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Abstract 

The difference between potential and actual distribution of species is emphasized, pointing out the 

ecological importance of maps depicting the actual species presence on the study region. Owing to 

the impossibility of performing complete surveys over large areas, the presence/absence of species 

at a pre-fixed spatial grain is estimated for any location of the study region from the 

presences/absences recorded within plots centered at sample locations and having the same grain. 

Estimation is performed in a design-based framework by means of the well-known nearest-   

neighbor interpolator. Association maps and species richness maps are obtained as products and 

sum of the presence maps of single species. The design-based asymptotic unbiasedness and 

consistency of these maps are theoretically proven and pseudo-population bootstrap estimators of 

their precision are proposed and discussed. A simulation study is performed on a real community of 

302 tree species settled in a 50-ha rectangle in the lowland tropical moist forest of Barro Colorado 

Island (BCI), central Panama, to check the finite-sample performance of the proposal. A case study 

for estimating the presence map and the association of holly oak and white violet in the Montagnola 

Senese (Central Italy) is reported. Technical details are contained in the appendices.  

 

Keywords: species distribution, asymptotic unbiasedness, consistency, pseudo-population 

bootstrap, simulation study, case study. 

 

Introduction 

Accurate and updated wall-to-wall maps depicting the spatial distribution of plant species 

throughout the study region represent crucial information for many aspects of environmental 

research (e.g. , natural RESOURCES management and NATURE conservation planning (e.g., 



Corona et al., 2010; Franklin, 2010) also playing a basic role in determining economic values of 

environmental resources (e.g., Champ et al., 2017).  

Because species presence occurs at individual locations, it is customary to consider presence at a 

prefixed spatial grain, i.e., within regular plots (e.g., circles or oriented quadrats) of a prefixed size 

that determines the spatial resolution of maps (Turner at al., 2001). Recording presence instead of 

single individuals is especially suitable when dealing with plants that often exhibit clonal 

reproduction (Palmer, 1990). In accordance with this approach, any location of the study region can 

be virtually considered as the center of a plot, in such a way that there exists a presence/absence of 

species at any location, giving rise to the “presence surface” of the species on the study region.  

In most cases, the available resources make impossible to completely census the entire region. 

Usually, presence/absence is recorded only within those plots centered on a sample of locations and 

an estimation criterion is adopted to make inference on the spatial distribution of species throughout 

the whole study region. It is worth noting that the procedure lies in the framework of the so-called 

fixed-area plots (e.g., Gregoire and Valentine, 2008, chapter 7, p. 209), in which a perfect detection 

takes place within plots. That obviously involves accurate, expensive fieldworks performed by well-

trained crews.  

Generally, methods adopted to make inference on the spatial distribution of species from 

presence/absence data lie in the realm of model-dependent inference, i.e., the sampled locations are 

held fixed (as if they were purposively selected) and values at these locations are supposed to be 

random variables generated from a spatial process (super-population). Therefore, under model-

dependent approaches, uncertainty stems from the super-population model that has been supposed 

to generate the presences/absences, conditional to the sampled locations.  

Most species distribution models link partial presence/absence information with environmental 

covariates to predict the spatial distribution of species potential, i.e., the potential occurrence at any 

unsampled location of the study region. In literature, these models are also referred to as  

“predictive habitat distribution models” (Guisan and Zimmermann, 2000) and “spatially explicit 

habitat suitability models” (Rotenberry et al., 2006), while the resulting maps have been variously 

referred to as, among others, “ecological response surfaces” (Lenihan, 1993), “biogeographical 

models of species distributions” (Guisan et al., 2006), “spatial predictions of species distribution” 

(Austin, 2002), “predictive maps” (Franklin, 1995), “predictions of occurrence” (Rushton et al., 

2004), “predictive distribution maps” (Rodriguéz et al., 2007). In practice, map values predict the 

likelihood of presence and have been variously interpreted as the probability of species presence or 

the potential species distribution (Scott et al., 2002), the potentially occupied locations (Guisan and 



Zimmermann, 2000; Edwards et al., 2006) or the location suitability or quality (Hirzel and Guisan, 

2002; Hirzel et al., 2002; Gibson et al., 2004). 

However, our purpose is not to deal with the myriad of models adopted to predict species presence, 

such as geostatistical models, generalized linear and additive models, multivariate adaptive 

regression splines, and machine learning methods. On these topics, Franklin (2010) provides an 

accurate, excellent review. Rather, we here emphasize the necessity of distinguish between the 

potential distribution and the actual distribution of a species, that we have previously referred to as 

the presence surface. Indeed, for several reasons, a species may be found in unsuitable locations or 

may be absent from those suitable (e.g., van Horne, 1983). As Franklin (2010) points out, 

confounding occupancy with suitability may be an oversimplification. While predictive maps are 

useful for extrapolating purpose (e.g., to predict the species presence in unobserved locations), 

presence surfaces are useful to depict the actual species presence on the study region. In practice, in 

the latter case, for any location of the study region we have to estimate presence/absence (usually 

labelled as 1/0) of the species on the basis of the presences/absences recorded at sample locations.   

In forest studies, Mc Roberts et al. (2010) propose to predict presence if the estimated presence 

probabilities - achieved by means of a logistic regression from remote sensing covariates - are 

greater than 0.5 and predict absence otherwise. However, even if frequently applied, the proposal 

just represents an arbitrary rule of thumb without any theoretical foundation that may justify its use. 

On the other hand, presence surfaces can be estimated by using the nearest neighbor (NN) 

interpolator, i.e., assigning at any location in the study region the value observed at the nearest 

sample location. Therefore, the NN interpolator has the appealing property that interpolated values 

have the same support of the survey variable, even when the support is dichotomous as in our case.  

Owing to its simplicity, mapping by NN interpolation constitutes a widely extended practice in 

environmental surveys (e.g., Li and Heap, 2008). Unfortunately, despite its large use, NN 

interpolator has been invariably adopted just as a descriptive technique. By a model-dependent 

perspective, Cressie (1991, section 5.9) relegates NN interpolator in a class of techniques referred to 

as “non-stochastic methods of spatial prediction” for which no stochastic model is assumed and 

hence no uncertainty is associated. That is probably due to the widely spread opinion that inference 

in spatial mapping is hard to perform without referring to models.  

