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Abstract 
Pooling of data means statistical analysis using multiple data sources relating to 

multiple populations. It encompasses averaging, comparisons and common 

interpretations of the information. Different scenarios and issues also arise depending 

on whether the data sources and populations involved are same/similar or different. This 

paper is primarily concerned with cumulation over space and time from repeated multi-

country surveys, taking illustrations from two major European social surveys. Simple 

model are developed to illustrate the effect on variance of pooling over correlated 

samples, such as over waves in a rotational panel design. 

  

1. Introduction: aspects of pooling 

1.1 Objectives 

By pooling we mean statistical analysis or the production of estimates on the basis of 

multiple data sources, possibly relating to multiple populations. There are three 

fundamental objectives of pooling of statistical data or estimates.  

(1) Cumulation or aggregation in order to obtain more precise estimates, albeit normally 

with some loss of detail.  

(2) Comparisons of trends and differences across populations and times, for instance 

comparisons between different populations, between different geographical parts or 

times for a given population. 

                                                
1 This work has been conducted under the project SAMPLE – Small Area Methods for Poverty and 
Living Conditions Estimates - European Union 7th Framework Program - Project/Contract No: EU – FP7 
- SSH-2007-1 Grant Agreement no 217565 coordinated by Prof. Monica Pratesi, and under the Italian 
PRIN research project n. 2007HEWTBE_003 coordinated at National level by Prof. G.M. Giorgi and 
locally carried out by the C.R.I.DI.RE. research centre. 
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(3) Meeting the more general and broader objective of common interpretation of 

statistical information from different sources and/or for different populations in relation 

to each other and against common standards. 

1.2 Prerequisite: comparability 

For meaningful pooling whether of micro data or of estimates, it is necessary that the 

different data sources are “comparable”. The concept of comparability implies the 

requirement that data or estimates can be legitimately, i.e. in a statistically valid way, 

put together (aggregated, pooled), compared (differenced), and interpreted (given 

meaning) in relation to each other and against some common standard. Comparability is 

absolutely central to the problems and procedures of pooling of data and estimates. 

Comparability is a matter of degree. A “sufficient” degree of comparability is a 

precondition for such pooling to be meaningful (Verma, 2002). 

1.3 Diverse scenarios 

Procedures and problems in pooling depend on whether the population and the sample 

involved in the pooling are similar (or same) or are different for the different element 

being pooled. How similar or different the sources are is actually a matter of degree: 

there is no simple dichotomy “same” versus “different”. At the one extreme, we have 

the situation where both the population and the sample (or other types of data sources) 

involved are different: the data or estimates are being pooled across different 

population, using different sources of data in each. At the other extreme, we have the 

situation where both the population and the sample are the same or similar.  

On this basis, we may distinguish four main types of situations or scenarios; within each 

scenario further subtypes may be identified. The important point is that the following 

distinctions are not necessarily sharp: being the “same” or “different” is a matter of 

degree. 

 

 Data source 

Population same/similar (s) different /dissimilar (d) 

Same/Similar (S) S.s S.d 

Different /Dissimilar (D) D.s D.d 
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Issues of comparability are more severe when the data sources are different, and 

specially when the populations involved are also different. An example of scenario 

(D.d) is the Luxembourg Income Study (LIS), which uses different sources in different 

countries for constructing a data source for comparative research on income 

distribution. Scenario (S.d) means using different sources to obtain a more complete 

picture for a given population, such as from income and expenditure surveys. More 

often, we are dealing with pooling of data from similar sources. Typically scenario (D.s) 

involves pooling over space (e.g. over countries in a multinational survey), and scenario 

(S.s) involves pooling over time (e.g. in a periodic survey). It is these latter scenarios 

that we address in this paper. 

