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Abstract

In current debates about job automation, technology adoption is framed as a politics-neutral
decision driven by the search for technical efficiency. Discussions about the nature of job design
(i.e. the content and distribution of tasks within firms) and its associated automation risk are
usually devoid of institutional context. However, job design may be affected by the way firms are
governed. A critical feature of workplace governance is the extent to which decision making is
shared by capital owners and workers via institutionalized forms of employee representation (ER).
In this paper, we propose an evolutionary model to study the complementary fit and endogenous
dynamics of job design and workplace governance. We show that two technological-political con-
ventions are likely to emerge: in one of them workplace governance is based on ER and job designs
have low automation risk; in the other, ER is absent and workers are involved in automation-prone
production tasks. We explore the validity of the theory by using data from a large sample of Euro-
pean workers including detailed information on occupations, task environment, working conditions
as well as presence of ER. Results are consistent with the theory: automation risk is negatively
associated with the presence of ER. Our analysis can be useful to rationalize the historical ex-
perience of Nordic countries, where simultaneous experimentation with codetermination rights
and job enrichment programs (supplemented by nationwide institutional reforms) seem to have
had enduring consequences in the way these countries confront technological challenges. Policy
debates about automation should avoid technological determinism and devote more attention to
socio-institutional factors shaping the future of work.
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1 Introduction

Industrial applications of artificial intelligence (AI) and robotic technology have signifi-
cantly improved in the last decades. Rather than replicating the human mind, the most
recent developments in the fields of neural networks, deep learning and algorithmic ap-
proach to unstructured data aim to single out tasks that can be easily (and cheaply)
performed by robots. Such tasks are usually repetitive, highly routinized and require
intensive information handling (Haenlein and Kaplan, 2019). This process is generally re-
ferred to as “automation”, i.e. the adoption of technologies that enable some of the tasks
previously performed by the worker to be produced by capital. The success of automation
goes unquestioned: during the last three decades the per-worker number of installed in-
dustrial robots has increased by nearly four times both in US and Europe (Acemoglu and
Restrepo, 2020a). At the same time, this wave of automation has originated deep con-
cerns about its potential implications for labor displacement. Workers involved in tasks
at high risk of automation are indeed likely to loose their job at some point in the future,
with negative consequences in terms of both inequality and unemployment (Brynjolfsson
and McAfee, 2014; Autor, 2015; Ford, 2015; Susskind and Susskind, 2015; Goos, 2014).

In this paper we focus on one particular feature of automation, namely job automa-
tion risk, i.e. the extent to which the tasks bundled into a job are likely to be automatized.
While the prevailing view is that job automation risk is a given characteristic of the pro-
duction process, we argue that it is also a matter of organizational choice, being it driven
by a wide range of socio-institutional factors, such as managerial decisions, skill avail-
ability and industrial relations considerations (Arntz et al., 2016; Spencer and Slater,
2020). In particular, it is often overlooked the fact that job design and task composition
are the outcomes of the strategic interactions that involve workers and capital owners
at the workplace level. As a result, they can hardly be framed as the consequences of
politics-free decisions, driven only by considerations of technical efficiency. Indeed, recent
economic scholarship recognises that not all technologies which substitute away workers
employed in automatable tasks are efficiency enhancing. Acemoglu and Restrepo (2019),
for instance, list several examples of “so-so technologies” that replace workers but generate
little productivity improvements.1

Our main aim is to deepen the analysis of the organizational drivers of automation
risk by focusing on the interplay between job design and workplace governance. We
define workplace governance as the set of formal and informal institutions whose function
is to allocate authority and decisions rights within firms. Among such institutions we
focus on the role of employee representation (ER), referred to as the institutionalized
channel for employee voice through which workers can influence work organization and

1This includes machines such as self-checkout kiosks, self-service pumps in gasoline stations and other
automated devices facilitating customer-employee substitution (Basker et al., 2017).
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employment-related issues at the workplace level (e.g. unions, works councils, consultative
committees). Formal employee representation has a long tradition in European countries.
While wage negotiations are carried out by trade unions at the national, sectoral or firm
levels, workplace employee representation deals with employment-related matters such as
major organizational changes, training, working time and other working conditions (Forth
et al., 2017). The main questions that motivate our study are thus the following: does
ER affect firm’s decisions affecting job design and hence also workers’ exposure to the risk
of automation? What are the implications of the link between ER and job automation
risk for the design of labor market institutions and workplace governance?

We develop a theoretical framework where we study the relationship between job
automation risk and workplace governance using an evolutionary model. We frame our
argument with reference to two main research traditions. The first one is the so-called
Radical school, which treats technological choices as socially determined (Gintis, 1976;
Braverman, 1974; Bowles, 1985; Skillman, 1988; Pagano, 1991). The second one is the
New Institutional view (Coase, 1937; Williamson, 1985; Hart and Moore, 1990), which
instead adopts the opposite approach and sees workplace institutions as determined by
technology. On this basis, we suggest that in the presence of asymmetric information
and incomplete contracts firm-level choices about job design and workplace governance
are driven by a two-ways causality: on the one hand, job designs characterized by higher
(lower) automation risk makes the creation of ER bodies less (more) likely, because work-
ers have smaller (larger) incentives to organize and demand voice channels. On the other,
the absence (existence) of ER bodies makes automation-prone job designs more (less)
probable, because employers find it more (less) convenient to extract work effort via labor
discipline (i.e. involving employees in repetitive, routinized and easy to monitor tasks)
than via institutionalized commitment (i.e. negotiating and enforcing a group-level effort
norm). These two directions of causation imply that job design and workplace governance
are institutional complements (Aoki, 2001) and multiple job design-workplace governance
equilibria may exist. In particular, we show that two opposite technological-political con-
ventions are likely to emerge: in one of them, workplace governance is based on ER and
job designs are characterized by low automation risk; in the other, ER bodies are absent
and workers are involved in automation-prone production tasks. Under certain condi-
tions the former convention Pareto dominates the latter, which can nonetheless emerge
as sub-optimal stable equilibrium. In our framework, the combination of contracting im-
perfections and conflicting interests within labor relationships may drive a wedge between
private and social benefits of certain job design configurations, exposing workers to an
inefficiently high automation risk.

We test these predictions using unique individual-level data from the 2010 and 2015
waves of the European Working Condition Survey (EWCS), covering nearly 44000 workers
(in each wave) located in 35 European countries and providing harmonized information on
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a broad range of issues, including detailed information about the task environment of each
single worker, such as the degree of task complexity, routineness, involvement of social
skills, and task discretion. Moreover, the survey contains information about industry and
occupational codes as well as a question concerning the existence of ER bodies at the
workplace level. We exploit the information about ISCO occupational codes and proxies
of task dimensions available in the EWCS to compute an individual-level measure of
automation risk (Frey and Osborne, 2017; Arntz et al., 2017; Nedelkoska and Quintini,
2018; Pouliakas, 2018; Costinot et al., 2011; Barbieri et al., 2020). This structure of the
data allows us to investigate the extent to which the presence of ER effectively relates
with the risk of automation.

Our empirical analysis has two main steps. First, we follow the computational
strategy of Arntz et al. (2017) and calculate an individual-level measure of automation
risk, using the task content information provided in the EWCS data. Doing so, we
allow our measure to endogenize the interplay between ER and job design, whilst the use
of off-the-shelf measures originally computed on US data would require to assume the
exogeneity of job design with respect to the institutional context. Second, we study the
empirical relationship between job automation risk and ER through a regression analysis.
Our findings indicate that the job design is effectively less automation-prone when ER is
present at the workplace. Moreover, the magnitude of the negative correlation between
ER and job automation risk appears higher for less educated workers. These results
hold both at an individual-level and in a country-industry fixed effects panel model.
Regressions based on alternative proxies of automation risk, such as an index of job
routineness à la Costinot et al. (2011) and the original occupation-based measure of
automation risk computed by Frey and Osborne (2017), produce substantially similar
results. Our evolutionary framework and documented empirical correlations appear to
be consistent with the historical experience and policy developments in Nordic countries,
such as Norway and Sweden, where nowadays job automation risk is low and workplace
ER is widespread in comparison to other countries.

Our work is most closely related to two main streams of literature. First, we con-
tribute to the studies on the determinants of job automation risk (Frey and Osborne, 2017;
Arntz et al., 2017; Nedelkoska and Quintini, 2018). Interestingly, Arntz et al. (2017) show
that cross-country differences in industry, occupational and educational structures explain
only a small part of the variance in job automation risk. They suggest that differences in
workplace organization can explain why some workers perform fewer automatable tasks
than others even within narrowly defined industry and occupational groups. In this pa-
per we provide a potential explanation for such within-industry and within-occupational
heterogeneity based on the existence of shop-floor ER. When ER is present, the strategic
interaction between workers and capital owners favour the emergence of job designs char-
acterized by less repetitive and more engaging tasks, which expose employees to lower
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automation risk. This introduces a socio-institutional source of variation on top of the
standard industry-specific and occupation-specific factors.

Second, the paper adds to an emerging literature focused on the role of labor mar-
ket institutions in shaping the nature, pace and consequences of technological change.
Previous research has focused on the effects of unemployment insurance and minimum
wage laws on labor market outcomes of individuals exposed to automation (Lordan and
Neumark, 2018; Bessen et al., 2019). In the US context, Parolin (2020) investigates the
effect of union membership in shaping job stability and transitions of workers employed
in routine jobs. Genz et al. (2019) analyze the effect of works councils on the implementa-
tion of digital technologies in German establishments. Using a large sample of European
workers, our paper documents how job automation risk varies depending on the presence
of ER at the workplace level. Despite the relevance of job design and task content for
the debates about automation, their dependence on different forms of shop-floor ER, a
rather distinct European labor institution granting workers a voice on work organization,
has been seldom taken up by the previous literature. This, instead, is the primary aim of
our paper. We claim that the social organization of the workplace affects the distribution
of tasks at risk of being automated and thus shapes the pace of technology adoption.

The remaining parts of the paper are organized as follows. Section 2 presents the
theoretical framework and develops a simple model of job design and workplace governance
co-evolution. Section 3 describes the data and discusses the details of our job automation
risk measure. Section 4 presents the results of our regression analysis. Section 5 looks
at historical examples from the Nordic countries as additional evidence in support of our
theory. Finally, Section 6 concludes the paper with a discussion of policy implications.

2 Theory

2.1 Job design, automation risk and workplace governance

The production of goods and services requires a bundle of tasks to be completed. Each
task can be performed either by workers or by capital (machines or software). The set
of tasks performed by a worker, which may also include overseeing machines that run
other tasks, represents the job of the worker. Firms define the task environment workers
are involved in and bundle tasks into jobs (job design). The characteristics of such tasks
can vary in terms of complexity, variability and routineness. Typically, a rich job design
consists of complex, variable and non-routine tasks. By contrast, a poor job design
includes simple, standard and routine tasks (Ben-Ner et al., 2012). The extent to which
the tasks bundled into a job can be performed by computer-controlled equipment affects
the exposure of workers to automation risk. Usually, the latter is higher in presence of
poorer job designs. In general, a job design characterized by high automation risk is a

5



prerequisite for automation to actually take place.
We argue that the nature of job design cannot be understood in isolation from other

aspects of the firm governance and organizational structure. Specifically, we emphasize
the importance of a particular dimension of workplace governance: the extent to which
employees are informed, consulted and share decision rights with capital owners via in-
stitutionalized ER channels. We propose that these two domains – the job design and its
associated automation risk, on the one side, and the workplace governance, as reflected by
the presence and the activity of institutionalized channels for collective employee voice,
on the other side – fit together complementarily and reinforce each other.2 Previous liter-
ature offers several insights to understand why automation risk and workplace governance
may influence each other. But these mutual influences may be difficult to disentangle and
have never been tackled directly in a unified framework.

