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Abstract

The theme of variance estimation is central in sampling surveys, due to the

necessity of furnishing a measure of accuracy for the estimates. In the ambit

of social surveys, where we have to face with complex designs and complex

statistics, it may be a major issue. To solve this matter, two main approaches

can be found in the literature, and both have advantages and disadvantages.

However, linearization methods can be safely used in a design-based approach.

On the contrary, resampling methods are introduced only in a model-based

approach, which means that the properties have to be assessed. Furthermore,

some approximations are required. Therefore, we decide to conduce a simula-

tion study by the use of a complete population available. We will focus on some

poverty measures considered by the statistical office of the European Union.
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1 Introduction

In statistical surveys we always focus on investigating about the value of one - or more - characteristics

of a reference population, which represent the target variables. However, it is usually not possible

to investigate the whole population, due to temporary and budgetary constraints. Social surveys

provide an explanatory example, for instance when we are dealing with a population of a country.

Therefore, there is the necessity of analyzing only a part of the population, and consequently of trying

to generalize these results. The choice of the sample strategy is crucial, because it influences the

estimation procedure, involving several steps. After that the information are collected, we compute

the estimates of the target variables. However, it is necessary to calculate also a measure which reflects

the accuracy of these estimates, to comprehend their validity. In complex surveys, when we are dealing

with complex sample designs and complex statistics, it turns not to be an easy task. Hence, we will

focus on this issue. In particular, we will consider the estimation of poverty and inequality measures

in population-based surveys of households and persons.

Section 1 contains the introduction, which aims to present the general framework and the notation

used. Consequently, we concentrate on the variance estimation techniques. A large amount of liter-

ature has been published on this issue, but we may find two main approaches, described in Section

2 and 3, respectively the resampling and the linearization methods. The main reference about the

poverty and inequality measures is the European Union - Statistics on Income and Living Conditions

(EU-SILC) survey, which involves several countries of the entire European continent. A brief descrip-

tion is contained in Section 4, followed by some inequality indices of interest. Later on, the results of

a simulation study are shown in Section 5. Finally, Section 6 contains the conclusion.

To start, let us introduce some basic notions of sampling surveys. Let U be a fixed population

indexed on the first N integers, i.e. U = {1, . . . , N}, and let Y denote the target variable, while yi be

the value of Y for the i-th individual of the population. Furthermore, let θ := θ(y1, . . . , yN ) be the

population parameter. If S is a random sample of fixed size n, θ may be estimated as

θ̂ := θ̂
(
{yi : i ∈ S}

)
.

Therefore, the parameter estimator θ̂ is computed through the selection of a random sample S ⊂ U

of size n from the population U . Finally, let πi be the first-order inclusion probabilities for one unit i,

and πi,j be the second-order inclusion probabilities for two units i and j, associated with the sample

design.

The procedure for the selection of the sample is central, and it is chosen by the researcher by taking

care of different motivations. A well-known sample design is the Simple Random Sampling (SRS),

which assigns the same first-order inclusion probability to each unit i of the population, namely

πi = n/N for each i ∈ U . However, other sample designs are usually preferred in large sample surveys

for many different reasons, mainly the desire to obtain a pre-determined level of accuracy for the
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estimation, the budget constraints, the availability of auxiliary variables, the difficulties to obtain the

sampling frame, and the interest for the parameter estimation for sub-populations. Thompson (2012)

and Arnab (2017) provide an overview of the main sample designs. In the next Sections we mainly

consider stratification and two-stage designs.

Stratification design consists in partitioning the population U in L sub-populations, usually named

as strata (e.g. the regions of a country, in a survey conducted at national level). A sample of size

nl, say Sl, is selected within each stratum l of size Nl, consequently the full sample is S =
⋃L
l=1 Sl of

size n =
∑L
l=1 nl. The first-order probabilities are normally unequal between units of different strata,

the solely exception being the case of the proportional allocation, when the sampling fraction in each

stratum is equal to the sampling fraction of the whole population.

Two-stage design consists in partitioning the population U in M distinct clusters, called PSUs

(Primary Selection Units). At the first stage, m < M PSUs are selected. Let G be the sample of the

m PSUs. At the second stage, a sample Sg - of size ng - is drawn from each PSU, i.e. g ∈ G, previously

selected. The full sample is S =
⋃
g∈G Sg of size n =

∑
g∈G ng, where the first-order probabilities are

normally unequal between units located in different PSUs. The procedure can be generalized with

more than two stage (multi-stage designs) and by including stratification.

Once the sample has been selected and the variable of interest is collected for each sample unit,

the following step focuses on computing the estimate of the parameter of interest, i.e. θ̂, which should

be accompanied by a measure of its precision, e.g. by an estimate of its variance.