 

2 Illustrations from European social surveys 
The two most important regular social surveys in the EU are the Labour Force Survey 

(EU-LFS) and Statistics on Income and Living Conditions (EU-SILC). The EU-LFS 

was initiated at EU level in 1960, with a systematic common framework adopted from 

1983. It is a large sample survey, conducted in all EU countries on a continuous basis, 

providing quarterly and annual results on labour participation along with socio-

demographic and educational variables. Annually ad-hoc modules dedicated to specific 

topics supplement the core survey. The EU-SILC was launched starting from 2003 in 

some countries; it covered 27 EU and EFTA countries by 2005, and all 30 by 2008. In 

each country it involves an annual survey with a rotational panel design. Its content is 

comprehensive, focusing on income, poverty and living conditions.  

Both EU-LFS and EU-SILC involve comprehensiveness in the substantive dimension 

(coverage of different topics), in space (coverage of different countries), and in time 

(regular waves or rounds). EU-SILC is stronger in the substantive dimension, and EU-

LFS in the spatial (providing reliable estimates at the regional level given its large 

sample size). Both are strong in the time dimension: EU-LFS providing regular and 

frequent estimates of levels and net changes, and EU-SILC providing longitudinal 

indicators (such as persistent poverty) at the micro level. EU-LFS involves diverse types 

of rotational designs; a simple and common one is illustrated below on the left hand 

side. In this example, a sample address stays in the survey for 5 consecutive quarters 

before being dropped. The subsamples contributing to a particular year have been 
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identified in the central part of the diagram. By contrast, for EU-SILC most countries 

use the standard rotational household panel design shown below on the right. Here the 

survey is annual, and each panel stays in the survey for four consecutive years. 

 

   
  

 



 
  
   

  

 

In the following sections, we discuss a some selected technical issues. 

 

3. Pooling of data versus pooling of estimates 
We may also distinguish between pooling of data, i.e. aggregation of micro-level data 

for the same or different populations, surveys and times, on the one hand, and the 

pooling of estimates, i.e. the production of a common estimate as a function of estimates 

produced from individual data sources. 

Let us consider estimate i  for a certain statistic for country i. In comparisons, each i  

of course receives the same weight. For estimates aggregated over EU countries, of the 

form iiP  . , the most common practice by far is to take the weights Pi in proportion 

to the countries’ population size, thus producing statistics for the ‘average EU citizen’.  

By contrast, in much policy debate, it is the situation in the ‘average EU country’ that is 

of interest; this amounts to taking the Pi values as equal. But it can also be argued that 

countries as well as individual citizens are both relevant as units, so that larger countries 

could be given more weight, but less than proportionate to their population size (Verma, 

1999).  

Whatever the choice of Pi, the above formulation involves pooling country-level 

estimates. Given standardised data sets from all countries, such as in EU-LFS or EU-

SILC, pooling at the micro-level is also possible, with unit weights wij scaled as 

 ijiijij wPww  . .  
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For ratios of the form ijijijiji uwvw ..  , the macro and micro pooling give the same 

result, except that the former is similar to a ‘separate’ and the latter to a ‘combined’ type 

of ratio estimate. In the above form, the contribution of any unit j to the estimate does 

not depend on the values of other units (k) in the sample. It does for some other 

statistics, e.g. measures of income distribution: median income, disparity (Gini), poverty 

rates, etc. Here the useful distinction is whether the dependence is on units only within a 

population, or on all units in the pooled populations. Conventional poverty measures 

using the national poverty line are an example of the former; here pooling across 

countries is essentially macro-level. By contrast, for poverty measures with reference to 

a common EU poverty line, the pooling across countries has to be at the micro-level. 

 

4. Panels in a rotational design 
In a rotational design such as of EU-SILC, each cross-section is made up of a number of 

panels or subsamples (see the figure below). In computing measures for the cross-

section, the common practice is simply to pool the cases from the subsamples. This 

amounts to giving each subsample a ‘weight’ in proportion to its sample size, i.e. 

inversely proportion to its expected variance, which is an efficient (optimal) procedure 

in the absence of bias. However, in a rotational design the subsamples are of different 

ages, and the older ones can be expected to be more biased, both because of changes in 

the population since they were first selected, and due to selective non-response.  