2.1.1 Job design affects workplace governance

A central feature of the employment relationship is that work effort cannot be specified
in a complete contract. This means that employers face the problem of monitoring and
providing the right incentives to motivate workers to perform their duties. Employers
may also require workers to make firm-specific investments in skills that are highly valu-
able in the context of the current relationship. This exposes workers to the hazard of
opportunistic behaviour because the acquired skills have little or no value in alternative
transactions. A central tenet in the new institutional view of the firm is that property
rights and workplace governance would accommodate to provide an efficient solution to
these problems, minimizing transaction costs and protecting quasi-rents associated with
investments in specific assets (Alchian and Demsetz, 1972; Williamson, 1985). Therefore,
if work effort is hard to monitor and investments in firm-specific human capital play a
critical role, it would be efficient to confer safeguards and control rights to the workers
via participation in workplace governance. On the contrary, control rights should remain
with capital owners in presence of easy to monitor and general purpose labor.

When applied to automation, the new institutional view of the firm has interesting
implications for the structure of workplace governance. As argued above, the adoption
of automation technologies is easier in presence of poor job designs, because such designs
are characterized by high routineness and low task complexity. In this type of job en-
vironment, workers are exposed to high automation risk. Moreover, incentive problems
related to effort monitoring and skill specificity are mostly irrelevant. Workers are easy to
monitor as they perform a set of general purpose, simple and routine tasks. This reduces

2This relates to the notion of complementarity, which is at the heart of modern organizational analysis
(Brynjolfsson and Milgrom, 2013). In the presence of complementarities, each organizational practice
exerts an influence on the profitability of the others, explaining observed patterns of interactions and
clustering of practices.
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the need to device a workplace governance structure in which capital owners share control
rights with workers. The opposite holds, however, when job designs are rich and workers
are exposed to low automation risk. In such contexts, in fact, effort monitoring and spe-
cific investments are costly activities and a structure of shared workplace governance can
improve incentives.

The choice of the workers reinforces such configurations. If an automation prone
job design is selected, workers have little incentives to organize themselves and to demand
employee voice channels. Due to the nature of job design, workers have no gain other
than their monetary compensation (i.e. wage) and by restraining from participation in
firm governance they can at least save on the collective action costs needed to establish
ER bodies. On the contrary, if a rich job design is present, workers may enjoy intrinsic
pleasure in carrying out their duties. This implies that they may be more willing to pay
the collective action associated with ER and to commit to firm governance. Hence, the
risk of substitution of labor with capital affects the structure of the human relations within
the firm, alters the outside options of the workers and ultimately modifies the bargaining
powers and the distribution of ownership rights.3

2.1.2 Workplace governance shapes job design and automation risk

However, the adoption of a certain job design does not occur in an institutional vacuum.
Symmetrically, it is hard to exclude that the pre-existing structure of the workplace gover-
nance is neutral to the process of defining the automation risk. In an incomplete contract
environment, firm owners manipulate job design on strategic grounds and depending on
the nature of firm governance they can adopt different solutions.4 When ER is absent, for
instance, owners can benefit from selecting a job design that gradually transforms labor
into an easy to monitor and general purpose input, as the latter improve their bargaining
position vis-à-vis workers and improve effort extraction. On the contrary, whenever a
structure of ER is present, owners may find it convenient to rely on job designs character-
ized by a richer task environment, because this can provide intrinsic motivations to the
workers and engage them in institutionalized effort commitment.

The recognition of the fact that causality may be reversed, with ownership relations
and workplace politics exerting an influence on job design, dates back to the early contri-

3Acemoglu et al. (2001) suggest an alternative channel through which technology may contribute
to disorganise workers. Skill-biased technical change increases the productivity gap between skilled and
unskilled labor, making more costly to sustain wage compression policies in the unionised sector. Thus,
technical change undermines the coalition between skilled and unskilled workers and eventually causes
de-unionization.

4An extensive literature in organizational economics analyzes the problem of job design in the con-
text of principal-agent interactions characterized by conflicting interests (Holmstrom and Milgrom, 1991;
Itoh, 1994; Baker and Hubbard, 2003). One basic implication from this literature is that due incentive
considerations it may be optimal for employers to reduce task variety and group tasks according to their
ease of monitoring (Milgrom and Roberts, 1992).
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butions of the Radical economists (Gintis, 1976; Braverman, 1974; Marglin, 1974; Bowles,
1985; Duda and Fehr, 1987; Bartling et al., 2013). According to the radical theory of the
firm, the conflict of interests over effort provision between firm owners and workers may
induce the former to exercise authority in inefficient ways. Within this framework, the
choice of job design is dictated by bargaining power considerations as well as technical
efficiency. In particular, owners may have an incentive to replace difficult to monitor
with easy to monitor labor and to adapt the job design to general-purpose and easily
replaceable competencies (deskilling), increasing the credibility of the threat of dismissal
for workers. In the case of automation, this process implies that the adoption of an
automation-prone job design can be driven by labor discipline considerations and not
only technical opportunities, with the consequence that the resulting size of automation
risk can be higher than its socially desirable level. Interestingly, the fact that firms may
implement profitable but technically inefficient job designs and technologies is somewhat
recognised in contemporary scholarly work on automation. This is the case of the “so-so
technologies”, discussed by Acemoglu and Restrepo (2019), that displace labor, but gener-
ate negligible productivity gains. According to Acemoglu and Restrepo (2019), “excessive
automation” may be driven by imperfections in the labor market. Indeed, the problem
of effort extraction at the workplace level analysed by the Radical school can be seen as
a particular mechanism within a broader family of theories of labor market failures.

In this context, the presence of ER bodies may be an efficiency-enhancing arrange-
ment. Employee voice in firm governance can create incentives for the design of richer
task environments, which can partially mitigate distortions toward excessive automation
risk. This can happen thorugh different mechanisms. First, employee representatives may
be able to commit to a certain level of group effort in response to a richer task environ-
ment, providing an alternative channel to extract work effort compared to labor discipline
devices (e.g. deskilling). For instance, unions may collect private information on workers’
performance and facilitate peer-monitoring, alleviating the free-rider problem in team
production under collective agreements (Sampson, 1993). Second, employee voice may
increase effort commitment by directly reducing its disutility, i.e. strengthening intrinsic
motivations (Freeman and Medoff, 1984). Third, at a more general level, worker partici-
pation may help to improve information flows and overcome coordination issues (Freeman
and Lazear, 1994) and facilitate the enforcement of implicit agreements via relational con-
tracting (Malcomson, 1983; Hogan, 2001).5 Fourth, unions may help to implement more
transparent just-for-cause layoff policies and reduce cyclical layoffs, further improving in-
centive schemes for long-term investments in skill upgrading.6 Overall, shared workplace

5Schöttner (2008) shows that the possibility of engaging in relational contracts may facilitate the use
of richer job designs characterized by multitasking and broad task assignments.

6Carmichael and MacLeod (1993) shows that multiskilling, i.e. training workers in more than one
job (e.g. job rotation) is linked to job security, conferring firms an advantage in process innovations. Che
and Yoo (2001) demonstrate that team production and job security are complementary to group-based
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governance structures channelling employee voice and restricting the ability of owners to
act unilaterally may reduce the costs of managing difficult-to-monitor labor for the firm,
removing perverse incentives for implementing job designs characterized by suboptimally
high levels of automation risk.7

2.1.3 The two-way causation between job design and workplace governance

The two views entailing opposite causality directions (i.e. the job design shaping certain
workplace relations in the former, and workplace relations favouring certain job design
configurations in the latter) may actually coexist and can be reconciled under the notion
of institutional complementarities. This refers to situations where the presence of one
institutional arrangement in a given domain raises the returns from the adoption of an-
other (thus complementary) institution in a different domain. As a result, complementary
institutions tend to arise together and to reinforce each other. While the notion of com-
plementarity is generally used with reference to purely technical activities, its application
to institutional settings is now common (Amable, 2000; Aoki, 2001; Hall and Gingerich,
2009; Belloc and Pagano, 2009, 2013; Landini and Pagano, 2020).

Here we advance the argument of a two-way causation in the relationship between
workplace governance (and its corresponding distribution of control rights between capital
owners and workers) and job design (and its associated automation risk). The arrange-
ments taken in the two domains may influence each other and bring about a multiplicity
of “organizational equilibria”. On the one had, the existence of shared firm governance
offers the possibility to rely on institutionalized commitment as a substitute for labor
discipline to extract work effort, increasing owners’ incentives to select richer and less
automation-prone job designs. This choice is reinforced by the workers’ willingness to es-
tablish ER as the intrinsic motivations associated with the richer task environment more
than compensate the cost of collective organization. As a result, this particular organiza-
tional equilibrium can sustain itself. On the other hand, also an alternative organizational
equilibrium is possible. In the absence of ER, automation-prone job designs are suitable
alternatives to extract work effort via labor discipline. At the same time, this type of job
designs creates little incentives for workers to organize via ER. It follows the cumulative
causation between job design and workplace governance may lead to a completely differ-
ent equilibrium configuration where high automation risk and the lack of ER complement
each other.

While the emergence of multiple organizational equilibria has been already mod-
elled in the literature,8 to the best of our knowledge the application of this analytical

incentives and peer sanctions.
7Barth et al. (2020) exploit exogenous changes in tax subsidies to union members in Norway and

show that increasing firm-level union density has a positive effect on both productivity and wages.
8Pagano and Rowthorn (1994) develops one of the first formalization of organizational equilibria

comparing capitalists and worker-managed firms. (Landini, 2012, 2013) uses a similar approach to model
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framework to understand the interplay between workplace governance structures and job
designs embedding different automation risks has never been examined. In the following
section we present a simple model that helps elucidating the underlying mechanisms of
this relationship.

2.2 A simple model

2.2.1 Stage game

Consider an industry populated by two groups of agents: owners (o) and workers (w).
Agents o and w contribute to production by interacting within firms, whose organization
depends on two domains: job design (D) and workplace governance (G). Agents o choose
in domain D and have two alternatives: high (DH) and low (DL) automation risk. DH

(DL) is characterized by a poor (rich) task environment with a relatively large (small)
share of repetitive, routine, easy to monitor tasks. Agents w choose in domain G and
have two alternatives too: with (GH) and without (GL) ER. GH (GL) is associated with
the presence (absence) of ER, e.g. unions, work councils, consultative committees.