In this note, we follow the alternative proposal by Fattorini et al. (2021) that approaches the NN 

interpolator from a design-based perspective, i.e., the surface to be mapped is viewed as constant 

and uncertainty stems from the probabilistic sampling scheme adopted to select locations. 

Differences between model-dependent and design-based inferences are well delineated in statistical 

literature (Smith, 1994, 2001; Gregoire, 1998; Thompson, 2002, chapter 10; Schreuder et al., 1993; 



Little, 2004). As pointed out by Särndal et al. (1992, p. 21), the main appeal of the design-based 

approach is that “Design-based inference is objective, nobody can challenge that the sample was 

really selected according to the given sampling design. The probability distribution associated with 

the design is real, not modelled or assumed.”  

Following the proposal by Fattorini et al. (2021), the presence/absence of a species at single 

unsampled locations is estimated by the presence/absence recorded at the nearest sample location 

and the asymptotic design-based properties of the NN interpolator are derived from the features of 

the surface to be interpolated as well as from some characteristics of the adopted sampling schemes 

as the number of sampled locations increases. 

The paper is organized as follows. In section 2, the presence surface and related ones - i.e. species 

association surfaces and species richness surfaces - are introduced, emphasizing how these surfaces 

share suitable mathematical properties. They are proven to be piecewise Lipschitz functions almost 

everywhere. This feature is of relevant importance for ensuring design-based consistency of the NN 

interpolation that is derived in section 3 by exploiting the results by Fattorini et al. (2021). It is 

important to emphasize that, besides the Lipschitzian nature of these surfaces, consistency requires 

the capacity of the adopted sampling scheme to evenly spread sample locations in such a way that, 

as the number of sample locations increases, any non-sampled location is likely to have neighboring 

locations sampled. This feature is usually referred to as spatial balance in sampling literature. A 

bootstrap estimator of the precision indexes of the interpolated values is proposed once again from 

the results by Fattorini et al. (2021). In section 4, a simulation study is performed from a real stand 

of trees settled in a 50-ha rectangle in the lowland tropical moist forest of Barro Colorado Island 

(BCI), central Panama. In section 5, a case study is considered to estimate presence and association 

maps of a tree species and a grass species throughout the Montagnola Senese, a region protected as 

a Site of Community Importance in Central Italy. Concluding remarks are contained in section 6.  

 

2. Preliminaries and notations 

Denote by 𝐴 the study region of size |𝐴| and let 𝑈 be the population of 𝑁 individuals of a plant 

species settled on 𝐴 at locations 𝑝1, … , 𝑝𝑁. For any point 𝑝 ∈ 𝐴, let 𝑦(𝑝) be the surface value that is 

equal to 1 if there exists at least one individual 𝑗 ∈ 𝑈 such that ‖𝑝𝑗 − 𝑝‖ ≤ 𝑟, and equal to 0 

otherwise, where ‖ ‖ denote a norm in 𝑅2. The resulting surface  

{𝑦(𝑝), 𝑝 ∈ 𝐴}                                                                         (1)  

will be referred to as the presence surface of the species. In this framework, 𝑟 determines the spatial 

grain of the surface, i.e., the size of plots in which presence/absence is recorded and the norm ‖ ‖ 

determines the shape of these plots. For example, if ‖ ‖ is the Euclidean norm, then plots are circles 



of radius 𝑟, while if ‖ ‖ is the Chebyshev norm, then plots are oriented quadrats of side 2𝑟. 

Irrespective of their shape, these plots will be referred to as 𝑟-plots. Practically speaking, the 

presence surfaces is equal to 1 on the union the 𝑁 𝑟-plots centered at the individual locations and is 

equal to 0 otherwise. That is exemplified in Figure 1 that shows the presence surface in the case of 

Euclidean norm (a) and Chebyshev norm (b) of a species having 10 individuals settled on a squared 

study region. It is worth noting that in a design-based approach, the presence surface is a fixed, 

unknown characteristic of the species distribution on the study region that must be estimated from 

the presences/absences recorded at sampled locations, rather than a realization of a spatial model as 

assumed in model-dependent approaches. 

 

(a)                                                                                    (b)                           

Figure 1. Presence surface (green) for a species with 10 individuals settled in a squared region 

under Euclidean norm (a) and Chebishev norm (b).   

 

Regarding the mathematical properties of (1), it is at once apparent from Figure 1 that it is 

piecewise constant, jumping from 0 to 1 along borders of measure 0. Therefore, in mathematical 

terms, the presence surface (1) is a Lipschitz function almost everywhere. These (quite apparent) 

properties will play an important role in determining the properties of the NN interpolator. 

Obviously, the more the individuals of the species, the more the discontinuities of the presence 

surface, as shown in Figure 2 that depicts the presence surface of amarillon (Lonchocarpus 

heptaphyllus) resulting from a collection of 712 trees settled in BCI at the spatial grain of 13 m 

radius circular plots. 



 

Figure 2. Presence surface (green) of amarillon resulting from 712 trees settled in BCI at the spatial 

grain of 13 m radius circular plots. 

 

From the presence surface (1) other surfaces of relevant ecological importance can be achieved. To 

this purpose, denote by 𝐿 the list of the 𝐾 species that are present in the study region. Obviously, for 

each species 𝑙 ∈ 𝐿 there is a presence surface {𝑦𝑙(𝑝), 𝑝 ∈ 𝐴} depicting its distribution on the study 

region. Therefore, for each pair of species 𝑙, ℎ ∈ 𝐿 the product of their presence surfaces  

𝑦𝑙ℎ(𝑝) = 𝑦𝑙(𝑝)𝑦ℎ(𝑝)  , 𝑝 ∈ 𝐴                                                          (2) 

will be referred to as the association surface of species 𝑙 and ℎ. Practically speaking, the surface (2) 

is equal to 1 for any point whose 𝑟-plot contains both species and is equal to 0 otherwise. Therefore, 

(2) depicts the association of the two species throughout the study region.    

Finally, from the presence surfaces of each species 𝑙 ∈ 𝐿, their sum  

𝑦𝐿(𝑝) = ∑ 𝑦𝑙(𝑝)

𝑙∈𝐿

  , 𝑝 ∈ 𝐴                                                            (3) 

gives the number of species that are present in the 𝑟-plot centered at 𝑝 and as such it will be referred 

to as the richness surface. It is worth noting that surfaces (2) and (3), arising as the product and the 

sum of Lipschitz functions almost everywhere, are both Lipschitz functions almost everywhere.  