Consider two panels with same variance V2, but the second (older) one also subject to 

bias B. Pooling them with weights W1,W2 respectively (W1+W2=1) gives MSE 

composed of variance  2
2

2
1

2 . WWV   and bias2 22
2 .BW . Variance is minimised with 

W1=W2=0.5, but bias can be reduced by taking W2<0.5, i.e. giving less weight to the 

older panel. The optimal choice of the weights depends on the bias ratio 22 VB . 
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Note: The numbers in the cells of the diagram indicate the type(s) of observations provided by 
the subsample. The above numbers may be multiplied by the subsamples size to obtain the 
cumulated number of observations. 
 
 
5. Poverty rates with poverty lines at different thresholds and levels 

5.1 Poverty lines at different thresholds 

In the standard analysis, as for instance in Laeken indicators, the poverty line is defined 

as a certain percentage (threshold x%) of the median income of the national population. 

By ‘poverty line threshold’ we mean the percentage of the median income defining the 

poverty line. Different values of the poverty rate are obtained depending on the 

threshold (i.e. on ‘x’) of the chosen poverty line. The Laeken set at the national level 

includes a measure of dispersion around the at-risk-of-poverty threshold, computing the 

percentage of persons, over the total population, with an equivalised disposable income 

below, respectively, 40%, 50%, 60% and 70% of the national median equivalised 

disposable income, 60% being the main threshold. The substantive objective of 

introducing indicators of dispersion around the poverty line is to take more fully into 

account differences among countries in the shape at the lower end of the income 
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distribution. Lower thresholds isolate the more severely poor and tend to be more 

sensitive in distinguishing among countries or other population groups being compared. 

As the threshold is raised, this sensitivity generally tends to fall: clearly in the extreme 

case when ‘x’ is taken as 100% (poverty line equal to the median), the poverty rate in all 

situations is 50%, by definition. 

In addition to the above systematic differences, the results from using different poverty 

line thresholds are also likely to be affected by irregularities in the empirical income 

distribution. Irregularities are larger when the distributions are estimated from smaller 

samples, as normally is the case for disaggregated estimates by region. It is this 

consideration which is likely to dominate in the context of constructing regional 

measures.  

In view of the reduced sample sizes in moving to the regional level, it is generally 

desirable to avoid producing too many individual figures each subject to large sampling 

variability. Instead, it would seem a good idea to compute poverty rates with reference 

to several different thresholds, but then to consolidate them, such as by taking an 

appropriately weighted average of them for comparisons across regions. In specific 

terms, a single measure based on suitable consolidation over, say, 50%, 60% and 70% 

of median poverty lines, would be preferable to separate indicators for each of these 

level such as in the Laeken Indicators list.  

There are also substantive considerations in such consolidation. The rate consolidated 

over different thresholds provides a summary or overall measure of different degrees of 

severity of poverty contained within the given income distribution (Verma et al., 2005). 

5.2 Poverty lines at different levels 

The level of poverty line indicates the population level at which the income distribution 

is pooled for the purpose of defining the poverty line. Commonly used poverty-related 

indicators are based on country poverty lines determined on the basis of the national 

income distribution. It is necessary to consider other levels of the poverty line: lines 

defined from income distribution pooled across countries, as well as regional poverty 

lines at various levels (such NUTS1, NUTS2, …) within the country. For instance, with 

increasing integration in the European Union, and increasing need for European level 

analysis, the use of EU-wide benchmarks becomes increasingly justified and rewarding. 

Similarly, indicators based on regional poverty lines become more important with 
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devolution of social inclusion policies. The use of different poverty lines brings out 

different aspects. Poverty lines defined at different levels capture different mixes of 

‘relative’ measures (concerning purely income distribution) and ‘absolute’ measures 

(concerning differences in income levels). Pooling (with some appropriate weights) 

measures computed with different poverty line levels amount to consolidating the 

diverse measures into a single (or fewer) measures taking into account multiple 

dimensions of the situation. 

