples. The blockwise

approach guarantees considerable computational gains over the standard pairwise com-

posite likelihood method and our implementation in OpenCL allows us to obtain further

improvements in the computation of the estimates. Although in this paper we only con-

sidered spatio-temporal Gaussian random fields, the proposed methodology can be easily

extended to the case of the estimation of spatio-temporal non-Gaussian random fields with

known bivariate distribution as, for example, in Alegŕıa et al. (2017) and Bevilacqua et al.

(2020).
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research was partially supported by the Data Science Research Group at Escuela Superior
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A Proofs

In this section we collect the proof of the asymptotic results described in Theorem 1. Let

us introduce some useful notation: ∇θ and ∇λ are the first derivative operators for θ and λ

respectively, while ∇θθ, ∇λλ and ∇θλ indicate second and cross derivatives and are defined

accordingly. Similarly, for a certain function Rn(θ,λ) defined below, Rn,θ(θ,λ) is its first

derivative with respect to θ. Derivatives with respect to λ, second derivatives and cross

derivatives are defined in a similar manner. Let us also define Q(θ) = m(θ)>Σ(θ)−1m(θ),

the population version of our objective function.

Proof. We first prove part 1. We have to show that, for some δ > 0, P (‖θ̂− θ0‖ > δ)→ 0

as n→∞. By continuity of Q(θ) and the assumption that θ0 is the unique minimizer, we

have that, for some ε > 0, {‖θ̂ − θ0‖ > δ} =⇒ { | Q(θ̂) − Q(θ0) | > ε}. This is, the

latter set contains the former. Hence, P (‖θ̂ − θ0‖ > δ) ≤ P ( | Q(θ̂)−Q(θ0) | > ε). By

some simple algebraic manipulation we have

Q̂n(θ)−Q(θ) = m̂ (θ)> Σ̂(θ)−1m̂ (θ)−m (θ)>Σ(θ)−1m (θ)

= (m̂ (θ)−m (θ))> Σ̂(θ)−1 (m̂ (θ)−m (θ)) + 2 (m̂ (θ)−m (θ))> Σ̂(θ)−1m (θ)

−m (θ)>
(
Σ(θ)−1 − Σ̂(θ)−1

)
m (θ) .

Hence, by taking the norm and by triangle inequality

|Q̂n(θ)−Q(θ)| ≤ ‖m̂ (θ)−m (θ)‖2
∥∥∥Σ̂(θ)−1

∥∥∥+ 2 ‖m̂ (θ)−m (θ)‖
∥∥∥Σ̂(θ)−1

∥∥∥ ‖m (θ)‖

− ‖m (θ)‖2
∥∥∥Σ(θ)−1 − Σ̂(θ)−1

∥∥∥ .
By assumptions A5 and A6 and the continuous mapping theorem we get the following

uniform convergence result

sup
θ∈Θ
| Q̂n(θ)−Q(θ) | →p 0. (12)
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Therefore,

ε < | Q(θ̂)−Q(θ0) | = | Q(θ̂)− Q̂n(θ0) + Q̂n(θ0)−Q(θ0) |

≤ 2 sup
θ∈Θ
| Q̂n(θ)−Q(θ) | →p 0

where the latter inequality follows from the triangular inequality and the uniform conver-

gence condition (12). This implies that P (‖θ̂−θ0‖ > δ) ≤ P ( | Q(θ̂)−Q(θ0) | > ε)→ 0

as n → ∞. Hence, θ̂ →p θ0. Before showing asymptotic normality we show that the

estimate of the Lagrange multiplier λ̂

b1+dn
converges to zero in probability. By a mean value

argument, the uniform convergence results in part 1 and the continuous mapping theorem

we get

λ̂

b1+d
n

→p 0.

Let us now prove part 2 and define

2Rn(θ,λ) = 1 + 2λ>m̂(θ) +
1

b1+d
n

λ>Σ̂(θ)>λ.

The first order conditions of R̂(θ̂, λ̂) with respect to θ and λ are

0 = Rn,θ(θ̂, λ̂) = ∇θm̂(θ̂)λ̂+
λ>

Nb1+d
n

∑
i∈Ibn

mi(θ̂)∇θmi(θ̂)λ̂ (13)

0 = Rn,λ(θ̂, λ̂) = m̂(θ̂) +
1

b1+d
n

Σ̂(θ̂)λ̂. (14)

Let us now take a mean value expansion of the first order conditions (13) and (14) about
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the true values (θ>,λ>)> = (θ>0 ,0
>)>

0 = Rn,θ(θ̂, λ̂) = Rn,θ(θ0,0) +Rn,θλ(θ̇, λ̇)λ̂+Rn,θθ(θ̇, λ̇)(θ̂ − θ0) (15)

= Rn,θλ(θ̇, λ̇)

√
n

b1+d
n

λ̂+
1

b1+d
n

Rn,θθ(θ̇, λ̇)
√
n(θ̂ − θ0)

0 = Rn,λ(θ̂, λ̂) = Rn,λ(θ0,0) +Rn,λλ(θ̇, λ̇)λ̂+Rn,λθ(θ̇, λ̇)(θ̂ − θ0) (16)

=
√
nRn,λ(θ0,0) + b1+d

n Rn,λλ(θ̇, λ̇)

√
n

b1+d
n

λ̂+Rn,λθ(θ̇, λ̇)
√
n(θ̂ − θ0).

More compactly,

 0

√
nR̂λ(θ0,0)

 = −

 1

b1+dn
R̂θθ(θ̇, λ̇) R̂θλ(θ̇, λ̇)

R̂λθ(θ̇, λ̇) b1+d
n R̂λλ(θ̇, λ̇)


√n(θ̂ − θ0)

√
n

b1+dn
λ̂

 .

By the unifrom weak law of large numbers we get 1

b1+dn
R̂θθ(θ̇, λ̇) →p 0, b1+d

n R̂λλ(θ̇, λ̇) →p

Σ(θ0) and R̂λθ(θ̇, λ̇)→p ∇θm(θ0). Hence,

√n(θ̂ − θ0)
√
n

b1+dn
λ̂

 = −

 Ω(θ0) Ω(θ0)∇θm(θ0)>Σ(θ0)−1

Σ(θ0)−1∇θm(θ0)Ω(θ0) Λ(θ0)


 0

√
nm̂(θ0)


+ op(1)

where

Ω(θ0) = (∇θm(θ0)>Σ(θ0)−1∇θm(θ0))−1

and

Λ(θ0) = Σ(θ0)−1 −Σ(θ0)−1∇θm(θ0)Ω(θ0)∇θm(θ0)>Σ(θ0)−1.
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The result follows from an application of the central limit theorem and the continuous

mapping theorem.
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