 

3. Nearest-neighbor estimation of presence, association and richness surfaces. 

As stated in the Introduction, it is usually unfeasible to completely census the entire study region. In 

most cases, the presence/absence of species is recorded at 𝑛 sample locations 𝑃1, … , 𝑃𝑛, i.e., a 𝑟- 

plot is centered at each sample location 𝑃𝑖 (𝑖 = 1, … , 𝑛) and the presence/absence of the species 

under study is recorded as 𝑦(𝑃𝑖) = 1 if the species is present and 𝑦(𝑃𝑖) = 0, otherwise. Then a 

criterion is necessary to estimate presence/absence at any unsampled location 𝑝 ∈ 𝐴.  



Most estimation criteria for mapping species distribution lie in the realm of model-dependent 

inference and provide probability of presence rather than actual presence. We here attempt to 

estimate realized presence surfaces in a design-based framework, in such a way that the properties 

of the resulting maps are only determined by the probabilistic sampling scheme adopted to select 

the sample locations 𝑃1, … , 𝑃𝑛. 

Following the idea by Fattorini et al. (2021), we adopt the NN interpolator in which the 

presence/absence at a non-sampled location 𝑝 ∈ 𝐴 is estimated by  

𝑦̂(𝑝) = 𝑦(𝑃𝑁𝑁(𝑝))                                                                    (4) 

where  𝑃𝑁𝑁(𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖=1,…,𝑛‖𝑝 − 𝑃𝑖‖.   

Design-based expectation and variance of (4) cannot be expressed in closed forms, giving no 

insights about its bias and precision. Therefore, conditions ensuring design-based asymptotic 

unbiasedness and consistency are needed to obtain the statistical soundness of (4). Without entering 

the theoretical complexities involved in Fattorini et al. (2021) to achieve the asymptotic features of 

(4), it is sufficient to point out that a presence surface may show many discontinuities but only 

along 𝑟-plot borders or traits of borders, being constant elsewhere. Therefore, even if no 

consistency of (4) can hold where discontinuities are present, consistency holds under suitable 

sampling schemes at any continuity point of the surface, i.e., almost everywhere. Hence, 

consistency holds also for the whole map. In turn, regarding the sampling schemes needed for 

consistency, they should be able to achieve an asymptotic spatial balance, i.e., any location of the 

study area should have neighboring locations sampled for a sufficiently large sample size 𝑛.  

In accordance with these results, under asymptotically balanced schemes, the estimated presence 

surface converges to the true presence surface at any continuity point 𝑝 in such a way that the mean 

absolute error  

𝑀𝐴𝐸{𝑦̂(𝑝)} = 𝐸[|𝑦̂(𝑝) − 𝑦(𝑝)|]                                                       (5) 

and the mean integrated absolute error  

𝑀𝐼𝐴𝐸(𝑓) = ∫ 𝐴𝐸{𝑦̂(𝑝)}
 

𝐵
𝑑𝑝                                                    (6) 

both converge to 0.  

In particular, Fattorini et al. (2021) prove that consistency occurs for those schemes widely applied 

in environmental surveys, such as uniform random sampling (URS), in which 𝑛 locations are 

randomly and independently selected under the study region, tessellation stratified sampling (TSS), 

in which the study region is partitioned into 𝑛 patches of equal size and one location is randomly 

selected within each patch, and systematic grid sampling (SGS), in which the study area is 



partitioned into 𝑛 regular polygons, one location is randomly selected in one polygon and then 

repeated in the others (e.g., Barabesi et al., 2003).  

Obviously, association and richness surfaces can be readily estimated from the estimated presence 

surfaces by means of  

𝑦̂𝑙ℎ(𝑝) = 𝑦̂𝑙(𝑝)𝑦̂ℎ(𝑝)  , 𝑝 ∈ 𝐴                                                           (7) 

and 

𝑦̂𝐿(𝑝) = ∑ 𝑦̂𝑙(𝑝)

𝑙∈𝐿

  , 𝑝 ∈ 𝐴                                                            (8) 

respectively. Consistency of (7) and (8) at any continuity point and for the whole maps readily 

follow from the consistency of (4). 

Besides these findings, owing to the dichotomic nature of presence and association surfaces, more 

compelling results are achieved. At first, it can be proven that the bias is invariably positive if 

𝑦(𝑝) = 0 and negative if 𝑦(𝑝) = 1, and in both cases its absolute value coincides with the error 

probability 𝑃𝑟{𝑦̂(𝑝) ≠ 𝑦(𝑝)}. Moreover, the error probability completely determines precision 

because it also coincides with the mean absolute error (5) as well as with the mean squared error 

(See Appendix A for the proof). Subsequently, it can be proven that under URS, the error 

probability at any continuity point approaches zero at least as 𝑐𝑛 with 𝑐 ∈ (0,1), while under TSS 

and SGS, the error probability is definitively equal to 0 for a sufficiently large sample size. Similar 

results hold also for the richness surface. However, because the richness surfaces is not dichotomic, 

bias and precision cannot be directly determined by the error probability (see Appendix B).     

 Regarding the estimation of map precision, Fattorini et al. (2021) propose to follow the pseudo-

population bootstrap (PPB) approach, based on constructing a pseudo-population likely to resemble 

the true population from which bootstrap samples are selected using the same sampling scheme 

adopted in the survey. Therefore, the key problem under PPB is to reconstruct pseudo-populations 

able to mimic the characteristics of the unknown population, in such a way that the bootstrap 

distribution of any statistic can resemble the true distribution with indexes of precisions 

approaching the true ones (e.g., Quatemberg, 2015). Accordingly, in order to estimate the precision 

of the surfaces (4), (7) and (8), we pursue the idea of using the estimated maps as pseudo-

populations from which bootstrap samples are selected using the same spatial scheme adopted to 

select the original sample. Because the estimated maps converge to the true maps, bootstrap 

distributions of nearest neighbour interpolator achieved by resampling from these maps should 

converge to the true distributions, also providing consistent estimators for their indexes of precision 

such as mean squared errors, root mean squared errors, relative root mean squared errors.  