The expected value of θ̂ is indicated with E[θ̂], and - as is well known - the estimator is unbiased

if the relation E[θ̂] = θ holds. Otherwise,

B[θ̂] = E[θ̂]− θ (1)

represents the bias of the estimator. In addition, the variance of θ̂ is defined as

V ar[θ̂] = E
[(
θ̂ − E[θ̂]

)2]. (2)

A common target parameter is the total of a variable TY , given by

TY =
∑
i∈U

yi. (3)

In such a case the Horvitz-Thompson (HT) estimator of TY (Horvitz and Thompson, 1952) turns out

to be

T̂Y,HT =
∑
i∈S

wiyi, (4)

where wi represents the sample weight for unit i, i.e. wi = π−1
i . The variance of T̂Y,HT (Arnab, 2017)

can be written as

V ar[T̂Y,HT ] =
∑
i∈U

(1− πi)y2
i

πi
+ 2

∑
i≥j∈U

πi,j − πiπj
πiπj

yiyj , (5)
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for i 6= j, while an unbiased estimator for the variance (Arnab, 2017) is

V̂ ar[T̂Y,HT ] =
∑
i∈S

(1− πi)y2
i

π2
i

+ 2
∑
i≥j∈S

πi,j − πiπj
πiπj

yiyj
πi,j

, (6)

for i 6= j, and πi,j > 0 for each (i, j) ∈ S.

Actually, variance estimation for a general parameter may often be cumbersome. In complex

population-based surveys (e.g. EU-SILC) the variance estimation of the estimator of a general param-

eter θ can be tricky for two different reasons: the use of complex designs, which does not allow to know

the second-order probabilities, and θ may be non-linear, as many poverty measures. The procedures to

estimate the variance of complex statistics can be subdivided into two main approaches: the methods

based on resampling techniques, and the methods based on linearization techniques. Both the meth-

ods present advantages and disadvantages: resampling methods may need a massive computational

burden, even if the same procedure can be applied for θ of any complexity, and standardized routines

for the common statistical software are available or may be easily implemented, without the necessity

of computing specific quantities for each statistic, a point which can be helpful for researchers. Lin-

earization techniques need a smaller computational burden, even if they require to compute the linear

form for each statistic, which may be a difficult task for researchers, and it may not be unique.

In the case of complex surveys, with large sample size and large population size, it is possible to use

the “ultimate cluster approach” (Särndal et al., 1992), which consists in a simplification in computing

the variance estimation by taking account solely of the variation among PSU totals. This method

requires first-stage sampling fractions to be small, a condition which is usually met in large surveys.

It allows easier computation for variance estimation and a great flexibility.
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2 Resampling methods

There are many resampling methods presented in the literature (Efron, 1982, Davison and Hinkley,

1997), mainly the Jackknife Repeated Replication (JRR), the Bootstrap and the Grouped Balanced

Method. The concept is to estimate the variance through comparisons among replications generated

by repeated re-sampling of the same parent sample.

At first, we introduce JRR in its original general version, while afterwards the “Jackknife Delete

One PSU” is presented, a procedure which has been selected by Verma and Betti (2011) in many works

concerning complex surveys (EU-SILC) for its simplicity, that allows to build standardized routines

useful for non-statisticians. It also permits to take account of some aspects that can affect the variance

as non-response, calibration, composite estimation, stratification and multi-stage sampling.

2.1 Jackknife repeated replication

Given a sample S of size n, JRR consists in sequentially deleting points yi, and computing θ̃i, for each

i ∈ S, where θ̃i represents the parameter estimator obtained deleting the i-th observations, namely

θ̃i := θ̃i
(
{yj : j ∈ S, j 6= i}

)
.

Consequently, n different estimators are obtained, each one by the use of (n− 1) observations. Thus,

an estimator for V ar[θ̂] may be given by

V̂ ar[θ̂] = n− 1
n

∑
i∈S

(θ̃i − θ̃)2, (7)

where θ̃ =
∑
i∈S θ̃i/n.

When n is large, the computational burden to apply the method can be very huge, even with the

use of statistical software. The most common choice to avoid this problem is to remove a block of

observations at each replication. Obviously, an excessive short number of replications gives unreliable

estimates. Some arrangements are required with more complex design than Simple Random Sampling:

the procedure described in next Subsection considers stratification and multi-stage sampling and has

been developed for complex surveys.

2.2 Jackknife delete one PSU

The application of the “Jackknife Delete One PSU” needs a situation where two or more Primary

Selection Units (PSUs) are selected from each stratum of the population independently, at the first

stage, while subsampling of any complexity is allowed within each PSU. Each JRR replication consists

in deleting one sample PSU from one particular stratum, increasing the weights of the remaining

primary units in that stratum appropriately, and computing the parameter estimate. Consequently,

there are as many replications as the amount of PSUs which are present in the sample.
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Consider a population U divided in L different strata, where each stratum l contains Ml PSUs: at

the first stage, a number ml ≤Ml of PSUs, with ml ≥ 2, is drawn within each stratum. Let Gl be the

sample of the ml PSUs: at the second stage, a sample Sgl ⊆ Ugl of size ngl ≤ Ngl is drawn within each

PSU, i.e. gl ∈ Gl, previously selected. Subsampling of any complexity is allowed within each sample

PSU, and may differ between different PSUs.

The procedure to compute the modified weights w′igl is the following: let wigl indicate the weight

of the i-th unit in g-th PSU and l-th stratum, and let kgl be a quantity required for the computation

of the weights, defined as

kgl = wl
wl − wgl

, (8)

where

wl =
∑
g∈Gl

wgl and wgl =
∑
i∈Sgl

wigl.