Agents o e w choose in their respective domain of choice to maximize individual
utility. In particular, o selects the job design that maximizes utility uo for a given type of
workplace governance, while w selects the type of workplace governance that maximizes
utility uw for a given job design. Notice that, in this framework, the actions of o and
w involve two distinct causalities: the actions of o captures Radical’s causality running
from workplace governance to job design, whereas the actions of w imply the reversed
New Institutional causality running from job design to workplace governance.

Every period, workers employed in a given firm decide on their optimal level of effort
ew (∈ [0, 1]) by looking at the type of job design and workplace governance in place. In
particular, we assume that effort decisions are driven by two factors: institutionalized
commitment, i.e. workers commit via ER to exert higher effort in exchange for richer job
design; and labor discipline, i.e. workers can be induced via job design to exert higher
effort under the threat of their contract being terminated.9 Labor discipline is higher in
job designs characterized by repetitive and routine tasks, which make shirking easier to
be detected. Moreover, we assume that workers earn a fixed wage and sustain a collective

organizational diversity in knowledge-intensive industries, such as software. Barca et al. (1999) and
(Earle et al., 2006) provide empirical evidence supporting the view of organizational equilibria as a
suitable concept to study the heterogeneity of corporate governance models.

9In a more complex setting we ought to account for the fact that effort extraction via institutionalized
commitment is more difficult in presence of conflicting labor relations. For the sake of simplicity we leave
this aspect out of the model under the assumption that in these circumstances effort extraction will take
place primarily via labor discipline. This, together with the fact that over-time the threat of automation
induces workers to de-organize, implies that the complementarity between job design and workplace
governance is preserved even in presence of high conflict.
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action cost to organize ER at the plant level. Formally, we write w’s utility as follows:

uw(D,G) = s+ λm(D,G)ew − e2
w/2− a(D)(1− ew)θ − c(G) (1)

where s(>0) is the baseline wage, λ (>0) is the marginal benefit of committed effort,
m(D,G) is a functional parameter such thatm(DL, GH) = 1 andm(DH , GL) = m(DH , GH)
= m(DL, GL) = 0, e2

w/2 is the convex cost of effort,10 a(D) is the easiness of effort mon-
itoring, with a(DH) = 1 and a(DL) = 0, θ (>0) is the cost of job termination11 (and
λ > θ), and c(G) is the cost of collective action, with c(GH) = c > 0 and c(GL) = 0.

From the maximization of equation (1) with respect to ew it follows that:

Remark 1: The optimal level of ew is given by the effort extraction function e∗w(D,G) =
λm(D,G)+a(D)θ, where λm(D,G) captures effort exertion via institutionalized commit-
ment and a(D)θ effort exertion via labor discipline.

Agents o’s utility depends on two components: economic return and expected cost
of automation. The former is defined as baseline sale returns, which depends positively
on worker effort, net of wages. The latter is assumed to be positive in presence of a job
design characterized by high automation risk and zero otherwise, because of the related
expected investment in machines. Hence, we write the o’s utility as follows:

uo(D,G) = qew − s− k(D) (2)

where q(>0) is the value of output per unit of work done and k(D) is the expected cost
of automation, with k(DH) = k > 0 and k(DL) = 0.

The firm-level interaction between o and w can be represented in game theoretic
form by the triplet Γ = {I,Σ, u}, where I = {o, w} is the set of players, Σ = D × G is
the set of strategy profiles, and u = {uo(σ), uw(σ)} for σ ∈ Σ is the vector function of
the palyers’ payoff, where uo(σ) and uw(σ) are given by equations (2) and (1). Table 1
reports the normal-form representation of game Γ (for the derivation of payoffs see Ap-
pendix A.1). Let us introduce the following definitions:

Definition 1: A design-governance arrangement in game Γ corresponds to a pure strat-
egy profile σ = {σo, σw} ∈ Σ where σo ∈ D and σw ∈ G is the pure strategy adopted by

10For the sake of simplicity we assume an explicit and easy to manage function for the cost of effort.
Main results hold using alternative functional forms.

11The cost of job termination represents the difference between the net benefit that the worker obtains
in the present job and the net benefit in next best alternative, which is exogenous to the firm. The value
of the next best alternative will generally depends on the expected duration of the spell of unemployment
following job termination, the level of reemployment salary relative to the current one, the existence
government sponsored social incomes and the like. See Bowles (1988).
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players o and w, respectively.

A specific way of organizing production at the plant level corresponds to each design-
governance arrangement. In particular, game Γ offers a representation of four distinct
arrangements, namely {DH , GH}, {DH , GL}, {DL, GH} and {DL, GL}. In this set, we are
interested in the combinations that qualify as self-sustaining equilibria:

Definition 2: An arrangement σ∗ = {σ∗o , σ∗w} is a design-governance equilibrium if the
corresponding strategy profile is a Nash equilibrium (NE) of game Γ.

The following proposition holds (all proofs are in Appendix A.1):

Proposition 1: Suppose λ > θ. Then, there exist two values k̄ = qθ and c̄ = λ2/2
such that: i) if k > k̄ and c > c̄, then {DL, GL} is the only design-governance equilib-
rium;; ii) if k < k̄ and c > c̄, then {DH , GL} is the only design-governance equilibrium;
iii) if k > k̄ and c < c̄, then {DL, GH} is the only design-governance equilibrium; iv)
if k < k̄ and c < c̄, then two design-governance equilibria exist, namely {DH , GL} and
{DL, GH}.

At the population level a design-governance equilibrium represents a technological-
political convention, meaning that conforming to it is a mutual best response as long
as virtually all members of each population (owners and workers) expect virtually all
members of the other to conform to it. According to Proposition 1 the number and types of
conventions existing in the industry depends on the expected cost of automation k and the
cost of collective action c. When the latter are excessively large, DL and GL are dominant
strategies and {DL, GL} is the unique convention. If k is sufficiently small and c is large,
effort extraction via labor discipline becomes a relatively convenient strategy, provided
the high cost of establishing ER makes the alternative of institutionalized commitment
not viable. Therefore, the unique technological-political convention is {DH , GL}. The
opposite result obtains if c is sufficiently small and k is large. In this case, workers find it
convenient to support the cost of collective action and commit to higher effort in presence
of richer job design, while for owners the adoption of automation-prone job design is too
costly. Therefore, the only technological-political convention is {DL, GH}. Finally, if both
k and c are small, job design and workplace governance exhibit complementarities: for
workers to establish ER is the best option when owners select a richer job design, because
the intrinsic benefit associated with effort commitment more than compensate the cost
of collective action. This is not the case when owners select a poor job design and the
best response is not to establish ER. Similarly, for owners to rely on effort extraction via
institutionalized commitment is the best solution when ER is present, because they can
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save on the expected cost of automation. This is not the case, however, when ER is absent,
as the low expected cost of automation makes labor discipline a viable alternative. As a
result, two technological-political conventions exist, namely {DH , GL} and {DL, GH}.

In presence of multiple technological-political conventions, it is interesting to char-
acterize their relative efficiency. In particular, we derive the following result:

Proposition 2: Suppose λ > θ, k < k̄ and c < c̄. If θ is sufficiently low, then the
technological-political convention {DL, GH} Pareto dominates convention {DH , GL}.

The intuition behind Proposition 2 is straightforward and relates to the combined
effect of effort commitment and the cost of collective action. If effort under institutional-
ized commitment is sufficiently large (i.e. λ > θ), o’s is always better-off under {DL, GH}
than under {DH , GL}, because in the former he can save on the expected cost of automa-
tion. In this sense, institutionalized commitment represents a more profitable strategy
of effort extraction compared to labor discipline. With respect to w, if the cost of job
termination θ is low enough, the worker will not attach great value to the job relationship
under {DH , GL}. In particular, we obtain that for the range of c’s values such that GH

is a best response to DL, w is also better-off under {DL, GH}. It follows that under these
conditions, two conventions exist and {DL, GH} Pareto dominates {DH , GL}.

2.2.2 Dynamics

To provide a framework for studying asymptotic stability we restrict the analysis to the
space of parameter in which two technological-political conventions exist and introduce an
explicit model of the dynamics of change. We consider a stylized process of interactions
with no a priori social structure. Extensions looking at how richer characterizations of the
social structure (e.g. local interactions and network topologies) are left to future research.
In terms of behavioural decision rules, we rely on empirically (mostly experimentally)
grounded assumptions in which agents update their beliefs by trial-and-error methods
using local knowledge based on their and others recent past experience (Bowles, 2004).

In every time period, no(>0) owners and nw(>0) workers are randomly paired to
play the stage game described in Table 1. Let δ(∈ [0, 1]) be the fraction of o adopting the
strategy DH and γ(∈ [0, 1]) be the fraction of w adopting the strategy GH . The status
of the industry can thus be described by the pair {δ, γ}. Assuming that the size of the
industry is sufficiently large, {δ, γ} will also denote the probability with which agents meet
across types. On this basis, for any given value of γ we can write o’s expected payoffs as
follows:

V o
H = γ(qθ − s− k) + (1− γ)(qθ − s− k) (3)
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V o
L = γ(qλ− s) + (1− γ)(−s) (4)

for strategies DH and DL respectively. Similarly, for any given of τ , the expected payoffs
to workers are, respectively:

V w
H = δ(s− θ + θ2/2− c) + (1− δ)(s+ λ2/2− c) (5)

V w
L = δ(s− θ + θ2/2) + (1− δ)s (6)

These expected payoff functions are illustrated in Figure 1.
To model the co-evolution of technology and workplace politics, suppose that both o

and w update job design and workplace governance by best responding to the distribution
of types in the previous period. In particular, suppose that the updating process works
as follows. In any time period both o and w are exposed to a cultural model randomly
selected from their own group. For instance, an owner, named A, has the opportunity to
observe the job design selected by another owner, named B, and to know her expected
payoff with a probability α. If B has selected the same job design as A, A does not
update. But if B has selected a different job design, A compares the two payoffs and, if
B ha a greater payoff, switches to B’s degree of concentration with a probability equal to
β(>0) times the payoff difference, retaining her own job design otherwise (where β is a
constant reflecting the greater effect on switching of relatively large differences in payoffs,
appropriately scaled so that the probability of switching varies over the unit interval).
The same procedure takes place among workers hired in different firms. It is easily shown
that this process of payoff monotonic updating gives the following replicator equations:

∆δ = δ(1− δ)αβ(V o
H − V o

L ) (7)

∆γ = γ(1− γ)αβ(V w
H − V w

L ) (8)

where ∆δ and ∆γ are the changes in job design and workplace governance between any
two period. Equations (7) and (8) represent a system of differential equations which de-
scribes how the distribution of types {δ, γ} changes over time. Given this dynamics, we
are mainly interested in the stationary states of the economy, namely the states for which
∆δ = 0 and ∆γ = 0. Such states represent fixed-points of the dynamical system, and
technological-political equilibria of the industry.