5.3 Averaging over different types of measures 

The above argument can also be extended to averaging over different types of statistics, 

not just poverty rates, each capturing a different dimension or aspect. Such averaging 

will require appropriate rescaling of the different types of measures before they can be 

pooled together to provide more ‘consolidated’ measures. 

5.4 Aggregation over time (waves) 

Where the information comes from sample surveys of limited size, a trade-off is 

required between temporal detail and geographical breakdown. In order to achieve 

greater geographical disaggregation (e.g. by region), the emphasis has to be shifted 

away from the study of trends over time and longitudinal measures to essentially cross-

sectional measures aggregated over suitable time periods, so as to illuminate the more 

stable aspects of the patterns of variation across regions. Average of wave-specific 

poverty rates over waves provides an indicator reflecting the overall situation over the 

period covered. The measures constructed from averaging over waves tend to be more 

robust than results based only on one wave. They increase precision, help to smooth out 

short-term trends and bring out more clearly the underlying structural relationships of 

interest. 

 

6. Effect of pooling on variance 
We use EU-SILC standard ample structure to illustrate the effect of aggregation on 

resulting variance. In this design, each cross-section consists of four panels or 

subsamples, introduced one by one over the preceding years. 
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6.1 Reduction in variance by pooling data for subsamples 

In aggregating over subsamples, variance decreases in inverse proportion to sample 

size, provided that the subsamples making up the total sample are independent. This is 

the case with EU-SILC samples where each subsample is based on a different set of 

clusters. There are also a number of designs in which different subsamples involve 

different households but all from a common set of clusters. Here the design effects tends 

to increase as the subsamples are pooled, so that the gain in precision is smaller than 

proportionate to sample size. 

6.2 Reduction of variance from averaging different poverty thresholds 

As noted, some gain in sampling precision can be obtained by computing poverty rates 

using different thresholds, and then taking their weighted average using some 

appropriate pre-specified (i.e., constant or external) weights. A quantitative indication of 

the magnitude of this gain may be obtained on the following lines. 

Consider three poverty line thresholds, with poverty rates ip , 321 ppp  , and that 

with fixed weights iW , 1 iW , a consolidated rate is computed as ii pWp . . For 

simplicity, take the sample as SRS and approximate the complex statistic ‘poverty rate’ 

as an ordinary proportion. In case, since the design effects due to departures from SRS 

are likely to be very similar for the various statistics being considers, neglecting them 

should not substantially affect the conclusions. 

Under the above assumptions, variance of the consolidate poverty rate p is given by 

      jijiiji
2
ii p,pcov.WW.2pvar.Wpvar  . 

By considering the poverty indicator variables  1,0, kip  for individuals j in the 

population, the above equation becomes 

      ijjiijii
2
ii p1.p.WW.2p1.p.Wpvar   . 

It is this variance that we compare with the variance of a rate (say, p2) computed using a 

single poverty line such as 60% of the median, as is normally done: 

   222 1.var ppp  . The ratio  

      2
1

2V pvarpvarg   
gives the required factor by which the standard error is reduced.  
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The ‘constant’ weights may come from poverty rates estimated at the country level, and 

then the same weights applied to each region. An appropriate choice is (Verma et al. 

2005): 











1

2
1 .

3
1

p
pW ,  

3
1

2 W ,  









3

2
3 .

3
1

p
pW  

where subscripts 1, 2 and 3 refer to the rates computed at the national level with poverty 

line thresholds, respectively, as 50, 60 and 70% of the national median equivalised 

income. 

 6.3 Reduction due to aggregation over waves for a given panel (subsample) 

Of course, we cannot merely add up the sample seizes over waves in a panel survey 

since there is a high positive correlation between waves which reduces the gain from 

cumulation. Consider two adjacent waves, with proportion poor as p and p', 

respectively, with the following individual-level overlaps between the two waves: 

 

 Wave w+1 

Wave w Poor (p'i=1) Non-poor (p'i=0) total 

Poor (pi=1) a b p=a+b 

Non-poor (pi=0) c d 1-p=c+d 

total p'=a+c 1-p'=b+d 1=a+b+c+d 

 

Indicating by pj and p'j the {1,0} indicators of poverty of individual j over the two 

waves, we have, with the sum over all (g) individuals: 

       1
2 1.var vppgppp jj  ; 

     1..,cov cppagpppppp jjjj  . 