Therefore, the following weights are defined for each individual unit i, with reference to the replication

(gl), i.e. the replication which deletes the observations located in the PSU gl,

w′igl =


wigl if i /∈ l

kglwigl if i ∈ l, /∈ gl
0 if i ∈ gl

. (9)

As before, let θ̂ be the full-sample estimator of the population parameter θ, let

θ̃gl := θ̃gl({yi : i /∈ Sgl})

be the estimator obtained at the gl-th replication, with the weights defined above, and θ̃l be the simple

average of the ml values θ̃gl obtained by deleting each PSU which is located in stratum l. The variance

of θ̂ can be estimated by (Verma and Betti, 2011)

V̂ ar[θ̂] =
L∑
l=1

[(
1− nl

Nl

)ml − 1
ml

∑
g∈Gl

(θ̃gl − θ̃l)
2]
, (10)

where (1− nlN−1
l ) is the finite population correction.

2.3 Possible variations

JRR may be also applied if a whole group of PSUs is deleted at each replication, and even if only a

subset of the PSU groups is used, reducing the computational burden. If we focus on one stratum l,

the ml PSUs could be grouped in bl clusters, where each PSU belongs only to one cluster, and cl < bl

clusters are eliminated at each replication. In such a case the factor (ml − 1)/ml in the equation

(10) is replaced by (bl − 1)/cl. Besides, it may be also possible to replace the quantities kgl with

kl = ml/(ml − 1), consequently the weights would turn out to be the same for each PSU located in

the same stratum l. This modification results more appropriate when the PSUs have similar size.
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2.4 Further details

JRR can be used for any statistic θ through the equation (10). However, it performs better for certain

types. For simpler statistics such as means, ratios and functions of ratios, it has been widely used.

About more complex statistics, Efron (1982) shows in a model-based approach that the JRR variance

estimator is generally upward biased, and the bias decreases when the sample size and the number

of replications increase. He also shows some classes of statistics for which the method can be used

safely, which include the Gini Coefficient and other inequality indices. Unfortunately, JRR does not

perform well for unsmoothed functions of sample aggregates: Efron (1982) shows the inconsistency

for the median. Furthermore, even if it is consistent under a model-based approach, its properties in

the design-based approach have to be assessed (Arnab, 2017).

The method presented above requires at least two PSUs for each stratum. It can be possible that

someone is dealing with a survey where one - or more - strata have only one PSU. Furthermore, Kott

(2001) puts the minimum number of PSUs in each stratum at five to guarantee the near unbiasedness of

the variance estimator, but notes that the bias may be acceptable in some situations. Rust and Kalton

(1987) suggest methods for grouping or collapsing strata or PSUs, to make possible the application

of the “Jackknife Delete One PSU”: they show that appropriate collapsing usually does not introduce

additional bias or variability in the variance estimation. However, it is an operation which requires

particular attention, because reducing the number of PSUs is a potential source of bias and instability

for the variance estimator, due to the reduced number of replications. The major motivation for

grouping units is to reduce the computational burden required, as a consequence of the reduced

number of replications. The approach suggested by Verma and Betti (2011) is to define computational

PSUs reasonably uniform and with sufficiently large size: through experiences in EU-SILC and similar

applications, Verma et al. (2010) find 200 “computational PSUs” to be a safe choice in all cases, and

even 100 in almost all cases. Further details of practical utility can be found in Verma et al. (2010).

The method may also be implemented with a (Stratified) Simple Random Sampling, through

the construction of random “computational PSUs” within each stratum, following the instructions

explained in this Section: it allows to greatly reduce the number of replications.
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3 Linearization methods

About the linearization methods, the most known method is the Taylor linearization. However, it

requires that the statistic is a regular function of estimated totals, continuously differentiable up to

order two. As explained by Osier (2009) and Langel and Tillé (2013), for many complex statistics - as

many poverty measures - this request is not satisfied, therefore a different way to derive the variance

estimator has to be found. The main concept is to obtain a linearized variable zi for each observation

yi such that

θ̂ − θ =
∑
i∈S

wizi −
∑
i∈U

zi +R, (11)

where R represents a remainder term which is stochastically negligible respect to the design. The

consequence is that the variance of the estimator may be approximated by the variance of the linearized

variable. In practice, zi is unknown and has to be replaced by its sample counterpart ẑi.

There are several methods about the linearization approach (for a full overview see Langel and

Tillé, 2013), even if two are more relevant in the literature: the estimating equation’s and the influence

function’s approach.

3.1 Estimating equation

Let λ = (λ1, . . . , λM )T be nuisance parameters, which are not of immediate interest but are involved in

the estimation of θ, we therefore have to take account of them. For finite population, most parameters

of interest can be expressed as the solution of the equation

U(θ,λ) = 0, (12)

called estimating equation, where

U(θ,λ) =
∑
i∈U

u(yi,λ, θ) (13)

is a suitable function, whose sampling counterpart is given by

Û(θ,λ) =
∑
i∈S

wiu(yi,λ, θ), (14)

where wi is a weight such that
∑
i∈S wi = N̂ - i.e. the HT estimator of N .

By solving the equation Û(θ,λ) = 0 is possible to obtain an estimator θ̂ - the so-called “estimating

equation” estimator - of the population parameter θ, while analogously an estimator of the nuisance

parameters - i.e. λ̂ - is obtained. For instance, the population mean of y, i.e. µy, can be estimated by

∑
i∈S

wi(yi − θ̂), (15)

and the resulting estimator is

θ̂ =
(∑
i∈S

wiyi

)(∑
i∈S

wi

)−1
. (16)
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It is important to point out that the choice of an estimating function for a certain parameter θ may

not be unique in general, but a linearized variable is specific to the parameter concerned, irrespective

of the particular estimating equation adopted, which is a result of considerable practical utility.