To this purpose, let 𝑦̂(𝐴) = {𝑦̂(𝑝), 𝑝 ∈ 𝐴} be the estimated presence or association map based on 

the sample observations 𝑦(𝑃1), … , 𝑦(𝑃𝑛). Because in these cases mean square errors coincide with 

error probabilities, it seems suitable to use mean squared errors as indexes of precision to be 

estimated at any 𝑝 ∈ 𝐴 by the bootstrap mean squared error  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝) =

1

𝐵
∑ [𝑦̂𝑏

∗(𝑝) − 𝑦̂(𝑝)]2
𝐵

𝑏=1
                                                 (9) 

where 𝐵 is the number of bootstrap samples, 𝑃1,𝑏
∗ , … , 𝑃𝑛,𝑏

∗  are the locations selected in the 𝑏-th 

bootstrap resampling using the scheme adopted to select the original sample,  𝑦̂(𝑃1,𝑏
∗ ), … , 𝑦̂(𝑃𝑛,𝑏

∗ )  

are the sample observations at these locations derived from the estimated map 𝑦̂(𝐴), and 𝑦̂𝑏
∗(𝑝) is 

the bootstrapped value of the nearest neighbour interpolator at 𝑝 ∈ 𝐴  based on 𝑦̂(𝑃1,𝑏
∗ ), … , 𝑦̂(𝑃𝑛,𝑏

∗ ), 

i.e. 

𝑦̂𝑏
∗(𝑝) = 𝑦̂(𝑃𝑁𝑁(𝑝),𝑏

∗ ),    𝑝 ∈ 𝐴 , 𝑏 = 1, … , 𝐵                                           (10) 

where  𝑃𝑁𝑁(𝑝),𝑏
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖=1,…𝑛‖𝑃𝑖,𝑏

∗ − 𝑝‖ .  

The same bootstrap procedure can be performed, mutatis mutandis, for the estimates of association 

surfaces 𝑦̂𝑙ℎ(𝐴) = {𝑦̂𝑙ℎ(𝑝), 𝑝 ∈ 𝐴} and richness surfaces 𝑦̂𝐿(𝐴) = {𝑦̂𝐿(𝑝), 𝑝 ∈ 𝐴}. However, 

because richness surfaces take integer values from 0 to 𝐾, if 𝑦𝐿(𝑝) > 0 for each 𝑝 ∈ 𝐴, it seems 

more meaningful to consider relative root mean squared errors as indexes of precision to be 

estimated by  

𝑟𝑟𝑚𝑠𝑒̂ 𝐵
∗ (𝑝) =

{
1
𝐵

∑ [𝑦̂𝐿,𝑏
∗ (𝑝) − 𝑦̂𝐿(𝑝)]

2𝐵
𝑏=1 }

1/2

𝑦̂𝐿(𝑝)
                                        11) 

Unfortunately, because presence, association and richness surfaces are piecewise constant, the 

requirements necessary for proving the conservative nature of these bootstrap estimators do not 

hold (see Fattorini et al., 2021, Proposition 3). Indeed, as argued in the Appendix C, the bootstrap 

estimators of mean squared errors and relative root mean squared errors may be quite unstable 

especially near the borders where discontinuities occur or in the inner parts of presence/absence 

regions, where the true mean squared errors vanish.  

 

4. Simulation study 

To investigate the performance of the estimators (4), (7) and (8) and of their bootstrap estimators of 

precision (9) and (11), a simulation study was performed on some species of a real population. In 

particular, the study region 𝐴 considered in the simulation was a rectangle of 50 ha located in the 

lowland tropical moist forest of Barro Colorado Island (BCI), central Panama, where a complete 

field enumeration of trees was carried out in 2010 to give location and species for each free-



standing woody stem with at least 1 cm diameter at breast height. The field work mapped a 

population of 𝑁 = 221,758 trees partitioned into 𝐾 = 302 species (data available at 

https://repository.si.edu/handle/10088/20925).  

Three different tree species with different degrees of presence were chosen for performing the 

simulation study. Cerillo tree (Lacmellea panamensis), caimito de mono (Chrysophyllum 

argenteum) and muskwood (Guarea guidonia) were chosen as species with low, medium and high 

degree of presence with 102, 775 and 1993 trees, respectively. For each species, the presence 

surface at 𝑝 was the presence/absence of trees within a circular plot of radius 13 m centered at 𝑝 

(see Figures 3-5).   

Sampling was performed selecting 𝑛 = 50,100,150,200 locations by means of uniform random 

sampling (URS), tessellation stratified sampling (TSS) and systematic grid sampling (SGS). For 

implementing the last two schemes, the study area was partitioned in to 10x5, 10x10, 15x10 and 

20x10 grids of equal sized rectangles and a location was randomly selected in each rectangle. 

For each combination of species, sampling scheme and sample size, sampling was replicated 𝑅 =

10,000 times. At each simulation run, interpolator (4) was computed onto a regular grid 𝐺 of 

200x100 locations on 𝐴 and 𝐵 = 1,000 bootstrap samples were independently selected using the 

same scheme adopted to select the original sample, in order to compute the bootstrap mean squared 

error estimator (9). 

 

 

Figure 3. Presence surface (green) of cerillo tree resulting from 102 trees settled in BCI at the 

spatial grain of 13 m radius circular plots. 

 

 



 

Figure 4. Presence surface (green) of caimito de mono resulting from 775 trees settled in BCI at the 

spatial grain of 13 m radius circular plots. 

 

 

Figure 5. Presence surface (green) of muskwood resulting from 1993 trees settled in BCI at the 

spatial grain of 13 m radius circular plots. 

 

Denote by 𝑦̂𝑟(𝑝) the interpolator (4) and by 𝑚𝑠𝑒̂ 𝐵,𝑟
∗ (𝑝) the bootstrap mean squared error estimator 

(9) achieved at the 𝑟-th simulation run for each 𝑝 ∈ 𝐺. Then, the expectation (E) 

𝑒(𝑝) =
1

𝑅
∑ 𝑦̂𝑟(𝑝)

𝑅

𝑟=1

                                                                 (12) 

the bias (BIAS)  

𝑏(𝑝) = 𝑒(𝑝) − 𝑦(𝑝)                                                               (13) 



and the mean squared error (MSE) 

𝑚𝑠𝑒(𝑝) =
1

𝑅
∑[𝑦̂𝑟(𝑝) − 𝑦(𝑝)]2

𝑅

𝑟=1

                                                   (14) 

were empirically determined from the Monte Carlo distributions of the estimates, together with the 

expectation of the bootstrap mean squared error estimator (9)  

𝑒𝑏𝑚𝑠𝑒(𝑝) =
1

𝑅
∑ 𝑚𝑠𝑒̂ 𝐵,𝑟

∗ (𝑝)

𝑅

𝑟=1

 

from which the ratio to the true MSE was achieved (BORAT)  

𝑏𝑜𝑟𝑎𝑡(𝑝) =
𝑒𝑏𝑚𝑠𝑒(𝑝)

𝑚𝑠𝑒(𝑝)
                                                            (15) 

for those 𝑝 ∈ 𝐺 for which 𝑚𝑠𝑒(𝑝) > 0. 