For data averaged over two adjacent years (and ignoring the difference between p and 

p'), variance is given by:   









1

11
1112 1.

2
.2.

4
1

v
cvcvvv . The correlation 

  111 Rvc   between two periods is expected to decline as the two become more widely 

separated. Let   ii Rvc 1  be the correlation between two points i waves apart. A 

simple and reasonable model of the attenuation with increasing i is:    ii vcvc 111  . 
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Now in a set of Q periods (waves) there are (Q-i) pairs exactly i periods apart, i=1 to 

(Q-1). It follows from the above that variance vQ of an average over Q periods relates to 

variance v1 of the estimate from a single wave as: 

 



























 









 



i
Q
i

Q
c v

c
Q

iQ
Qv

v
f

1

11
1

1

2 ..21.1
, with 2

1

1 pa
v
c









, 

where a is the overall rate of persistent poverty between pairs of adjacent waves 

(averaged over Q-1 pairs), and p is the (cross-sectional) poverty rate averaged over Q 

waves. Averaging over Q waves increases the effective sample size by  21 cf .  

6.4 Reduction from averaging over rounds in a rotational design 

Consider a rotational sample in which each unit stays in the sample for n consecutive 

periods, with the required estimate being the average over Q consecutive periods, such 

as Q=4 quarters for annual averages. The case n=1 corresponds simply to independent 

samples each quarter. Under the simplifying assumption of uniform variances, variance 

of the estimate of average over Q period is QVVa
22  . 

In the general case, the total sample involved in the estimation consists of (n+Q-1) 

independent subsamples. These correspond to the rows in the figures below. Each 

subsample is ‘observed’ over a certain number of consecutive periods within the 

interval (Q) of interest.2 In principle, for a given subsample the sample cases involved 

in these ‘observations’ are fully overlapping. The distribution of the (n+Q-1) 

subsamples according to the number of observation (m) provided is: 

 

 

 

 

 

 

 

                                                
2  For ‘observation’ we mean surveying one subsample on one occasion. These correspond to individual 
diamonds in the figures below. 
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No. of observations (m)  provided by no. (x) of 

subsamples  

Total no. of ‘observations’ 

provided by all subsamples 

m = 1, 2, …, (m1-1) x = 2  for each value of m 
11

)1(

1
)1(2

1

mmi
m

i






 

m = m1 x =  m2-(m1-1) 1121 )1( mmmm   

Total  no. of sublamples equal to 

11
)1()1(2

12

121




Qnmm
mmm

 

no. of observations  equal to 

Qnmm .21   

where m1=min(n, Q) and m2=max(n, Q). 

Note that the total number of ‘observations’ provided by all subsamples over interval Q 

is Qnmm  21 . This is consistent with the fact that, obviously, there are n subsamples 

observed at each of the Q periods in the interval being considered (see diagrams below). 

 

Q=4 

n=3 (‘observations’ provided=3*4=12) n=5 (‘observations’ provided=5*4=20)

 

1  
2 
3
4
5 
6  

1    
2   
3  
4 
5 
6  
7   
8       

Note: The numbers on the left side of the figures represent the number of subsamples (n+Q-1). 

 

For illustration, consider Q=m1=4, n=m2=5. There are 2 contributing subsamples for 

each number 1, 2 and (m1-1)=3 of observations; and in addition there are m2-(m1-1)=2 

subsamples each contributing m1=4 observations. 

Similarly, for Q=m2=4, n=m1=3, we have 2 contributing subsamples for each number 1 

and (m1-1)=2 of observations, and in addition m2-(m1-1)=2 subsamples each 

contributing m1=3 observations. 
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In the EU-SILC survey in most countries, n is always equal to 4 (each survey rounds is 

made of 4 subsamples), and at the present stage Q could be equal to 2 (years 2003-

2004), 3 (years 2003-2004-2005) and 4 (years 2003-2004-2005-2006). 