In the general situation where one - or more - nuisance parameters are present, the first step to

achieve an expression for the variance estimation of θ̂ is to subdivide the term Û(θ̂, λ̂) as

Û(θ̂, λ̂) =

Û1(θ̂, λ̂)

Û2(θ̂, λ̂)

 , (17)

where the first component Û1(θ̂, λ̂) is a scalar dealing with θ, while Û2(θ̂, λ̂) is a vector of dimension

M dealing with the nuisance parameters λ, such that the following equality holds,
Û1(θ̂, λ̂)

Û2(θ̂, λ̂)

 =


∑
i∈S

wiu1(θ̂, λ̂)∑
i∈S

wiu2(θ̂, λ̂)

 = 0. (18)

The following steps, omitted here, consists in a decomposition of the two terms and an approximation

through Taylor linearization: the entire procedure and the corresponding proof can be found in Binder

and Patak (1994), Binder and Kovacevic (1997).

Through two assumptions made by the authors which are met in most cases of practical importance,

namely that Û2(θ̂, λ̂) does not depend on θ and that the derivative of the estimating functions with

respect to θ does not depend on λ, the following expression is obtained,

θ̂ − θ =
∑
i∈S

wizi −
∑
i∈U

zi +R, (19)

where R is a remainder term stochastically negligible (see Binder and Patak, 1994), and zi is defined

as

zi =
[
−Û1(θ,λ) + JT

1,λJ
−1
2,λÛ2(θ,λ)

]
J−1

1,θ , (20)

where

J1,θ = ∂U1(θ,λ)
∂θ

is a scalar,

J1,λ = ∂U1(θ,λ)
∂λ

is a vector of order M, while

J2,λ = ∂U2(θ,λ)
∂λ

is a square matrix of order M.

Once the linearized variable zi is achieved, it can be possible to approximate the variance of θ̂ by

V ar[θ̂] = V ar
[∑
i∈S

wizi
]

+R, (21)
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where R is a remainder term of order n−1 (see Binder and Patak, 1994). To approximate the variance

of the parameter, it is important to replace θ and λ with θ̂ and λ̂ only in the final expression of the

variance, obtaining the estimated linearized variable ẑi. Formulae to compute the variance estimation

of linear variables are well-known, taking care of some aspects as the sample design.

For Multistage Stratified designs, an estimator of the variance (Osier et al., 2013) is

V̂ ar(θ̂) =
L∑
l=1

[
(1− nl

Nl
) ml

ml − 1
∑
g∈Gl

(
ẑgl −

ẑl
ml

)2]
, (22)

where ẑigl is the linearized variable for unit i in PSU g and stratum l, wigl is the corresponding sample

weight,

ẑgl =
∑
i∈Sgl

wiglẑigl,

ẑl =
∑
g∈Gl

ẑgl,

and (1− nlN−1
l ) is the finite population correction.

As an example, the method is applied to one poverty measure, the Poverty Rate index (PR) -

see Subsection 4.1. Following the definition of the European statistical office, it is defined as the

proportion of units whose income is below the 60% of the median (Ỹ ) of the income distribution,

which is formally called Poverty Threshold (PT ), i.e.

PT = 0.6Ỹ (23)

and

PR = 1
N

∑
i∈U
I]−∞,PT ](yi), (24)

where IA(y) is the indicator function, which takes value 1 if y ∈ A and 0 otherwise. Therefore, in

such a case the variable of interest yi represents the equivalized income of unit i (see Section 4 for the

definition of the equivalized income).

The estimating equations for PR turn out to beÛ1(PR, Ỹ ) = 1
N

∑
i∈S wi

(
I]−∞,PT ](yi)− PR

)
Û2(PR, Ỹ ) = 1

N

∑
i∈S wi

(
I]−∞,Ỹ ](yi)− 1

2
)
 . (25)

By the use of (20), the linearized form of the Poverty Rate is given by

zi = 1
N

[
I]−∞,PT ](yi)− PR

]
− 1
N

[
0.6fK(PT )

fK(Ỹ )

(
I]−∞,Ỹ ](yi)− 1

2
)]

, (26)

where J1,PR = 1, J1,Ỹ = 0.6fK(PT ), J2,Ỹ = fK(Ỹ ).

Finally, the estimated linearized variable ẑi is computed by replacing the population parameters

with their sample counterparts. It should be remarked that J1,Ỹ and J2,Ỹ are representations of

sample quantiles given by Francisco and Fuller (1991), which are valid under some assumptions that

do not hold for their sample estimation from finite population (see Subsection 2.3). Consequently, the

variance estimator is not robust for statistics which are function of sample quantiles.
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3.2 Influence function

The second method presented is based on the concept of influence function, which was first intro-

duced in robust statistics by Hampel (1974). The purpose was to grasp the effect of an infinitesimal

contamination on a parameter of interest.

The first step is to express the population parameter θ as a functional θ = T (M), where M is a

measure which allocates a mass of 1, M(k) = 1, only at point k, such that its total mass is equal to

N , namely the size of the population. The specialization of M into a discrete measure turns T into a

discrete functional. The influence function of T is defined as

I[T (M)]k = zk = lim
t→0

T (M + tδk)− T (M)
t

, (27)

for all k ∈ U , where δk is the Dirac measure for the unit k (δk = 1 if and only if i = k), and zk is the

linearized variable. This influence function is the Gâteaux-differential in the direction of the Dirac

mass at point k.