Proposition 3: Suppose that k < k̄ and c < c̄. Then, the dynamical system composed
of equations (7) and (8) is characterized by five technological-political equilibria: {0, 0},
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{0, 1}, {1, 0}, {1, 1} and {δ∗, γ∗}, with

δ∗ = λ2 − 2c
λ2 (9)

γ∗ = qθ − k
qλ

(10)

Out of these five equilibria, only two are asymptotically stable, namely {0, 1} and {1, 0};
equilibrium {δ∗, γ∗} is a saddle, whereas equilibria {0, 0} and {1, 1} are unstable.

The vector field in Figure 2 offers a graphical representation of the content of Propo-
sition 3. The arrows represent the out-of-equilibrium adjustment. For states δ > δ∗ and
γ < γ∗, ∆δ is positive and ∆γ is negative and the industry will move to {1, 0}. This
state corresponds to the technological-political convention characterized by high automa-
tion risk and no ER. Analogous reasoning holds for states δ < δ∗ and γ > γ∗, where the
industry converges to {0, 1}. In this case, the stable state corresponds to a technological-
political convention characterized by low automation risk and the creation of ER bodies.
In the remaining regions of the state space, namely south-west and north-east, we may
identify a locus of states (dashed upward-sloping line) for which the system will transit
to the interior equilibrium {δ∗, γ∗}, with states above the locum transiting to {1, 0} and
above the locus to {0, 1}. State {δ∗, γ∗} is stationary, but is a saddle: small movements
away from it are not self-correcting. Two additional unstable stationary states are {0, 0}
and {1, 1}, but are of no interest. All the area above the dashed upward-sloping line rep-
resents the basin of attraction of {1, 0} and all the are below it the one of {0, 1}. These
two corner solutions are thus the absorbing states of the dynamics process. If the industry
is ever at either of these states, it will never leave.

The dynamics represented in Figure 2 suggests that, over time, the industry is likely
to converge to one of two very different conventions. In one of them, namely {0, 1}, a
homogeneous population of owners selecting a job design characterized by automation
risk interacts overtime with workers establishing ER bodies. In the other, namely {1, 0} a
population dominated by owners selecting a job design with high automation risk interact
with workers that do not establish ER bodies. According to Proposition 2, the convergence
to one convention as opposed to the other does indeed have implications in terms of overall
efficiency, in that {0, 1} Pareto dominates {1, 0}.

The extent to which one of these two equilibria will actually be the technological-
political convention of the industry depends on two interrelated factors. First of all, for
any size of the basin of attraction, the emergence of {1, 0} as opposed to {0, 1} (and vice
versa), is more likely, the more probable the initial distribution of types in the economy to
fall in {1, 0}’s (or {0, 1} in the opposite case) basin of attraction. This implies that history
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matters and there exists path dependency in the way the industry evolves. Second, for
any given initial distribution of types, the emergence of one of the two absorbing states as
the final resting point of the dynamics depends on the the size of its basin of attraction.
In particular, the greater the basin of attraction of one state relative to the other, the
more likely such state is to become the technological-political convention of the industry.
On this respect, it is important to notice that ∂δ∗/∂c < 0, ∂γ∗/∂θ > 0 and ∂γ∗/∂k < 0
imply that, increases in the cost of collective action c and the cost of job termination θ and
reductions in the expected costs of automation k make the Pareto inefficient convention
{1, 0} more likely to emerge (see Figure 3).

3 Data and variables

3.1 The European Working Condition Survey: overview

The theoretical model sketched out in the previous section emphasizes the interplay be-
tween workplace governance structures conferring partial control rights to employees and
job design. In particular, the main argument that is put forward is that the existence of
ER bodies favours the adoption of job designs characterized by rich task content, leading
to a negative association between ER and job automation risk. Hence, as a first step of
our empirical strategy, we need to measure job automation risk in a way that accounts
for the variation in individual task content within occupations.

We tackle this issue by computing a measure of automation risk at the job-level,
based on individual-level data from the last two waves of the European Working Condition
Survey (EWCS) conducted in 2010 and 2015 (Eurofound, 2012; 2017). This is a well-
known data source to study working conditions in Europe (see, for example, Aleksynska,
2018; Cottini and Lucifora, 2013; Nikolova and Cnossen, 2020). EWCS data cover a
representative sample of European workers, comprising roughly 44.000 observations per
wave (more than 1000 observations per country in each wave). A crucial advantage of this
survey is that it provides harmonized cross-country information on individual attributes,
task environment, occupational codes, working conditions and presence of ER bodies.
This allows us to take into account the possible influence of ER on the task content for
each single job, whilst crosswalking off-the-shelf measures originally computed on US data
(e.g., Costinot et al., 2011; Frey and Osborne, 2017; Autor and Dorn, 2013) would require
to assume the exogeneity of job designs with respect to the institutional context. While
the survey is conducted every five years since 1990, our analysis is restricted to 2010-2015
due to the availability of key information, such as variables identifying the presence of
ER at the workplace level and detailed 4-digit occupational codes.12 The last waves also

12We are grateful to Eurofound for granting access to a secure version of the survey including 4-digit
ISCO codes
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provide richer information on the task environment faced by each individual.
We focus on institutionalized forms of ER. In particular, we exploit the question

asking individuals to report the presence of a “trade union, works council or a similar
committee representing employees” at the company level. This definition does not include
ad-hoc forms of representation and individual schemes of employee involvement. Alongside
ER, a wide range of individual and firm-level characteristics are reported as part of the
survey (age, gender, education, occupation, firm size, industry).

Our final sample consists of the common set of countries included in the two EWCS
waves: the 27 Member States, Turkey, Norway and the UK. In addition, we restrict the
analysis to salaried workers, excluding self-employed, unemployed and inactive individu-
als. Descriptive statistics for the final sample are reported in Table 2.

In the following section we illustrate the procedure to compute our preferred measure
of individual-level automation risk. Other measures are introduced as part of robustness
checks in section 4.2.

3.2 Measuring job automation risk

In order to calculate individuals’ automation risk scores based upon the task content of
each job, we closely follow the task-based risk approach proposed by Arntz et al. (2016,
2017). First, we crosswalk the occupation-specific automation risks as obtained by Frey
and Osborne (2017) for 702 O*NET occupations in US to our 4-digit ISCO codes. While
crosswalking occupational codes always entail a risk of measurement errors, the fact that
we use highly disaggregated occupation categories (4 digits) reduces assignment problems
faced by previous studies.13 Second, we regress Frey and Osborne’s automation risk scores
on a set of self-reported chacteristics reflecting the task content of inidviduals’ job. These
task variables are aimed at representing the engineering bottlenecks emerging from the
experts’ discussion, i.e. tasks that are difficult to automatize (Frey and Osborne, 2017).

Estimated coefficients capture the effect of job-related attributes on the automation
risk of individuals’ occupation. Similar to Arntz et al. (2016), we follow a multiple imputa-
tion approach in the case of individuals assigned with multiple automation scores and use
an Expectation-Maximization (EM) algorithm to cope with measurement errors. Finally,
we use the estimated coefficients to obtain a prediction of automation risk at the level of
individuals’ jobs. Instead of assuming an average task structure at the occupational level,
our approach captures the variation in non-automatable tasks within occupations.

Descriptive statistics for the 10 task-related variables representing the engineering
bottlenecks identified by Frey and Osborne (2017) are reported in Table 2. Figure A.2.1
in Appendix reports mean differences in task-related attributes by ER presence, sug-

13For example, Arntz et al. (2017) assign Frey and Osborne’s automation scores to 2-digit occupations
in PIAAC.
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gesting ER is indeed associated with richer (i.e. less monotone and more engaging) job
designs. In Appendix, Table A.2.2, we also report the marginal effects of task attributes
on automation risk. Overall, we find the expected signs. Automation risk is negatively
correlated with the utilization of social skills (“dealing directly with people”, “visiting
customers”, “teamwork”) and creative skills (“solving unforeseen problems”, “complex
tasks”, “learning new things”, “applying own ideas”, “influencing important decisions”).
In contrast, there is a positive association between automation risk and jobs involving
“monotone tasks” and “working at high speed”.14

Our theoretical framework suggests a negative correlation between the incidence of
workplace governance structures granting control rights to workers and the prevalence
of automation-prone job designs. In Figure 4, we preliminary analyze the plausibility
of the argument, plotting the country-average automation risk calculated as explained
above against the fraction of individuals reporting the presence of ER at the workplace
level. The figure reveals substantial differences in workplace governance institutions (i.e
incidence of ER) across countries. There is a negative statistical association between the
incidence of ER structures and job automation risk. Higher incidence of ER is associated
with lower automation risk. In Figure 5, we report the relationship between the incidence
of ER and the residuals from a regression on automation risk on a constant and GDP per
capita. The negative association between job automation risk and ER persists, even after
purging our measure from the effect of cross-country differences in living standards.

4 Results

4.1 Baseline analysis

As the second step of our empirical strategy we study the association between endogenous
automation risk and ER in a systematic regression analysis. We exploit the individual-
level dimension of the EWCS data and consider the following baseline regression model:

ARi = β0 + β1 ERi + bXi + εi (11)

where ARi is an individual-level measure of automation risk; ERi is a dummy variable
which equals 1 when an employee representation body is established at the workplace
where the worker i is employed and 0 otherwise, and β1 is the associated parameter; Xi

is a large vector of controls (including: individual-level and firm-level controls, country
dummies, industry dummies, time dummies, country-specific and industry-specific time
trends, and a large vector of occupational ISCO dummies); εi are the residuals.

14In Appendix, we compare the average automation score and the fraction of individuals at high risk of
automation (>0.7) obtained in our sample with estimates reported by Arntz et al. (2016) using PIAAC.
The distributions are broadly comparable.
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In our first estimation round, we use the automation risk variable built as in Arntz
et al. (2017). The estimation is carried out on the pooled sample over the two EWCS
waves referring to 2010 and 2015.

The results are reported in Table 3. In column 1, we regress automation risk on
a dummy variable that takes value one for salaried workers reporting the presence of
ER structure at their workplaces. The association between ER and automation risk is
negative and significant. In columns 2-6, we sequentially add more controls to see the
robustness of this correlation. In column 2, estimates control for differences in individual
characteristics (gender, age and education). We find that female workers are more exposed
to jobs at a higher risk of automation as well as younger individuals, though the effect
of age is non-linear. Similar to previous studies (e.g., Arntz et al., 2016; Nedelkoska and
Quintini, 2018), we document that higher educational levels reduce the risk of automation
at the individual’s job level. In column 3, we control for the effect of firm size. In column
4, we add country, industry and year effects. Estimates reported in column 5 control for
industry and country-specific time trends. Finally, in column 6, we report the results
from a demanding specification in which we soak up all the variability across broadly
defined occupations. The estimated parameter of ER remains negative and statistically
significant across all the model specifications, consistently with our theoretical argument.

To better disentangle the interactions between ER and individual characteristics
of the workers with respect to the risk of automation, we re-run our equation (11) by
using a high risk of automation dummy as the dependent variable. Formally, we consider
a dummy which equals 1 when the automation risk variable used in the first regression
round is equal to or greater than 0.7, and which equals 0 otherwise.15 We then estimate
equation (11) by using a logit model and calculate the conditional correlations between
ER and job automation risk by educational level. The results from the logit estimation are
reported in Table 4, where the controls are again added progressively, while the estimations
of the conditional correlations are obtained from the full model specification presented in
column 6 of Table 4 and are reported graphically in Figure 7.