For any combination of species, sampling scheme and sample size, Tables 1-3 report the minima, 

averages and maxima of BIAS, MSE and BORAT, while Figures 6-8 show the corresponding 

spatial patterns of these quantities, together with the spatial pattern of the expectations (first 

column) under TSS. Spatial patterns achieved under URS and SGS are quite similar and are not 

reported for brevity.  

 

Table 1. Values of minima, averages and maxima for BIAS, MSE and BORAT achieved from the 

simulation performed on the presence surface of cerillo tree. 

 

Scheme 𝑛 BIAS MSE BORAT 

  min mean max min mean max min mean max 

URS 50 -0.95 0.00 0.26 0.01 0.17 0.95 0.04 0.97 4.05 

 100 -0.91 0.00 0.37 0.00 0.16 0.91 0.05 1.29 18.33 

 150 -0.89 0.00 0.44 0.00 0.15 0.89 0.07 1.81 44.50 

 200 -0.88 0.00 0.49 0.00 0.15 0.88 0.09 2.35 77.00 

           

TSS 50 -0.95 0.00 0.28 0.00 0.17 0.95 0.02 1.95 303.00 

 100 -0.93 0.00 0.41 0.00 0.16 0.93 0.04 3.38 440.00 

 150 -0.90 0.00 0.53 0.00 0.15 0.90 0.05 5.98 416.00 

 200 -0.88 0.00 0.60 0.00 0.14 0.88 0.05 7.38 374.00 

           

SGS 50 -0.97 0.00 0.32 0.00 0.17 0.97 0.02 1.26 257.00 

 100 -0.94 0.00 0.48 0.00 0.16 0.94 0.02 1.55 115.86 

 150 -0.90 0.00 0.60 0.00 0.15 0.90 0.02 2.66 563.00 

 200 -0.87 0.00 0.61 0.00 0.14 0.87 0.04 1.59 63.52 

 

 



Table 2. Values of minima, averages and maxima for BIAS, MSE and BORAT achieved from the 

simulation performed on the presence surface of caimito de mono.  

 

Scheme 𝑛 BIAS MSE BORAT 

  Min mean max      min mean max min mean max 

URS 50 -0.79 0.00 0.82  0.17 0.45 0.82 0.20 0.57 1.22 

 100 -0.83 0.00 0.87 0.07 0.43 0.87 0.17 0.62 2.04 

 150 -0.83 0.00 0.91 0.03 0.41 0.91 0.15 0.67 3.57 

 200 -0.82 0.00 0.92 0.02 0.39 0.92 0.13 0.71 4.76 

           

TSS 50 -0.80 0.00 0.87 0.11 0.45 0.87 0.11 0.51 1.50 

 100 -0.86 0.00 0.92 0.04 0.42 0.92 0.13 0.60 2.97 

 150 -0.85 0.00 0.92 0.01 0.40 0.92 0.08 0.65 9.01 

 200 -0.88 0.00 0.98 0.00 0.38 0.98 0.06 0.88 387.00 

           

SGS 50 -0.86 0.01 0.90 0.05 0.44 0.90 0.13 0.50 3.59 

 100 -0.88 0.00 0.92 0.00 0.42 0.92 0.09 0.59 44.31 

 150 -0.85 0.00 0.96 0.00 0.39 0.96 0.06 0.72 185.80 

 200 -0.85 0.00 0.95 0.00 0.37 0.95 0.07 0.81 65.67 

 

 

 

Table 3. Values of minima, averages and maxima for BIAS, MSE and BORAT achieved from the 

simulation performed on the presence surface of muskwood. 

 

Scheme 𝑛 BIAS MSE BORAT 

  Min mean max min mean max min mean max 

URS 50 -0.59 0.00 0.97 0.01 0.33 0.97 0.03 0.73 2.76 

 100 -0.67 0.00 0.99 0.00 0.32 0.99 0.02 0.82 6.26 

 150 -0.71 0.00 0.99 0.00 0.30 0.99 0.02 0.90 18.67 

 200 -0.73 0.00 0.99 0.00 0.29 0.99 0.01 0.97 39.00 

           

TSS 50 -0.71 0.00 1.00 0.00 0.33 1.00 0.02 0.70 8.08 

 100 -0.76 0.00 1.00 0.00 0.31 1.00 0.01 0.86 22.67 

 150 -0.79 0.00 0.99 0.00 0.29 0.99 0.00 1.17 345.00 

 200 -0.77 0.00 0.99 0.00 0.28 0.99 0.00 1.42 443.00 

           

SGS 50 -0.72 0.00 1.00 0.00 0.33 1.00 0.01 0.74 52.75 

 100 -0.79 0.00 0.99 0.00 0.30 0.99 0.00 0.85 37.27 

 150 -0.84 0.00 0.99 0.00 0.29 0.99 0.00 1.08 172.50 

 200 -0.79 0.00 0.99 0.00 0.28 0.99 0.00 1.03 38.41 

 

 



 

Figure 6. Maps of expectations (E), bias values (BIAS), mean squared errors (MSE) and bootstrap ratios (BORAT) achieved from the simulation 

performed on the presence surface of cerillo tree under TSS and 𝑛 = 50,100,150,200 sample locations. Black patches denote locations where MSEs 

are equal to 0.  



 

Figure 7. Maps of expectations (E), bias values (BIAS), mean squared errors (MSE) and bootstrap ratios (BORAT) achieved from the simulation 

performed on the presence surface of caimito de mono under TSS and 𝑛 = 50,100,150,200 sample locations. Black patches denote locations where 

MSEs are equal to 0. 