So the previous figure could be adapted as follow: 

Q= 2 Q= 3 Q= 4
n= 4 n= 4 n= 4

        
     

   
  
     

    
    

In order to provide a simplified formulation of the effect of correlation arising from 

sample overlaps, we assume the following model. If R is the average correlation 

between estimates from overlapping samples in adjacent periods (as defined above), 

then between points one period apart (e.g. between the 1st and 3rd quarters), the average 

correlations is reduced to R2, the correlation between points two periods apart (e.g. the 

1st and the 4th quarters) is reduced to R3, and so on. 

Consider a subsample contributing m observations during the interval (Q) of interest 

with full sample overlap. Considering all the pairs of observations involved and the 

correlations between them under the model assumed above, variance of the average 

over the m observations is given by 

  )(1
2

2 mf
m

VVm   

where 

  12 ...)2()1(2)(  mRRmRm
m

mf  

The term )(1
2

2 mf
m

VVm 







 reflects the loss in efficiency in cumulation or 

averaging over overlapping samples, compared to cumulation over entirely independent 

samples. The following illustrates its values for various values of m: 
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m f(m) 

2 R 

3 )2(
3
2 2RR   

4 )23(
4
2 32 RRR   

5 )234(
5
2 32 RRRR   

 

Repeated observations over the same sample are less efficient in the presence of 

positive correlations (R). The loss depends on the number of repetitions (m) and is 

summarised by the factor [1+f(m)]. 

In estimating the average using the whole available sample of )( Qn   subsample 

observations3, we may simply give each observation the same weight. Taking into 

account the number of observations and the variances involved, the resulting variance of 

the average becomes: 

       )()()(12)(11
21

1
1121

2
2

1

RF
Qn

VQnmfmmfmmm
Qn

VV
m

m
a 





























 




 

The first factor is the variance to be expected from )( Qn   independent observations 

(with no sample overlaps or correlation), each observation with variance V2. The other 

terms are the effect of correlation with sample overlaps. This effect, F(R) disappears 

when f(i)=0 for all i=1 to m (which will be the case of R=0), as can be verified in the 

above expression. 

An alternative is to take a weighted average of the observations, with weights inversely 

proportional to their variance, i.e. to the corresponding factor [1+f(m)]. The effect on 

the resulting variance, though may appear algebraically cumbersome, can be easily 

worked out, for any given rotation pattern and value of average correlation R. 

                                                
3 Obviously , we have n subsamples observed during each of Q periods in the rotational design assumed.  
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It has the form 

   222
iia VWV  , with 1 iW , where Wi are the relative weights given to 

observations in a set involving I repetitions during the interval of interest. 

 

7. Concluding remark: objectives of pooling 
It may be argued that averaging and similar ‘manipulation’ is not acceptable, or at least 

that it introduces bias, since it alters the measures we obtain. This may be true in a 

literal sense but this is not a sensible objection in many situations. We need a pragmatic 

and not an ideological approach to statistics. All statistical measures are constructed for 

the purpose of conveying some meaning, for providing some interpretation to real and 

complex situations. The particular forms of measures chosen are always determined by 

considerations of usefulness and practicality, are always compromises and in 

themselves not ‘sacred’. The objectives of pooling include searching for measures 

which convey essentially the same information as the ‘original’ un-pooled measures, 

but in a more robust manner, reducing random variability or noise. A related objective 

of pooling is trading dimensions – gaining in some more needed directions by losing 

something less needed for the particular purpose – such as permitting more detailed 

geographical breakdown but with less temporal detail. A third objective is to summarise 

over different dimensions, providing more consolidated and fewer indicators. Such 

indicators are of course different from the more numerous ‘raw’ indicators, but are often 

more, or at least equally, meaningful and useful. 
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