The logit estimates are broadly similar to those obtained by the pooled OLS re-
gressions, with the sign of the association between ER and automation risk being again
negative and strongly significant. After controlling for individual and firm-level charac-
teristics, the presence of ER is associated with a reduction of 2.8 percentage points in the
probability of being exposed to high risk of automation (Column 3 of Table 4). Marginal
effects obtained from the full model specification reported in Column 6 reveal that the
presence of ER is associated with a reduction of 0.7 percentage point in the probability
of being exposed to high risk of automation. As for the conditional effects, we find that
the magnitude of the (negative) correlation between ER and the high automation risk

15Frey and Osborne (2017), Arntz et al. (2017) and Nedelkoska and Quintini (2018) classify automation
risk as high when the probability of automation is above 0.7.
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dummy is consistently higher for less educated employees. ER structures seem to help
to insulate less-educated workers from the risk of automation by reshaping their task
environment. For example, ER may compensate lower formal education credentials by
fostering intensive investments in job training and firm-specific skills (Belloc et al., 2020).

4.2 Industry-level analysis

To test the robustness of our estimates to country and industry unobservables and to ob-
servable time-varying industry dimensions, we perform a fixed effects (FE) panel analysis
on data averaged over country-industry-year cells over the period 2010-2015. For obtain-
ing averaged variables, individual population weights are used. In particular, we use a
country-industry-year automation risk averaged version of our individual-level automa-
tion risk variable. Doing so, we are able both to perform a panel FE regression where
country-industry and time FE are eliminated and to account for additional cross-industry
variability in dimensions not controlled for in our individual-level regressions. First, it
has been argued that differences in job automation risk may reflect heterogeneous adop-
tion of new technologies across sectors and countries. Low automation risk may result
from past investments, which may have already contributed to replace labor by capital in
performing automatable tasks. Hence, automation risk may reflect unused potential for
automation (Arntz et al., 2016). To account for this factor, we control for capital intensity
and utilization of information and communication technologies in our industry-country
level regressions. Second, differences in automation risk may reflect differences in the ex-
tent to which firms outsource routine and automatable tasks. This may confound with the
presence of employee representation structures if higher labor costs resulting from greater
employees bargaining power create incentives for firms to contract out certain business
activities to an external organization.16

Formally, we consider the following regression model:

ARc,s,t = δ0 + δ1 ERc,s,t + dWc,s,t + Country-Sector FE + Time FE + εc,s,t (12)

where c is the country, s the (one-digit) sector and t the year, and with εc,s,t being the
residuals. The vector Wc,s,t includes the share of education, gender, age, occupation and
firm size classes (averaged within country-sector-year cells) and time-varying industry
controls. ARc,s,t and ERc,s,t have the same definition as in equation (11), but only vary
across country-sector-year cells.

The results are presented in Table 5, where we add progressively employee-level and
firm-level controls averaged for each country-industry-year cell and a set of time varying
industry controls, including: value added to gross output ratio, net capital cost for ICT

16We include controls for value added/output ratio at the industry level as a proxy of outsourcing
(Rakesh and Pulak, 2019).
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to total labor cost ratio, net taxes on production to gross output ratio, and gross capital
stock to total employees ratio. All the monetary variables are expressed in real terms.
Finally, we add occupation effects, by means of a set of occupation-level variables, each
measuring employment shares in a given occupation at 1 digit. Reassuringly, we find
again a negative association between ER and automatability.

4.3 Robustness checks

As mentioned above, various ways of assessing automation risk have been proposed in the
literature. In our baseline analysis, we exploit a measure that allows for differences in
task content across workplaces within occupations. Nevertheless, most of the former stud-
ies assume homogeneous task content within occupations. Prominent examples include
Costinot et al. (2011) and Frey and Osborne (2017). For comparison, we additionally esti-
mate model (11), using these alternative measures of automation risk on the left-hand-side
of the equation.

First, we test whether our results remain qualitatively unchanged when automation
risk is measured in terms of job routineness, as in Costinot et al. (2011). Formally, we
measure job routineness µi at a worker-level as µi = 1− Pi, where Pi ∈ [0, 1] is a dummy
variable which equals 1 when the job involves solving unforeseen problems’ on the worker
i’s own and 0 otherwise. Notice that, while the original measure of Costinot et al. (2011)
is computed at a six-digit occupation-level as provided in O*NET US data, our measure
is obtained from the EWCS data and is at the individual-level. In this way, we are
also able to include a large set of ISCO occupation dummies to control for occupation
unobservables.

Second, we construct an alternative measure of automation risk by crosswalking the
original occupation-level calculations of Frey and Osborne (2017) on the EWCS data. We
mechanically import the occupation-specific automation risks as obtained by Frey and
Osborne (2017) for 702 O*NET occupations to our 4-digit ISCO codes. In our exercise,
these occupation-level automation risks are applied to all workers in each occupation for
both 2010 and 2015.

Both when using the job routineness measure à la Costinot et al. (2011) and the
original automation probabilities of Frey and Osborne (2017), the analysis of the corre-
lation with ER is run at the individual-level over the pooled sample. The results are
presented in Table 6 and Table 7, respectively. While in Table 6 we can exactly replicate
the same specifications presented in Table 3, because the job routineness index µi varies at
a worker-level, in Table 7 only five columns are displayed, because the automation proba-
bilities of Frey and Osborne (2017) vary only across occupations and therefore occupation
dummies cannot be added to the set of regressors. We follow the two approaches –i.e. one
with within-occupation variation and one with only cross-occupation variation– to check
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the robustness of our estimates to the inclusion/exclusion of the occupation dimension.
Evidently, both approaches suggest that ER and automation risk are negatively

correlated. This further supports our theoretical intuition and mitigates the possible
concern that our baseline results are driven by the choice of the automation risk measure.

5 Historical examples

The empirical analysis confirms the existence of a negative relationship between job au-
tomation risk and the presence of ER bodies at the workplace level. Unfortunately,
available data do not allow us to carry out a direct test of the mechanisms underlying
such relationship. However, additional insights can be obtained by looking at the histori-
cal experience and policy developments in Nordic countries, such as Sweden and Norway,
during the 1960s and 1970s. Interestingly, these countries now exhibit relatively low job
automation risk, high union coverage and widespread workplace ER in comparison to
other countries.17 Historical evidence and case studies suggest that the kind of mutual
reinforcing dynamics between job design and workplace organization highlighted in our
theoretical framework can help to rationalize the trajectory of these countries.

Bolweg (1976) provides a general overview of the intense debates and developments
on industrial democracy and job redesign initiatives that took place in Norway during
the 1960s. First, the so-called Cooperation Project, started in 1962, was a research ini-
tiative funded by trade unions, employers federation and the state. The first phase of
the project analyzed experiences of formal arrangements granting ER at the board level.
The second phase investigated the condition for fostering personal participation at the
shop-floor level through changes in job content and autonomous work groups aimed at
eliminating Tayloristic work practices. According to the emerging job design principles,
jobs had to be challenging, provide enough variety and novelty, facilitate active and con-
tinuous learning, multi-skilling and allow for greater worker’s discretion in deciding the
nature of tasks and pace of work. A crucial aspect of this new approach was the notion
that firms can select and adapt technology to enrich job content. For this reason, several
experiments took place at the level of individual companies to facilitate the diffusion of
rich and engaging job designs alongside participatory governance structures. In addition,
important legislative changes took place during this period. In 1966, the Basic Agree-
ment between Norwegian unions and employers federations was revised and provided the
general framework for the operation of works councils in undertakings employing more
than 100 employees. Works councils were entitled with full information and consultation

17In Appendix Figure A.2.2, we plot the kernel density of automation risk grouping countries according
to the classification of industrial relations regimes proposed by Visser (2009). The estimated distribution
of automation risk for Nordic countries ("North") lies more to the left than the distribution for other
groups indicating lower average automation risk for these countries.
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rights over financial and organizational issues. In 1973, the Norwegian Company Act was
amended to include provisions granting employees the right to appoint representatives in
company boards and the obligation to establish a corporate assembly (with 1/3 worker
representatives) in companies employing more than 200 employees. The aim of these new
workplace governance structures was to extend the involvement of employee represen-
tatives far beyond bargaining over wages and working hours, including matters such as
major investments, organizational changes and labor reallocations. In 1977, the new job
design principles introduced by some companies in the context of the Cooperation Project
were incorporated into the Norwegian Work Environment Act (Deutsch, 1986). Overall,
the combination of these different policy experiments and legal initiatives favored the
emergence of production conventions characterized by rich job designs and extensive ER
in many Norwegian industries. Such conventions, which persisted over time, helped con-
taining the excessive recourse to job routinization as tool for labor discipline, resulting in
a lower exposition of Norwegian workers to automation risk compared to other countries.

During the 1960s and 1970s, similar developments took place in Sweden, where con-
cerns about the negative effects of Tayloristic job designs characterized by high degree
of specialization, monotony and routinization (e.g. assembly-line production) for worker
productivity and well-being also became widespread among union leaders and employers.
Pilot experiments involving the redesign of jobs and new factories started to proliferate.
These initiatives were aimed at permitting workers to vary their tasks, to gain a better
understanding of the production process as a whole, exercise more control over the pace
for work and provide a less alienating work experience. Several case studies discussed
these developments. For example, Rosner and Putterman (1991) describe the case of the
Volvo’s Kalmar factory, which began operations in the early 1980s. In this plant, the as-
sembly line was replaced by a series of parallel workstations managed by small autonomous
teams of workers trained to perform and rotate between tasks. Aguren and Edgren (1980)
document the initiatives of Swedish Employers Confederation (SAF) in the 1970s. Em-
ployers developed major job redesign projects in hundreds of plants, the so-called “new
factories”, responding to problem of high absenteeism, turnover and low product quality.
These bottom-up initiatives were supplemented by nationwide legislation that gave unions
the right to negotiate over non-wage workplace issues and supported worker participation
at different organizational levels (Martin, 1987). It became evident that organizational
changes required complementary modifications in workplace governance, i.e. the authority
structure of firms. First, the 1976 Co-determination Act stipulated that employers must
negotiate with the unions before deciding on any major changes in the business opera-
tions, such as long-term decisions involving work organization, tasks, methods, training,
etc. (Sandberg et al., 1992). Second, the 1977 Work Environment Act aimed at improv-
ing occupational health and working conditions. The new legal framework stated that
technologies, the organisation of work and the content of work must be designed in such a
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way that the employee is not subjected to physical strain or mental stress that may lead
to illness or accidents. Importantly, the law required workplaces employing at least 50
employees to set up a safety committee consisting of representatives of the employer and
of the workers.