The measure M is estimated by the empirical measure M̂k = wk, for each unit k ∈ S, where wk
is a weight (e.g. sample weight), thus an estimator of θ is θ̂ = T (M̂). Deville (1999) justifies this

procedure showing that

T (M̂)− T (M) =
∑
k∈S

wkzk −
∑
k∈U

zk +R, (28)

where again R is a remainder term stochastically negligible. Under some asymptotic conditions ex-

pressed by Deville (1999), which are theoretically satisfied for large samples, the variance of the

linearized variable zk is an approximation of the variance of θ̂, i.e.

V ar[θ̂] = V ar
[∑
i∈S

wizi
]

+R, (29)

where R is a remainder of order n−1 (see Deville, 1999). In practice, only the sample data are

available, thus an estimated linearized variable ẑk is obtained, replacing the unknown values with the

corresponding quantities estimated from the sample.

Actually this approach starts from the population parameter and not from the estimator. Demnati

and Rao (2004) proposed to use not the discrete measure defined in U , but directly the following

measure defined for S, i.e. M̂(k) = wk, for k ∈ S. The consequence is that now the starting point is

not the parameter, but the estimator, and the linearized variable based on that functional is

I[T (M̂)]k = ẑk = lim
t→0

T (M̂ + tδk)− T (M̂)
t

, (30)

for all k ∈ S. The result obtained turns out to be exactly the same of the result given by Deville’s

approach.

As explained in the Subsection above, the variance of the linearized variable can be calculated

by standard methods and well-known formulae. Osier (2009) shows the procedures to compute the
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influence functions, which are similar to the derivative rules, without the necessity of computing

limits which may result to be a difficult task, and he also shows examples for some poverty measures.

Langel and Tillé (2013) show an additional result to compute the linearized form of a double sum

(e.g. quadratic form) directly, while Barabesi et al. (2016) derive a rule for computing the influence

function of a general family of complex population functionals, which includes many poverty measures,

and provide examples for some inequality indices of interest.

As an example, the steps to obtain the influence function and the linearized form of one poverty

measure, the Poverty Rate index (PR) defined in the Subsection above, are shown.

At first, the index is expressed as a functional of M , i.e.

PR = F
[
M,PT (M)

]
= T (M), (31)

where F is the cumulative income distribution function,

F (M,y) = 1
N

∑
i∈U
I]−∞,y](yi). (32)

The influence function of the Poverty Rate can be written as a sum of two terms: the first one is

the influence function of T with respect to M , holding the parameter PT (M) constant (c), while the

second one accounts for the influence function of PT (M), i.e.

IPRk(M) = zk = z0
k + zvk , (33)

where 
z0
k = IFk

[
M,PT (M)|PT (M) = c

]
zvk =

[
dF (M,y)

dy

∣∣y = PT (M)
]
IPT (M)

. (34)

We firstly introduce some results needed: the influence function of the ratio

R = θ1
θ2

= U(M)
V (M)

is defined as

IRk(M) = V (M)IUk(M)− U(M)IVk(M)
V (M)2 , (35)

while the influence function of the population total of a variable

TY =
∑
k∈U

yk = TY (M)

is defined as

ITY,k(M) = yk. (36)

Consequently, the influence function of F , the cumulative income distribution function (32), is

IFk(M) = 1
N

[
I]−∞,y](yk)− F (y)

]
. (37)
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Given (37), the influence function of F with respect to M , holding PT (M) constant, is

z0
k = 1

N

[
I]−∞,PT (M)]

(
yk
)
− PR(M)

]
. (38)

The next step is the computation of IPTk(M): by definition, the median income Ỹ (M) satisfies the

identity

F
[
M, Ỹ (M)

]
= 1/2,

thus its influence function is

IFk
[
M, Ỹ (M)

]
= 0. (39)

Through the same rules used to get (34), the functional can be rewritten as

IFk
[
M, Ỹ (M)|Ỹ (M) = c

]
+
[
dF (M,y)

dy

∣∣y = Ỹ (M)
]
IỸk(M) = 0. (40)

The influence function of F has already been defined in (37): thus, holding Ỹ (M) constant, we obtain

IFk
[
M, Ỹ (M)|Ỹ (M) = c

]
= 1
N

[
I]−∞,Ỹ (M)

](yk)− 1
2

]
. (41)

Besides, let f = F ′ denote the derivative of the cumulative distribution function. As can be seen

below, it is necessary that f exists, and it must be strictly non negative for each y. Unfortunately,

for finite populations - and therefore also for samples - the cumulative distribution function is a step

function, it means that its derivative is always 0 or not defined. Methods to solve this problem are

shown in Subsection 2.3, and the choice is not unique: let fK be the differentiable function that has

been chosen (note again that in neither case it is a consistent estimator in a design-based approach).