 

Figure 8. Maps of expectations (E), bias values (BIAS), mean squared errors (MSE) and bootstrap ratios (BORAT) achieved from the simulation 

performed on the presence surface of muskwood under TSS and 𝑛 = 50,100,150,200 sample locations. Black patches denote locations where MSEs 

are equal to 0. 



For the estimation of species association and species richness maps, the association surface of 

caimito de mono with muskwood was considered as the product of the presence surfaces of the two 

species and the richness surface was achieved as the sum of the presence surfaces of the 𝐾 = 302 

tree species settled on the study area (Figures 9-10).   

 

 

Figure 9. Association surface (green) of caimito de mono with muskwood resulting from 775 and 

1993 trees, respectively, settled in BCI at the spatial grain of 13 m radius circular plots. 

 

 

Figure 10. Richness surface achieved from the 𝐾 = 302 tree species settled in BCI at the spatial 

grain of 13 m radius circular plots. 

 



Regarding the estimation of the association surface of caimito de mono with muskwood, at each 

simulation run it was estimated for each 𝑝 ∈ 𝐺 by means of equation (7) while the bootstrap mean 

squared error was computed by means of (9). Then, from the resulting Monte Carlo distributions, E, 

BIAS, MSE and BORAT were computed as in (12)-(15). For any combination of sampling scheme 

and sample size, Table 4 report the minima, averages and maxima of BIAS, MSE and BORAT, 

while Figures 11 shows the corresponding spatial patterns of these quantities, together with the 

spatial pattern of the expectations (first column) under TSS. Spatial patterns achieved under URS 

and SGS are quite similar and are not reported for brevity. 

 

Table 4. Values of minima, averages and maxima for BIAS, MSE and BORAT achieved from the 

simulation performed on the association surface of caimito the mono with muskwood. 

 

Scheme 𝑛 BIAS MSE BORAT 

  min mean max Min mean max min mean max 

URS 50 -0.87 0.00 0.76 0.12 0.43 0.87 0.19 0.59 1.40 

 100 -0.89 0.00 0.86 0.05 0.41 0.89 0.14 0.65 2.15 

 150 -0.91 0.00 0.89 0.02 0.39 0.91 0.13 0.70 3.60 

 200 -0.91 0.00 0.91 0.01 0.38 0.91 0.12 0.75 4.46 

           

TSS 50 -0.92 0.00 0.83 0.08 0.43 0.92 0.10 0.53 1.66 

 100 -0.90 0.00 0.88 0.03 0.40 0.90 0.09 0.63 3.38 

 150 -0.92 0.00 0.92 0.02 0.38 0.92 0.08 0.74 93.20 

 200 -0.93 0.00 0.98 0.00 0.36 0.98 0.07 1.03 383.00 

           

SGS 50 -0.92 0.00 0.86 0.02 0.42 0.92 0.11 0.52 5.35 

 100 -0.91 0.00 0.90 0.00 0.40 0.91 0.07 0.67 42.62 

 150 -0.95 0.00 0.96 0.00 0.38 0.96 0.08 0.86 315.33 

 200 -0.94 0.00 0.95 0.00 0.36 0.95 0.04 0.89 67.21 

 

 

Regarding the estimation of the richness surface of Figure 10, at each simulation run it was 

estimated for each 𝑝 ∈ 𝐺 by means of equation (8). Moreover, because the richness surface was 

invariably positive, the bootstrap relative root mean squared errors were computed for each 𝑝 ∈

𝐺 by means of equation (11). Then, the expectation 𝑒𝐿(𝑝) was computed as in (12) and the relative 

bias (RBIAS) 

𝑟𝑏𝐿(𝑝) =
𝑒𝐿(𝑝) − 𝑦𝐿(𝑝)

𝑦𝐿(𝑝)
   

was adopted as an index of bias, while the relative root mean squared error (RRMSE)  



𝑟𝑟𝑚𝑠𝑒𝐿(𝑝) =        
{

1
𝑅

∑ [𝑦̂𝐿,𝑟(𝑝) − 𝑦𝐿(𝑝)]
2𝑅

𝑟=1 }
1/2

𝑦𝐿(𝑝)
  

 

was adopted as index of precision, together with the expectation of the bootstrap relative root mean 

squared error estimator (11)  

𝑒𝑏𝑟𝑟𝑚𝑠𝑒𝐿(𝑝) =
1

𝑅
∑ 𝑟𝑟𝑚𝑠𝑒̂ 𝐵,𝑟

∗ (𝑝)

𝑅

𝑟=1

 

from which the ratio to the true RRMSE was achieved (BORAT)  

𝑏𝑜𝑟𝑎𝑡𝐿(𝑝) =
𝑒𝑏𝑟𝑟𝑚𝑠𝑒𝐿(𝑝)

𝑟𝑟𝑚𝑠𝑒𝐿(𝑝)
     

For any combination of sampling scheme and sample size, Table 5 report the minima, averages and 

maxima of RBIAS, RRMSE and BORAT, while Figures 12 shows the corresponding spatial 

patterns of these quantities, together with the spatial pattern of the expectations (first column) under 

TSS. Spatial patterns achieved under URS and SGS are quite similar and are not reported for 

brevity. 

 

Table 5. Values of minima, averages and maxima for RBIAS, RRMSE and BORAT achieved from 

the simulation performed on the richness surface.  

Scheme 𝑛 RBIAS RRMSE BORAT 

  min mean max min mean max min mean max 

URS 50 -0.41 0.03 1.04 0.10 0.20 1.12 0.13 0.76 1.13 

 100 -0.38 0.02 1.07 0.09 0.19 1.14 0.13 0.79 1.22 

 150 -0.35 0.02 1.09 0.08 0.18 1.16 0.13 0.82 1.29 

 200 -0.32 0.02 1.07 0.07 0.18 1.15 0.12 0.83 1.31 

           

TSS 50 -0.41 0.03 1.12 0.10 0.20 1.21 0.08 0.70 1.22 

 100 -0.35 0.02 1.15 0.07 0.19 1.21 0.10 0.77 1.31 

 150 -0.31 0.02 1.13 0.07 0.18 1.19 0.08 0.78 1.35 

 200 -0.31 0.02 1.10 0.06 0.17 1.17 0.08 0.80 1.55 

           

SGS 50 -0.41 0.03 1.10 0.08 0.20 1.16 0.06 0.67 1.37 

 100 -0.33 0.03 1.15 0.07 0.19 1.20 0.10 0.73 1.81 

 150 -0.31 0.02 1.15 0.06 0.17 1.21 0.08 0.76 1.86 

 200 -0.30 0.02 1.11 0.05 0.16 1.18 0.09 0.79 1.84 

 



 

Figure 11. Maps of expectations (E), bias values (BIAS), mean squared errors (MSE) and bootstrap ratios (BORAT) achieved from the simulation 

performed on the association surface of caimito de mono with muskwood under TSS and 𝑛 = 50,100,150,200 sample locations. 