In sum, similarly to the Norwegian case, Sweden’s work arrangements followed a
trajectory that favored the diffusion of rich job designs and participatory governance
structures. Traditional collective bargaining institutions aimed at negotiating wages and
immediate working conditions between unions and employers evolved to include shop-
floor communication channels, board-level employee representation and codetermination
rights through which workers can exert an influence on work organization, job design and
technology implementation. This allowed workers’ ideas to be considered and gave em-
ployees formal decision-making powers in areas that were previously considered exclusive
prerogatives of firm owners and managers. Through this new institutions, workers had a
voice in relation to the introduction of new technologies, which were directed to facilitate
the transition to richer job designs, eliminate heavy and repetitive tasks and generate
large productivity gains (Aguren and Edgren, 1980; Rosner and Putterman, 1991).18 Al-
together, the reinforcing dynamics between job design and workplace governance favoured
the emergence of a production context in which shared control rights and rich job designs
co-exist. This production context contributed to reduce the exposition of Swedish workers
to excessive automation risk.

6 Discussion and Conclusion

Most researchers agree that nearly all jobs will be affected by automation in the next
decades. Less is known, however, about the determinants of automation and the reasons
why exposure to job automation risk largely varies across firms and sectors. In particular,
unexplored is how institutions of labor organization affect the pace and direction of the
automation processes, by influencing the task content within occupations.

In this paper, we tackled this issue by focusing on the role of workplace ER bodies,
which were found to shape the labor relationship in many important respects (Freeman
and Medoff, 1984). We argued that ER relates to job automation risk via a two-way-
causality: on the one hand, higher automation risk makes ER less likely to be established,
because workers do not expect to gain much by organizing labor; on the other, ER reduces
automation risks, as it favours group effort commitments thereby reducing the need for
employers to convert complex tasks into routine and easier to monitor assignments. On

18Our account of the Nordic experience does not neglect the importance of other context-specific factors
that may have contributed to increase the pressure for redesigning jobs and introducing productivity-
enhancing technologies, such as labor market tightness, limited availability of foreign workers and strong
competitive pressures on low productivity firms resulting from solidaristic wage policies (Barth et al.,
2014).
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this basis, we predicted the existence of a negative relationship between ER and job
automation risk. We tested this prediction on EWCS data by relying on a worker-level
measure of automation risk based on a set of task content characteristics (as in Arntz
et al., 2017). The results of the empirical analysis provide support for our hypothesis.

It is worth acknowledging some limitations of our study. First, while we document
an inverse relationship between the presence of ER and automation risk, we do not pro-
vide direct evidence on the underlying mechanism suggested by our model, i.e. the use
of job design as a discipline device vs. high-performance norm and skill upgrading sus-
tained by the presence of ER. However, additional evidence derived from the experience
of Nordic countries, in particular Norway and Sweden, suggests that the channels high-
lighted in our organizing evolutionary framework are historically plausible. Second, the
cross-sectional structure of the data makes difficult to rule out that unobservable fac-
tors drive the simultaneous selection of individuals into workplace governance structures
and task environments. Further research based on longitudinal data could analyse the
dynamic of task content for individuals exposed to different workplace governance insti-
tutions. Third, in our framework the possibility of effort extraction via institutionalized
commitment requires a fairly balanced engagement by the parties involved in bargaining
disputes, which is not always present in real world interactions. In particular, one may
wonder whether the existence of an industrial relation system characterized by a strong
cooperative culture and trust is actually a precondition for the role that we assign to ER
in our model. However, historical evidence reveals that the extent to which workplace
cooperation is a prerequisite or the outcome of granting workers control rights is unclear.
For instance, Norway and Sweden experienced the highest levels of industrial conflict in
the world in the 1920s and early 1930s, way before developing their social democratic
policies and labor institutions (Moene and Wallerstein, 2006).

The results of the paper contributes to contemporary policy discussions in relation
to the governance of AI and the automation process (Goldfarb et al., 2019; Savona, 2019;
Goos, 2018). The growing awareness about the benefits and costs of automation has
indeed spurred many academic and public policy debates. The latter are usually concerned
with two main objectives: a) to promote investments in automation-related technologies
that ensure sufficiently large productivity gains; b) to design labor market institutions
and social insurance policies that favour the smooth reallocation of displaced workers
towards non-automated tasks. On this respect, our study adds that a relevant role in the
governance of AI debate is to be played by the institutions that help labor organization
at the workplace level.

In particular, this paper shows that despite the great potential of AI-related tech-
nologies, in certain settings the automation process can lead to sub-optimal results. This
is due not only to the possibility that firms invest in “wrong” technologies, i.e. those that
ensure insufficient productivity improvements (Acemoglu and Restrepo, 2020b), but also
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to the fact that when confronted with disorganized labor, capital owners have the incen-
tives to rely on job designs in which the share of automation-prone tasks is excessively
high. The reason is that in a world of incomplete contracts and information asymmetries,
the exposition of workers to high automation risk can serve as a labor discipline device
that enables greater effort extraction. In these cases, the introduction of ER bodies rep-
resents a decentralized labor institution that helps re-balancing authority relations within
firms, allowing workers and capital owners to coordinate on a socially superior organi-
zational equilibrium. In this type of job environment, shared control rights and rich job
designs enable effort extraction via institutionalized commitment rather than discipline,
ensuring that both parties are better off.

Three important clarifications are necessary though. The first one concerns insights
for the design of interventions. In our theoretical framework workplace governance and job
design fit together complementarily, leading to the existence of multiple organizational
equilibria. This implies that to shift from one equilibrium to the other simultaneous
changes along multiple organizational domains are needed. On this respect, the historical
experiences of Nordic countries is revealing. When faced with the problem of abandoning
the Tayloristic equilibrium to achieve a more balanced and socially preferred configuration,
these countries engaged in a wide range of policy experiments and legal initiatives that had
two aims: fostering greater participation in firm governance on one side, and favoring the
introduction of richer job designs on the other. When applied to the case of automation,
these historical experiences suggest that interventions governing the automation process
need to be forcefully multi-dimensional. Targeting only reforms in workplace governance
institutions is not sufficient. Efforts need to be made to engage capital owners in gradual
re-design of their productive endeavours, favouring the adoption of skillful and rewarding
jobs.

The second point that need to be clarified is that the efficacy of ER and job design-
related interventions depends on the characteristics of the surrounding social and eco-
nomic environment. In particular, the comparative analysis carried out on the basins of
attraction of the two organizational equilibria reveals that three factors are of particular
relevance: the cost of automation technologies, the easiness of collective organization and
the cost of job termination. While the former is driven primarily by scientific and techni-
cal advances, the latter depend on the combination of different socio-economic forces. For
instance, regulations making the process for requesting the implementation of codeter-
mination and shop-floor ER structures more complex for workers increase the collective
action cost associated with ER and thus make the ER-equilibrium less likely to emerge.19

Similarly, a rising level of unemployment due to unfavorable trends of the economic cycle

19The cost of collective action is not only driven by features of the regulatory environment. Formal
institutions may coevolve with other ideological and cultural factors affecting the workers’ willingness to
establish ER structures and engage in cooperative labor-management relationships.
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tend to increase the costs of job termination. As a consequence labor discipline becomes
more effective than institutionalized commitment as a tool to extract work effort. Every-
thing else equal, this makes a transition to the equilibrium with shared control rights and
rich job design less likely to occur.

Finally, it is important to clarify that our results should not be interpreted as sug-
gesting that ER operates as a force against technological advancements. The fact that
the strengthening of ER-related institutions favours the adoption of less automation-prone
job designs does not imply that no production task is ever automatized. Once again the
experience of the Nordic countries is inspiring. Despite of a relatively low job automation
risk, some of these countries register a comparatively high number of per-worker industrial
robots (IFR, 2019). Even more interesting is the fact that early versions of the latter were
introduced exactly during the period of intensive policy experiments aimed at improving
work arrangements (Deutsch, 1986). Yet, in these countries the presence of strong la-
bor organization implied that the share of automatable tasks was determined more by
technical opportunities, than by labor discipline, targeting in particular the substitution
of unhealthy and unpleasant jobs (Aguren and Edgren, 1980). As a consequence the
co-existence of widespread ER institutions and rich job designs favored the selection of
efficiency-enhancing technologies, which at the same time improved working conditions.

In general terms we believe that the main message of our study is that the impact
of automation should be evaluated along multiple dimensions. Alongside the obvious
and well-investigated technological dimension, the diffusion and impact of automation
depend on a set of social and political factors, among which firm-level institutional bodies
enabling democratic participation in the production process play an important role. By
restraining incentives towards the adoption of excessive automation-prone job design, they
can help making automation welfare-improving. Policy debates should avoid technological
determinism and devoid greater attention to the complex dynamics through which the
interaction of technological and socio-institutional forces shape the future of work.
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Figures and Tables

Table 1: Payoff matrix.

Worker (w)
Owner (o) With ER (GH) Without ER (GL)
High automability (DH) qθ − s− k, s− θ + θ2/2− c qθ − s− k, s− θ + θ2/2
Low automability (DL) qλ− s, s+ λ2/2− c −s, s

Notes: Players’ payoffs. For their derivation see Section A.1.1 in Appendix.
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Table 2: Descriptive statistics.

Variable Mean Min. Max. Std. Dev.
Task features - the job involves:
Working at high speed (from never to always) 3.535 1 7 2.025
Visiting customers or clients (1=yes, 0=no) 0.276 0 1 0.447
Solving unforeseen problems autonomously (1=yes, 0=no) 0.812 0 1 0.390
Monotonous tasks (1=yes, 0=no) 0.466 0 1 0.498
Complex tasks (1=yes, 0=no) 0.573 0 1 0.494
Learning new things (1=yes, 0=no) 0.682 0 1 0.465
Applying own ideas (from never to always) 3.599 1 5 1.333
Influencing important decisions (from never to always) 3.226 1 5 1.372
Measures of automation risk
Risk of automation (Arntz et al., 2017) 0.534 0.240 0.876 0.130
High risk of automation (Risk > 0.7) 0.121 0 1 0.326
Job routineness (Costinot et al., 2011) 0.199 0 1 0.399
FO’s probability of automation (Frey and Osborne, 2017) 0.570 0.003 0.990 0.373
Employee representation
ER 0.472 0 1 0.499
Control variables
Female 0.515 0 1 0.499
Age 41.633 15 91 12.012
Education: primary 0.057 0 1 0.232
Education lower secondary 0.145 0 1 0.352
Education: upper secondary 0.404 0 1 0.490
Education: post-secondary 0.056 0 1 0.230
Education: tertiary 0.302 0 1 0.459
Firm size (1-9) 0.391 0 1 0.488
Firm size (10-249) 0.390 0 1 0.487
Firm size (250+) 0.172 0 1 0.377

Notes: Descriptive statistics are obtained over the EWCS data, 2010 and 2015 waves. Sample restricted to salaried workers.
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Table 3: Pooled OLS results based on Arntz et al. (2017).