Thus, we can rewrite (40) as

1
N

[
I]−∞,Ỹ (M)

](yk)− 1
2
]

+ fK
(
Ỹ (M)

)
IỸk(M) = 0. (42)

Now, after having obtained IỸk(M), the influence function of the Poverty Threshold (IPTk(M)) can

be easily written through the relation (23), which gives

IPTk(M) = 0.6IỸk(M) = − 0.6
fK
(
Ỹ (M)

) 1
N

[
I]−∞,Ỹ (M)

](yk)− 1
2
]
. (43)

Going back to the equation (34), it is possible to substitute IPTk(M) to obtain the influence function

of the Poverty Rate, namely
z0
k = 1

N

[
I]−∞,PT (M)]

(
yk
)
− PR(M)

]
zvk = fK

(
PT (M)

)[
− 0.6
fK
(
Ỹ (M)

) 1
N

[
I]−∞,Ỹ (M)

](yk)− 1
2
]] , (44)

which can be rewritten as
z0
k = 1

N

[
I]−∞,PT (M)]

(
yk
)
− PR(M)

]
zvk = −0.6

N

fK
(
PT (M)

)
fK
(
Ỹ (M)

) [I]−∞,Ỹ (M)
](yk)− 1

2

] . (45)
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Finally,

IPRk(M) = zk = z0
k + zvk

is the influence function of the Poverty Rate, namely its linearized form. To obtain the estimated

linearized variable, i.e. ẑk, it is necessary to substitute the population values with their corresponding

sample estimators.

3.3 Estimate the density function

When the linearized form of any poverty measure is computed, references to the density function

at various points of the income distribution are usually involved (e.g. median). The cumulative

distribution function is a step function, it implies that the density function is 0 nearly everywhere:

as explained by Verma and Betti (2011), to solve this problem there are many density estimation

techniques which provide a differentiable (artificially) smoothed function. The most common choice

is to use the Kernel estimator, where there is the need to choice the kernel function K, which is a

probability density function, and the bandwidth parameter h, which controls the degree of smoothing

applied to the data in such a way that the density function is more smoothed when h increases and

vice-versa. The Kernel method has been originally introduced in a model-based approach (Silverman,

1986), later an extension to finite populations has been developed (Jones and Bradbury, 1993): the

density function estimated from the data is defined as

f̂K(y) = 1
N̂

1
h

∑
i∈S

wiK

(
y − yi
h

)
. (46)

Silverman (1986) shows that the efficiency between the most common functions is similar, while the

choice of the bandwidth parameter is crucial. One of the most widely used method to evaluate the

global accuracy is the Mean Integrated Square Error (MISE), and minimizing an appropriate estimator

of MISE is a way to estimate the bandwidth parameter. In a model-based approach MISE is defined

as

MISE
(
f̂K(y)

)
= E

∫ [
f̂K(y)− f(y)

]2
dy, (47)

while Jones and Bradbury (1993) develop a generalization of MISE for samples from finite populations.

However, there are many ways to choice the parameter h, which may also depend on the charac-

teristics of the distribution (e.g. its skewness). For instance, when f(y) is suspected to come from a

Log-normal or heavily skewed distribution, an optimal value for the bandwidth parameter h suggested

by Silverman (1986) is ho = 0.79Rn−1/5, where R is the inter-quantile range. Graf and Tillé (2014)

point out that the most common choices of the bandwidth parameter, based on rules given by Silver-

man (1986) (Osier, 2009, Verma and Betti, 2011), are not robust estimators because of outliers and

irregularities of the empirical density function, and the consequence is that a strong bias in the vari-

ance estimation may occur. Consequently, they propose a method to obtain more robust estimation

for density function.
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4 Laeken indicators

Poverty and inequality are studied in the European Union (EU) by the realization of the European

Union - Statistics on Income and Living Conditions (EU-SILC) survey, which is conducted by the

European statistical office (Eurostat). A set of indicators (known as Laeken indicators - European

Commission, 2003) is estimated and published each year, through the data obtained with the survey.

The regulation is defined uniquely by Eurostat, expression of EU, and allows the standardization of

the procedure and the comparability between countries, reflecting a balanced representation of EU

social concerns. However, there are great differences between countries, especially for the choice of the

sample design (presence/absence of stratification, multistage and systematic sampling)1. The survey

involves not only the members of EU, but also some candidate countries and potential candidates of

EU - the complete list can be found on the Eurostat website2.

We decide to focus on some well-known monetary measures of the Laeken indicators. In this frame-

work the variable of interest - yi - represents the equivalized income for unit i (European Commission,

2019).

4.1 Poverty Rate

The Poverty Rate (PR) index, also known as Head Count Ratio, is defined as the proportion of units

whose income is below the Poverty Threshold (PT ), which is not defined uniquely. This choice is

crucial and requires a certain level of subjectivity. Eurostat adopts the 60% of the median of the

income distribution. It is estimated by

P̂R =
∑
i∈S wiI]−∞,PT ](yi)∑

i∈S wi
. (48)

4.2 Quintile Share Ratio

The index Quintile Share Ratio (Qsr) - also known as S80/S20 - is defined as the proportion between

the total income received by the richest 20% of the population, and the total income received by the

poorest 20% of the population. It is estimated by

̂S80/S20 =
∑
i∈S wiyiI]Ŷ0.8,+∞](yi)∑
i∈S wiyiI[−∞,Ŷ0.2](yi)

, (49)

where Ŷ0.8 and Ŷ0.2 are the quantiles estimated from the sample.
1https://ec.europa.eu/eurostat/statistics-explained/index.php/EU statistics on income and living conditions (EU-

SILC) methodology - sampling
2https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions
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4.3 Gini Index

The Gini Index is a popular inequality index proposed by the statistician Corrado Gini (1912, 1921),

which has been widely studied in the literature. Langel and Tillé (2013), and Barabesi et al. (2016)

offer a global overview of the studies about making inference on this index.