 



 

Figure 12. Maps of expectations (E), relative bias values (RBIAS), relative root mean squared errors (RRMSE) and bootstrap ratios (BORAT) 

achieved from the simulation performed on the richness surface under TSS and 𝑛 = 50,100,150,200 sample locations. 

 



Simulation results confirm the theoretical findings. Under TSS, the expected maps (first column of 

Figures 6-8, 11 and 12) approach the true maps (Figures 3-5, 9 and 10, respectively) as the number 

of sample locations increases, thus confirming the asymptotic unbiasedness and consistency of the 

NN interpolator. Similar results are achieved under URS and SGS. For the dichotomous surfaces, 

i.e., presence and association surfaces, asymptotic unbiasedness and consistency are also confirmed 

by the average values of MSEs (see Appendix A), that invariably decrease with the number of 

sample locations, even if in some cases the maxima of MSEs and the minima (negative) and 

maxima (positive) of bias values may show some increases as the number of sample locations 

increases. That is due to the greater number of locations near the discontinuity borders that 

obviously occur when sample locations become denser (see Tables 1-4). As to richness surfaces, 

consistency is confirmed by the convergence of the average maps (first column of Figure 12) to the 

true map (Figure 10) as well as by the averages of RRMSEs that decrease as the number of sample 

locations increases. Also in this case, some increases in the maxima of RRMSEs and in the minima 

and maxima of bias values occur for the same reasons argued before (see Table 5). Finally, 

regarding the bootstrap estimators of MSEs, the last column of Figures 3-5, 9 and 10, show their 

tendency to unbiasedness with white regions (those for which BORAT values are equal to 1) that 

become larger and larger. However, the high instability of these estimators, theoretically argued in 

Appendix C, is confirmed by the minima and maxima of BORATs, with minima near to 0 and 

maxima that reach some hundreds in several cases (see Tables 1-4). A better performance is 

achieved by the bootstrap RRMSEs, for which maxima are smaller than in the case of MSEs (see 

Table 5). As theoretically argued in Appendix C, that is due to the squared root that is present in 

(C.9) that mitigates the largest ratios, as well as to the smaller extents of inner zones (those far by 

discontinuity points) where estimation occurs with no error and BORAT denominators approach 0.                  

 

5. Case study 

The NN interpolator was adopted to estimate the presence surfaces of holly oak (Quercus ilex) and 

white violet (Viola alba Besser) throughout the Montagnola Senese, a hilly area (up to 650 m) 

protected as a Site of Community Importance in Central Italy. Holly oak is the dominant tree 

species in the semi-natural forest that covers approximately 75% of the area, while white violet is a 

grass species of nature conservation importance. 

The sample data used to perform estimation were collected from the last week of April to the first 

week of July 2007. The sampling design was that adopted in the 2000-2006 National Italian Forest 

Inventory, in which, in accordance with the TSS scheme, the Italian territory was covered by a grid 

of 1 km2 square cells and a point was randomly selected within each cell (Fattorini et al., 2006). On 



the basis of this scheme, the study area was covered by 𝑛 = 106 cells, and the points randomly 

selected within those cells during the inventory were adopted as sample points. Then, a quadrat plot 

with 10 m sides was centered at each sample location, and the presence of each species within plots 

was recorded (Chiarucci et al., 2008).  

The NN interpolator was adopted to estimate the presence surfaces of both species, together with 

their association surface. The R function polygrid from the package GeoR (Ribeiro Jr and Diggle, 

2001) was run to build a grid of 10,691 points within the study region where estimation is 

performed. Figures 13-15 report the estimated presence surfaces of the two species and their 

association surface together with the maps of their bootstrap mean squared errors achieved from the 

PPB procedure of section 3, performed at the 10,691 grid points.  

Figure 13 shows the massive presence of holly oak throughout the study area, while Figure 14 

shows the less wide presence of white violet. Regarding the association of the two species, Figure 

15 shows high degree of association, explained by the fact that white violet is quite common in 

open forest stands as those present in the area, in which holly oak is common. Regarding the 

precision of maps, maps of bootstrap mean squared errors show that the greatest uncertainty occurs 

where changes from presence to absence occur.  

 

 

Figure 13. Estimate of presence surface of holly oak in the Montagnola Senese (left) and bootstrap 

mean squared errors (right). 

 



 

Figure 14. Estimate of presence surface of white violet in the Montagnola Senese (left) and 

bootstrap mean squared errors (right). 

 

 

Figure 15. Estimate of association surface of holly oak and white violet in the Montagnola Senese 

(left) and bootstrap mean squared errors (right). 

 

6. Final remarks 

As pointed out by Fattorini et al. (2018, p.686) in their first attempt to perform mapping from a 

design-based perspective, the idea of making maps in this perspective is challenging because when 

estimating the value at a single location, either the location is sampled and there is no need for 

estimation, or the location is unsampled so that we have no information about it to perform 



estimation. Thus, the use of an assisting model to estimate unsampled values on the basis of some 

assumptions seems to be the sole way to fill the information vacancy. Obviously, as in any model-

assisted, design-based framework, the assisting model is only adopted to determine the analytical 

form of the estimator, while its properties continue to be determined by the sampling scheme 

adopted to select locations (Di Biase et al. 2018).  