[1] [2] [3] [4] [5] [6]
Risk of Risk of Risk of Risk of Risk of Risk of

automation automation automation automation automation automation
ER -0.028*** -0.012*** -0.018*** -0.004*** -0.005*** -0.002**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Female 0.009*** 0.010*** 0.025*** 0.025*** 0.020***

(0.001) (0.001) (0.001) (0.001) (0.001)
Age -0.001*** -0.001*** -0.002*** -0.002*** -0.002***

(0.000) (0.000) (0.000) (0.000) (0.000)
Age2 0.000 0.000** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000)
Lower-secondary edu. -0.035*** -0.037*** -0.016*** -0.017*** -0.006***

(0.003) (0.003) (0.003) (0.003) (0.003)
Upper-secondary edu. -0.066*** -0.068*** -0.055*** -0.055*** -0.024***

(0.003) (0.003) (0.003) (0.003) (0.003)
Post-secondary edu. -0.092*** -0.095*** -0.077*** -0.077*** -0.032***

(0.003) (0.003) (0.003) (0.003) (0.003)
Tertiary edu. -0.144*** -0.147*** -0.118*** -0.118*** -0.044***

(0.003) (0.003) (0.003) (0.003) (0.003)
Estimation OLS OLS OLS OLS OLS OLS
No. Obs. 62792 60503 58551 57941 57941 57870
R2 0.012 0.129 0.132 0.238 0.244 0.366
Individual-level controls NO YES YES YES YES YES
Firm-level controls NO NO YES YES YES YES
Country dummies NO NO NO YES YES YES
Year dummies NO NO NO YES YES YES
Industry dummies NO NO NO YES YES YES
Country×Year dummies NO NO NO NO YES YES
Industry×Year dummies NO NO NO NO YES YES
Occupation dummies NO NO NO NO NO YES

Notes: Estimation by OLS on a pooled sample of individual-level observations. Risk of automation is computed as in Arntz et al.
(2017) on EWCS data. Firm-level controls include firm size. Primary education is the benchmark category for the educational
classes. Standard errors in parentheses are heteroschedasticity robust. *** p<0.01, ** p<0.05, * p<0.1.

36



Table 4: Pooled logit results based on Arntz et al. (2017).

[1] [2] [3] [4] [5] [6]
High High High High High High

risk of risk of risk of risk of risk of risk of
automation automation automation automation automation automation

ER -0.038*** -0.012*** -0.028*** -0.007** -0.010*** -0.008**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Female 0.011*** 0.014*** 0.040*** 0.039*** 0.039***
(0.002) (0.002) (0.003) (0.003) (0.003)

Age 0.001 0.000 -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

Age2 -0.000** -0.000* 0.000** 0.000*** 0.000**
(0.000) (0.000) (0.000) (0.000) (0.000)

Lower-secondary edu. -0.070*** -0.081*** -0.035*** -0.036*** -0.008
(0.010) (0.010) (0.010) (0.010) (0.007)

Upper-secondary edu. -0.139*** -0.150*** -0.125*** -0.122*** -0.038***
(0.009) (0.009) (0.009) (0.009) (0.007)

Post-secondary edu. -0.191*** -0.205*** -0.162*** -0.159*** -0.049***
(0.010) (0.011) (0.010) (0.010) (0.009)

Tertiary edu. -0.263*** -0.275*** -0.224*** -0.221*** -0.074***
(0.009) (0.009) (0.009) (0.009) (0.007)

Estimation Logit Logit Logit Logit Logit Logit
No. Obs. 62792 60503 58551 57941 57941 57870
Individual-level controls NO YES YES YES YES YES
Firm-level controls NO NO YES YES YES YES
Country dummies NO NO NO YES YES YES
Year dummies NO NO NO YES YES YES
Industry dummies NO NO NO YES YES YES
Country×Year dummies NO NO NO NO YES YES
Industry×Year dummies NO NO NO NO YES YES
Occupation dummies NO NO NO NO NO YES

Notes: Estimation by logit on a pooled sample of individual-level observations. High risk of automation is computed as in Arntz
et al. (2017) on EWCS data and coded as a dummy variable which equals 1 when the risk of automation is equal to or greater
than 0.7. Firm-level controls include firm size. Primary education is the benchmark category for the educational classes. Marginal
effects are displayed. Standard errors in parentheses are heteroschedasticity robust. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Country-industry panel FE results based on Arntz et al. (2017).

[1] [2] [3] [4]
Average Average Average Average
risk of risk of risk of risk of

automation automation automation automation
ER -0.023*** -0.077*** -0.056*** -0.070***

(0.013) (0.026) (0.024) (0.025)
Female 0.045 0.059

(0.042) (0.045)
Age -0.031** -0.034**

(0.015) (0.014)
Age2 0.000* 0.000**

(0.000) (0.000)
Lower-secondary edu. 0.008 0.122**

(0.043) (0.055)
Upper-secondary edu. -0.072 0.078

(0.046) (0.064)
Post-secondary edu. -0.063 0.094

(0.076) (0.083)
Tertiary -0.122* 0.105

(0.071) (0.080)
Estimation Panel FE Panel FE Panel FE Panel FE
No. Obs. 840 190 190 190
R2 0.009 0.175 0.434 0.591
Industry-country FE YES YES YES YES
Time FE YES YES YES YES
Industry controls NO YES YES YES
Employee-average controls NO NO YES YES
Firm-average controls NO NO YES YES
Occupation shares NO NO NO YES

Notes: Estimation by panel FE estimation on a panel sample of country-industry observations for 2010 and 2015. Risk of automation
is computed as in Arntz et al. (2017) on EWCS data. Automation risk and the independent variables are averaged over country-
industry-year cells, by using individual population weights. Industry controls include: value added to gross output ratio, net capital
cost for ICT to total labor cost ratio, net taxes on production to gross output ratio, gross capital stock to total employees ratio.
Firm-average controls include average firm size. Occupation shares is a set of occupation variables measuring employment shares
in each occupation. Primary education is the benchmark category for the educational classes. Standard errors in parentheses are
heteroschedasticity robust. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Pooled logit results based on Costinot et al. (2011).

[1] [2] [3] [4] [5] [6]
Job Job Job Job Job Job

routineness routineness routineness routineness routineness routineness
ER -0.069*** -0.045*** -0.034*** -0.024*** -0.027*** -0.023***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Female 0.043*** 0.042*** 0.052*** 0.052*** 0.039***

(0.003) (0.003) (0.008) (0.003) (0.004)
Age -0.008*** -0.007*** -0.008*** -0.009*** -0.008***

(0.000) (0.000) (0.000) (0.000) (0.000)
Age2 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000)
Lower-secondary edu. -0.046*** -0.044*** -0.037*** -0.037*** -0.016*

(0.009) (0.010) (0.010) (0.010) (0.009)
Upper-secondary edu. -0.082*** -0.079*** -0.111*** -0.110*** -0.050***

(0.009) (0.009) (0.010) (0.010) (0.008)
Post-secondary edu. -0.130*** -0.129*** -0.144*** -0.142*** -0.062***

(0.010) (0.010) (0.011) (0.011) (0.010)
Tertiary edu. -0.187*** -0.181*** -0.196*** -0.195*** -0.079***

(0.009) (0.009) (0.010) (0.010) (0.009)
Estimation Logit Logit Logit Logit Logit Logit
No. Obs. 66439 64016 61789 61134 61134 60719
Individual-level controls NO YES YES YES YES YES
Firm-level controls NO NO YES YES YES YES
Country dummies NO NO NO YES YES YES
Year dummies NO NO NO YES YES YES
Industry dummies NO NO NO YES YES YES
Country×Year dummies NO NO NO NO YES YES
Industry×Year dummies NO NO NO NO YES YES
Occupation dummies NO NO NO NO NO YES

Notes: Estimation by logit on a pooled sample of individual-level observations. Risk of automation is computed by means of task
routineness as in Costinot et al. (2011) on EWCS data. Firm-level controls include firm size. Primary education is the benchmark
category for the educational classes. Marginal effects are displayed. Standard errors in parentheses are heteroschedasticity robust.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Pooled OLS results based on Frey and Osborne (2017).

[1] [2] [3] [4] [5]
FO’s probability FO’s probability FO’s probability FO’s probability FO’s probability

of automation of automation of automation of automation of automation
ER -0.105*** -0.067*** -0.065*** -0.025*** -0.026***

(0.003) (0.003) (0.003) (0.003) (0.003)
Female 0.019*** 0.020*** 0.075*** 0.075***

(0.003) (0.003) (0.003) (0.003)
Age -0.006*** -0.006*** -0.006*** -0.006***

(0.001) (0.001) (0.001) (0.000)
Age2 0.000*** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000)
Lower-secondary edu. -0.009 -0.006 0.008 0.008

(0.007) (0.007) (0.007) (0.007)
Upper-secondary edu. -0.019*** -0.016*** -0.016** -0.017**

(0.006) (0.006) (0.007) (0.007)
Post-secondary edu. -0.074*** -0.073*** -0.056*** -0.057***

(0.008) (0.008) (0.009) (0.009)
Tertiary edu. -0.283*** -0.279*** -0.223*** -0.224***

(0.006) (0.007) (0.007) (0.007)
Estimation OLS OLS OLS OLS OLS
No. Obs. 63533 61177 59077 58467 58467
R2 0.019 0.127 0.131 0.236 0.238
Individual-level controls NO YES YES YES YES
Firm-level controls NO NO YES YES YES
Country dummies NO NO NO YES YES
Year dummies NO NO NO YES YES
Industry dummies NO NO NO YES YES
Country×Year dummies NO NO NO NO YES
Industry×Year dummies NO NO NO NO YES

Notes: Estimation by OLS on a pooled sample of individual-level observations. Probability of automation is measured by mechanic
extrapolation of automation probabilities calculated by Frey and Osborne (2017) to EWCS data, by matching ISCO codes. Firm-
level controls include firm size. Primary education is the benchmark category for the educational classes. Standard errors in
parentheses are heteroschedasticity robust. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 1: Expected payoffs to owner and workers.

Notes: This figure displays the expected payoff functions; δ is the fraction of owners adopting DH and γ is the fraction of workers
adopting GH . The vertical intercepts are from Table 1.

41



Figure 2: Asymptotically stable states and out-of-equilibrium dynamics.

Notes: The arrows represent the disequilibrium adjustment in the number of owners (vertical movements) and workers (horizontal
movements).
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Figure 3: Changes in the basin of attraction.

Notes: The figure shows the changes in the size of the basins of attraction when the cost of collective action c increases (δ∗ reduces
to δ∗′) and the expected cost of automation k reduces (γ∗ increases to γ∗′). Overall, these changes make the relatively inefficient
convention {1, 0} more likely to emerge.
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Figure 4: ER and risk of automation: correlation of country averages over 2010 and 2015.

Notes: The figures display the correlation between the share of workforce employed in production units with ER and our baseline
measure of job automatability (computed as in Arntz et al. (2017)), both averaged at a country level over 2010 and 2015 and
based on EWCS data. In the right-hand side figure, we use job automatability values purged from countries’ GDP: these values
are obtained as residuals from regressing our baseline measure of job automatability (× 100) against countries’ GDP/1000 in PPP
(the regression coefficient of GDP is -0.122, with p-value=0.000).

Figure 5: ER and high risk of automation: correlation of country averages over 2010 and 2015.