The simplest way to describe the Gini Index (Gini) is by the use of the Lorenz curve (1905). This

curve is obtained by sorting the units on the basis of their income on the x axis, from the poorest

to the richest, and the corresponding cumulative income distribution function is represented on the

y axis. It is important to know that the index may also be defined in a different way, independently

from the Lorenz curve (Langel and Tillé, 2013).
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Figure 1: Gini Index and Lorenz curve

Hence, the Gini Coefficient is defined as

Gini = A

A+B
.

It is clear that 0 ≤ Gini < 1, where a lower value implies a more equal income distribution. According

to European Commission (2003) the Gini Index may be estimated by

Ĝini =
2
∑
i∈S
(
wiyi

∑
j∈S:yj≤yi

wj
)
−
∑
i∈S w

2
i yi(∑

i∈S wi
)∑

i∈S wiyi
− 1.
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5 Empirical analysis - Monte Carlo simulation

A simulation study is required when we would like to comprehend the empirical properties of an

estimation method, in the situation where they could not be formally proved. The idea is to draw a

large number of sample from a complete population available, and thus to estimate the parameter of

interest each time, to obtain as many estimates as the number of sample drawn, which is an arbitrary

number as it is our choice. Obviously, a greater number of replications gives more reliable results.

The following step involves the comparison between the expected value of the estimates, and their

distribution, with the true value of the parameter of interest which is known.

Therefore, we decide to conduce a simulation study to understand how the JRR defined in Sub-

section 2.2 works. Furthermore, we compare the results with the linearization method - using the

equation (22) - and the naive Bootstrap described in Alfons and Templ (2013), by taking account of

the presence of stratification and clustering in the sample design.

5.1 Population and sampling design

The data used in this simulation study are obtained from the 2011 census of Albania, which contains

a limited amount of information for the whole population, in combination with the Albanian Living

Standard Measurement Survey (LSMS) of 2012, a multi-purpose survey which collects information

to measure poverty and living conditions. The two sources of data have been used to simulate the

consumption of each household by the use of a methodology named Poverty Mapping (Elbers et al.,

2003, Betti et al., 2018). In few words, it combines census and sample data, the former having a huge

size and the latter being more detailed, and also some extra data - e.g. geographical data - can be used

if available, in order to describe the spatial poverty distribution on a country, through the construction

of a database with a high level of disaggregation. It is important to get a large number of variables

which can be matched between the two sources. The method follows a model-based approach and it

is implemented by the use of econometric techniques.

Through the use of Poverty Mapping 100 simulations of the population consumption distribution

have been obtained, thus the expected value for each household has been taken to obtain the per-capita

consumption for each population unit - our variable of interest. We use the consumption as a proxy

variable for the income, to compute the inequality measures and their errors. The monetary variable

is expressed in terms of Albanian leks in the 2002 value of the currency. See Betti et al. (2018) for a

description of the study made in Albania about poverty and inequality.

The population consists of 722,262 households for a total of 2,784,539 individuals, which are

subdivided in 24 strata. The strata are obtained by joining the 12 prefectures of Albania with the

dummy variable Urban, which indicates whether the household lives in an Urban or a Rural context.

Moreover, the households are grouped in 11,579 PSUs, which have been defined by the Albanian
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Institute of Statistics on the basis of the geographical and political subdivisions.

We have drawn a total of 1,000 samples from the Albanian population. Each sample drawn follows

the instructions of the survey LSMS 2012, implemented by the Albanian Institute of Statistics. A

two-stage design has been adopted: at the first stage, 834 PSUs have been drawn with a systematic

stratified sampling, where the sample size for each stratum has been decided by the Albanian Institute

to represent the whole country, while within each stratum the inclusion probability of each PSU is

proportional to its number of households contained. Afterwards, at the second stage 8 households are

selected within each PSU previously selected, with Simple Random Sampling without replacement.

Finally, the sample of 6,672 households is obtained. All the individuals of the households selected are

included.

5.2 Numeric results

Four inequality indices are considered. (PR-fix) represents the Poverty Rate with a fixed poverty

line, (PR-60) represents the Poverty Rate adopted by Eurostat, while (Qsr) stands for the Quintile

share ratio. Finally, (Gini) represents the Gini Coefficient. All measures are considered at individual

level. Note that the Poverty Rates and the Gini Index are represented with the percentage values.

At first, we present the population parameter θ and the expected value (E[θ̂]) of the 1,000 estimates

obtained. Besides, concerning a measure of accuracy, we adopt the square root of the variance - known

as Standard Error (Se[θ]) - which has the advantage of having the same unit of measure of the point

estimator, in such a way that it may give clearer results. In order to comprehend the performance of

the standard error estimator (Ŝe[θ̂]), we take account of the expected value (E[Ŝe[θ̂]]) and the relative

bias (RB[Ŝe[θ̂]]), say

RB[Ŝe[θ̂]] = E[Ŝe[θ̂]]− Se[θ̂]
Se[θ̂]

. (50)

Furthermore, we also report the distribution of the standard error estimator over the 1,000 samples,

which evidences how the estimator diverges around its expected value. We use an estimated kernel

distribution for better visualization.