Notes: The figures display the correlation between the share of workforce employed in production units with ER and our measure
of high risk of job automatability (computed as in Arntz et al. (2017)) coded as a dummy variable which equals 1 when the risk of
automation is equal to or greater than 0.7, both averaged at a country level over 2010 and 2015 and based on EWCS data. In the
right-hand side figure, we use job automatability values purged from countries’ GDP: these values are obtained as residuals from
regressing (by means of logit) our measure of high risk of job automatability against countries’ GDP/1000 in PPP (the regression
coefficient of GDP is -0.018, with p-value=0.000).
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Figure 6: ER and risk of automation: correlation of industry-country-year averages.

Notes: This figure displays the correlation between the share of workforce employed in production units with ER and our baseline
measure of job automatability (computed as in Arntz et al. (2017)), both averaged at a country-industry-year level and based on
EWCS data.
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Figure 7: Conditional correlations by educational level.

Notes: Conditional correlations between ER and high risk of automation, obtained from the logit model presented in column 6 of
Table 4.
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A.1 Theoretical Appendix

A.1.1 Payoffs in Table 1

Let us indicate with uw(D,G) the utility of a G-type worker when matched with a D-type
owner, and with uo(D,G) the utility of a D-type owner when matched with a G-type worker,
with D = {DH , DL} and G = {GH , GL}. Moreover let us write ew(i, j) as the best-response
level of e for a i-type worker when matched with a j-type owner. Given Eqs. (1), (2), we have:

uw(DH , GH) = s− e2
w/2− (1− ew)θ − c , uw(DH , GL) = s− e2

w/2− (1− ew)θ (A.1.13)

uw(DL, GH) = s+ λeW − e2
w/2− c , uw(DL, GL) = s− e2

w/2 (A.1.14)

uo(DH , GH) = uo(DH , GL) = qew − s− k , uo(DL, GH) = uo(DL, GL) = qew − s (A.1.15)

Moreover, given Remark 1, we have:

e∗w(DH , GH) = e∗w(DH , GL) = θ , e∗w(DL, GH) = λ , e∗w(DH , GL) = 0 (A.1.16)

where e∗w(D,G) is w’s optimal level of effort under arrangement {D,G}. By replacing effort
levels from into Eqs. (A.1.4) into Eqs. (A.1.1), (A.1.2) and (A.1.3) we obtain the following
results:

uo(DH , GH) = uo(DH , GL) = qθ−s−k , uo(DL, GH) = qλ−s , uo(DL, GL) = −s (A.1.17)

uw(DH , GH) = s− θ + θ2/2− c , uw(DH , GL) = s− θ + θ2/2 (A.1.18)

uw(DL, GH) = s+ λ2/2− c , uw(DL, GL) = s (A.1.19)

A.1.2 Proof of Proposition 1

{DL, GL} is proven to be Nash equilibrium as long as: (a) −s > qθ − s − k, and (b) s >
s + λ2/2 − c. Condition (a) and (b) reduce to k > qθ = k̄ and c > λ2/2 = c̄, respectively.
Similarly, {DH , GL} is a Nash equilibrium as long as: (c) qθ−s−k > −s and (d) s−θ+θ2/2 >
s − θ + θ2/2 − c. Condition (c) reduces to k < qθ = k̄, while condition (d) is self-explained.
Finally, {DL, GH} is a Nash equilibrium as long as: (e) qλ−s > qθ−s−k and (f) s+λ2/2−c > s.
Condition (e) and (f) reduce to k > q(θ − λ) and c < λ2/2 = c̄. It follows that if λ > θ, then
condition (e) is always satisfied. Moreover: (i) when k > k̄ and c > c̄ conditions (a) and (b)
are satisfied but not conditions (c) and (f), hence {DL, GL} in the only Nash equilibrium; (ii)
when k < k̄ and c > c̄ conditions (c) and (b) are satisfied but not conditions (a) and (f), hence
{DH , GL} in the only Nash equilibrium; (iii) when k > k̄ and c < c̄ conditions (a) and (f) are
satisfied but not conditions (b) and (c), hence {DL, GH} in the only Nash equilibrium; (iv)

47



when k < k̄ and c < c̄ conditions (c) and (f) are satisfied but not conditions (a) and (b), hence
{DH , GL} and {DL, GH} are both Nash equilibria.

A.1.3 Proof of Proposition 2

For any λ > θ, qλ− s > qθ− s− k which implies that o is always better off under arrangement
{DL, GH} than under arrangement {DH , GL}. It follows that a necessary and sufficient condi-
tion for {DL, GH} to Pareto dominates {DH , GL} is that s + λ2/2 − c > s − θ + θ2/2, which
reduces to c < λ2/2 + θ− θ2/2 = c̄+ θ− θ2/2. This, together with the results of Proposition 1,
implies that when both {DH , GL} and {DL, GH} are Nash equilibria and and θ < 2, the former
Pareto dominates the latter.

A.1.4 Proof of Proposition 3

The five cultural-technological equilibria are derived by simply solving the system (7)-(8) for
∆δ = 0 and ∆γ = 0 = 0. The proof in this case is omitted. The asymptotic properties of each
equilibrium are derived by analyzing the Jacobean Matrix J(δ, γ) associated to system (7)-(8),
which takes the following form:

J =


(1− 2δ)αβ (qθ − k − γqλ) δ(1− δ)αβ (−qλ)

γ(1− γ)αβ
(
−λ

2

2

)
(1− 2γ)αβ

(
λ2

2 − c− δ
λ2

2

)


At {0, 0}, we have:

J =

 αβ(qθ − k) 0

0 αβ

(
λ2

2 − c
) 

from which it follows that

Tr(J) = αβ

(
qθ − k + λ2

2 − c
)

, Det(J) = α2β2 (qθ − k)
(
λ2

2 − c
)

(A.1.20)

Since Tr(J) > 0 and Det(J) > 0 for any k < qθ and c < λ2/2, {0, 0} is asymptotically unstable.

At {1, 0}, we have:

J =
 −αβ(qθ − k) 0

0 −αβc
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from which it follows that

Tr(J) = −αβ(qθ − k + c) , Det(J) = α2β2c(qθ − k) (A.1.21)

Since Tr(J) < 0 and Det(J) > 0 for any k < qθ, {1, 0} is asymptotically stable.

At {0, 1}, we have:

J =

 αβ [q(θ − λ)− k] 0

0 −αβ
(
λ2

2 − c
) 

from which it follows that

Tr(J) = αβ

[
q(θ − λ)− k − λ2

2 + c

]
, Det(J) = −α2β2 [q(θ − λ)− k]

(
λ2

2 − c
)

(A.1.22)

Since Tr(J) < 0 and Det(J) > 0 for any λ > θ and c < λ2/2, {0, 1} is asymptotically stable.

At {1, 1}, we have:

J =
 −αβ [q(θ − λ)− k] 0

0 αβc



from which it follows that

Tr(J) = −αβ [q(θ − λ)− k] + αβc , Det(J) = −α2β2c [q(θ − λ)− k] (A.1.23)

Since Tr(J) > 0 and Det(J) > 0 for any λ > θ, {1, 1} is unstable.

At {δ∗, γ∗}, we have:

J =


0 λ2 − 2c

2

(
1− λ2 − 2c

2

)
αβ(−qλ)

qθ − k
qλ

(
1− qθ − k

qλ

)
αβ

(
−λ

2

2

)
0


from which it follows that

Det(J) = −λ
2 − 2c

2

(
1− λ2 − 2c

2

)
αβ(−qλ)qθ − k

qλ

(
1− qθ − k

qλ

)
αβ

(
−λ

2

2

)
(A.1.24)

Since Det(J) < 0 for any λ > θ, c < λ2/2 and k < qθ, {δ∗, γ∗} is a saddle.
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A.2 Empirical Appendix

Table A.2.1: Automatability and self-reported task content.

Task content (1)

Working at high speed 0.013***
(0.001)

Dealing with people -0.016***
(0.001)

Visiting customers or clients -0.083***
(0.005)

Solving unforeseen problems -0.022***
(0.007)

Monotonous tasks 0.088***
(0.005)

Complex tasks -0.059***
(0.006)

Learning new things -0.037***
(0.006)

Teamwork -0.016***
(0.005)

Applying own ideas -0.034***
(0.002)

Influencing important decisions -0.013***
(0.002)

Observations 37,891

Notes: Based on individuals’ self-reported task content in EWCS (2015). Marginal effects are displayed. Sample restricted to
salaried workers. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.2.2: Measures of automation risk (AR): comparison with Arntz et al. (2016).

[1] [2] [3] [4] [5] [6]
Country %High Risk Mean AR % High Risk Mean AR % High Risk Mean AR

Arntz et al. (2016) Arntz et al. (2016) EWCS2010 EWCS2010 EWCS2015 EWCS2015
Austria 12% 43% 11% 51% 10% 50%
Belgium 7% 38% 9% 52% 9% 51%
Czech Republic 10% 44% 15% 55% 12% 54%
Denmark 9% 38% 6% 48% 5% 49%
Estonia 6% 36% 14% 53% 10% 54%
Finland 7% 35% 5% 51% 3% 48%
France 9% 38% 14% 54% 6% 50%
Germany 12% 43% 13% 54% 11% 52%
Ireland 8% 36% 11% 51% 6% 51%
Italy 10% 43% 20% 58% 15% 55%
Netherlands 10% 40% 6% 50% 6% 48%
Norway 10% 37% 4% 49% 4% 48%
Poland 7% 40% 15% 54% 15% 56%
Slovakia 11% 44% 17% 57% 18% 56%
Spain 12% 38% 17% 55% 13% 55%
Sweden 7% 36% 5% 48% 4% 47%
UK 10% 39% 11% 52% 7% 51%

Notes: Columns 1-2 reproduce calculations reported in Arntz et al. (2016) for countries available in both PIAAC and EWCS.
Columns 3-6 report our measures of automation risk constructed upon data from EWCS. Mean AR refers to the average risk of
automation and % High Risk to the share of individuals at high risk of automation in each country (AR>0.7).
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Figure A.2.1: Mean differences in task-related attributes by presence of ER (p.p.).

Notes: Authors’ calculation based on EWCS 2015. Mean differences (in percentage points) in the incidence of task-related attributes
by presence of ER. Monotone=“Monotone tasks”; High speed=“Working at high speed most of the time”; People=“Dealing
with people”; Customers: “Visiting customers or clients”; Influence=“Influencing important decisions most of the time”; Own
ideas=“Applying own ideas most of the time”; Problems=“Solving unforeseen problems”; Complex=“Complex tasks”; Teams=
“Teamwork”; Learning=“Learning new things”.
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Figure A.2.2: Distribution of automation risk by industrial relations regimes.

Notes: Authors’ calculation based on EWCS 2010-2015. Countries were classified according to industrial relations regimes as pro-
posed by Visser (2009): North (Denmark, Finland, Norway, Sweden); Centre-West (Belgium, Germany, Luxembourg, Netherlands,
Austria, Slovenia); South (Greece, Spain, France, Italy, Portugal); West (Ireland, Malta, Cyprus, UK); Centre-East (Bulgaria,
Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, Romania, Slovakia).
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