Table 1: Simulation results for the first population

Jackknife Bootstrap Linearization

θ E[θ̂] Se[θ̂] E[Ŝe[θ̂]] RB[Ŝe[θ̂]] E[Ŝe[θ̂]] RB[Ŝe[θ̂]] E[Ŝe[θ̂]] RB[Ŝe[θ̂]]

PR-fix 14.300 14.320 0.704 0.740 0.051 0.729 0.036 0.736 0.045

PR-60 7.113 7.093 0.496 0.687 0.385 0.536 0.081 0.639 0.288

Qsr 3.076 3.016 0.068 0.088 0.294 0.069 0.015 0.071 0.044

Gini 22.500 22.503 0.523 0.524 0.002 0.506 -0.033 0.522 -0.002
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Figure 2: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for PR-fix,

both populations
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Figure 3: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for PR-60,

first population
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Figure 4: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for Qsr,

first population
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Figure 5: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for Gini,

first population

We see that the estimators of the inequality indices are nearly unbiased. The small differences are

due to the non-proportional sample size between strata.

In terms of accuracy, we do not have univocal results. First of all, we see some asymmetric

distributions which suggest to take care not only of the expected value, but mainly of their dispersion.

For PR-fix we have a non-skewed distribution, the Bootstrap is nearly unbiased but more unstable.

On the contrary, for PR-60 the Bootstrap has better results, while Jackknife has a problematic long

right tail. For Qsr we have a long right tail for all the measures, Jackknife seems preferable because

the other two methods usually underestimated the true error. Finally, the Gini has nearly identical
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distributions for all the methods, with a long right tail and a usual underestimation.

Again, we decide to apply the simulation study also to a different consumption distribution. This

is because we have taken the expected value of the consumption as our proxy variable, which may have

artificially reduced the tails of the distribution. Therefore, we adopt a Log-normal model (Aitchinson

and Brown, 1969). Firstly, the parameters are estimated on each simulation of consumption. Secondly,

the consumption for the 722,262 households is generated from the model, whose parameters are equal

to the expected value of their estimates over the 100 simulated distribution.

Table 2: Simulation results for the second population

Jackknife Bootstrap Linearization

θ E[θ̂] Se[θ̂] E[Ŝe[θ̂]] RB[Ŝe[θ̂]] E[Ŝe[θ̂]] RB[Ŝe[θ̂]] E[Ŝe[θ̂]] RB[Ŝe[θ̂]]

PR-fix 14.300 14.320 0.704 0.740 0.051 0.729 0.036 0.736 0.045

PR-60 16.454 16.444 0.620 0.865 0.395 0.655 0.056 0.642 0.035

Qsr 4.552 4.487 0.104 0.145 0.394 0.117 0.125 0.119 0.144

Gini 29.598 29.605 0.479 0.537 0.121 0.524 0.094 0.536 0.119
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Figure 6: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for PR-60,

second population
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Figure 7: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for Qsr,

second population
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Figure 8: Jackknife (Red), Bootstrap (Blue), and Linearization (Green) Standard Error distribution for Gini,

second population

Due to the decision of having uniform results with Betti et al. (2018), the fixed poverty line has

been moved from 5,773.69 to 4,418.82 leks. However, it is useful to compare the values with the second

index.

The results for the estimators of the inequality indices are similar to the first population. In terms

of accuracy, for PR-60 Linearization is now nearly unbiased, with an high concentration, while again

Jackknife has a problematic right tail. For Qsr we face distributions similar to the first population,

but now Linearization and Bootstrap are concentrated around the true value. Finally, Gini has the

same curves of the first population, with a heavy right tail, but now most of the observations are
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concentrated on the true value.

Some conclusions seem to be interesting. First of all, it may be noted that in some situations

there are quite identical distributions, not always for the same methods. Secondly, we see that the

distributions for each parameter are equal between the two populations, moving the curves horizontally.

As we have already said, the second population is less concentrated. We see that in this case we have

more accurate estimated errors rather than the first population.

Finally, we can conclude that there is not an univocal result. Jackknife seems to be more unstable,

and usually gives conservative estimates. Bootstrap and Linearization give nearly always similar

results, but in the first population they sometimes tend to underestimate the standard error.
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6 Conclusion

In the ambit of sampling from finite population, we see that the theme of variance estimation can

be faced safely with different approaches, for many measures, even if we meet some problematic. In

presence of complex surveys, and complex measures, some approximations are required. The purpose

is to get un unbiased variance estimator, if it exists. Otherwise, we look for getting an estimator

which is not downward biased, whose bias decreases as the sample size increases. Therefore, after

having shown the main methods, we decide to focus on a common resampling method - Jackknife

Repeated Replication - to try to understand how it works, and we have implemented a comparison

with Linearization and Bootstrap.

The results say that we do not have a method which has always a major reliability. We see

different distributions for each statistic, and also a different bias between the two populations. The

Jackknife seems to be more conservative and sometimes more unstable, while - in the first population

- the Bootstrap and the Linearization gives sometimes a systematic underestimation. Finally, we can

conclude that there is not a clear superiority of any approach over the others, and the preference for

one method may be influenced also by practical considerations.
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