In our scenario, it is quite obvious that the assisting model behind the NN interpolator is the simple, 

well-known Tobler’s law of geography, that is, locations that are close in space tend to be more 

similar than locations that are far apart (Tobler, 1970). As any other model, the Tobler law may be 

useful but it is wrong (Box, 1979). Indeed, there may be several situations in which locations close 

in space may not be similar. For example, that may occur in some forest stands, under the presence 

of pairs of plants with different sizes at close proximity, in accordance with the so-called small-

scale size diversity (e.g., Marcelli et al., 2019 and references therein). However, the great appeal of 

the design-based NN inference on species distribution is that even when the assisting Tobler’s law 

is not suitable, consistency is ensured by the mathematical properties of presence, association and 

richness surfaces joined with the use of sampling schemes that provide asymptotic spatial balance, 

such as URS, TSS and SGS. Therefore, NN interpolation becomes perfect in any situation as the 

sampling intensity increases.  

Another appealing characteristic of the design-based NN inference on species distribution is that in 

this case consistency does not necessitates the two basic assumptions that are behind the myriad of 

previous results achieved on this topic. As Chao and Colwell (2017, p.9) point out (see also Colwell 

et al., 2012), the presence/absence data adopted to make inference on species distribution, i.e. a 

matrix of 0’s (absences) and 1’s (presences) with as many columns as the sample locations and as 

many rows as the detected species, necessitate independence between rows and columns and 

identical distribution for data in the same row. Unfortunately, while the assumption of 

independence between columns and the equality in distribution within the same row may be ensured 

by the simple use of URS, i.e., the completely random and independent selection of sample 

locations (the requirement is only unsuitable because entails the use of URS while many other 

schemes could be more efficient), the independence between rows means independence between 

species detection in the same plot, an assumption that never holds in practice. Indeed, sampling 

species by plots constitutes a without-replacement selection that excludes independence among the 

sampled plants owing to the spatial association or exclusion of species that invariably occurs in any 

community. If this assumption was well delineated in its practical sense, it would alarm any 

ecologist and would sound like an oxymoron for any botanist familiar with the concept of inter-

specific association. On the other hand, the assumption is introduced by means of equations such as 



(1a) and (1b) in the paper by Chao and Colwell (2017), that are likely to sound obscure to any 

ecologist not well-trained in sampling. All these drawbacks are overcome by the use of design-

based NN interpolation that does not necessitate the unrealistic independence among species 

detection at the same time allowing for the use of sampling schemes more efficient than URS.             

 

Appendix A. Bias and precision quantification for dichotomous maps 

Consider presence or association surfaces. Owing to their dichotomous nature, the expectation of 

the NN interpolator is given by 

E{𝑦̂(𝑝)} = 0 × Pr{𝑦̂(𝑝) = 0} + 1 × Pr{𝑦̂(𝑝) = 1} = Pr{𝑦̂(𝑝) = 1} 

 Therefore, if 𝑦(𝑝) = 0 the bias is given by  

B{𝑦̂(𝑝)} = E{𝑦̂(𝑝)} − 𝑦(𝑝) = E{𝑦̂(𝑝)} = Pr{𝑦̂(𝑝) = 1} = Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)} 

while if 𝑦(𝑝) = 1 the bias is given by  

B{𝑦̂(𝑝)} = E{𝑦̂(𝑝)} − 𝑦(𝑝) = E{𝑦̂(𝑝)} − 1 = Pr{𝑦̂(𝑝) = 1} − 1 

= 1 − Pr{𝑦̂(𝑝) = 0} − 1 = −Pr{𝑦̂(𝑝) = 0} = −Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)} 

in such a way that  |B{𝑦̂(𝑝)}| = Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)}. 

Moreover, owing to the dichotomous nature of presence and association surfaces, the absolute 

errors |𝑦̂(𝑝) − 𝑦(𝑝)| and the squared errors {𝑦̂(𝑝) − 𝑦(𝑝)}2 are also dichotomous, i.e. equal to 1 if 

an error occurs and equal to 0 otherwise. Therefore  

E{|𝑦̂(𝑝) − 𝑦(𝑝)|} = E{[𝑦̂(𝑝) − 𝑦(𝑝)]2} =  Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)}                        (A. 1)  

 

Appendix B. Consistency results for presence, association and richness maps   

For any 𝛿 > 0 and for any location 𝑝 ∈ 𝐴, denote by 𝐵(𝑝, 𝛿) = {𝑞: 𝑞 ∈ 𝐴, ‖𝑝 − 𝑞‖ < 𝛿 } the 𝛿-ball 

of 𝑝 within 𝐴. Moreover, denote by 𝑉(𝑝, 𝛿) = ⋂ {𝑃𝑖 ∉ 𝐵(𝑝, 𝛿)}𝑛
𝑖=1  the event that a void, i.e. no 

sample location, occurs within the 𝛿-ball of 𝑝.  

Now consider presence or association surfaces. Owing to their dichotomous nature, the study area 𝐴 

is split into two sets, the set 𝐷 = {𝑝: 𝑝 ∈ 𝐴, 𝑦(𝑝) = 1} where the surface is equal to 1 and its 

complement 𝐷𝑐 = {𝑝: 𝑝 ∈ 𝐴, 𝑦(𝑝) = 0} where the surface is equal to 0. Then, if 𝑝 is a continuity 

point of y, i.e. 𝑝 ∈ 𝐴\𝜕𝐷, let 𝛿𝑝 be the greatest value for which 𝐵(𝑝, 𝛿𝑝) ∩  𝜕𝐷 = ∅. Obviously, if 

the event 𝑉𝑐(𝑝, 𝛿𝑝) occurs, the event {𝑦̂(𝑝) = 𝑦(𝑝)} occurs, i.e. if at least one sample location falls 

within the 𝛿𝑝-ball of 𝑝 then the NN value is equal to 𝑦(𝑝). Therefore 

Pr{𝑦̂(𝑝) = 𝑦(𝑝)} ≥ Pr{𝑉𝑐(𝑝, 𝛿𝑝)} = 1 − Pr{𝑉(𝑝, 𝛿𝑝)}                             (𝐵. 1) 

Now, denote by 𝑎 the size of 𝐴 and by 𝑎(𝑝) ≤ 𝑎 the size of the 𝛿𝑝-ball of 𝑝. Under URS, the 

probability that the 𝑖-th sample location falls outside the 𝛿𝑝-ball of 𝑝 is given by     



Pr{𝑃𝑖 ∉ 𝐵(𝑝, 𝛿𝑝)} = 1 −
𝑎(𝑝)

𝑎
  , 𝑖 = 1, … , 𝑛                                    

in such a way that, owing to independence of sample locations under URS, the probability that no 

sample location falls within the 𝛿𝑝-ball of 𝑝 is given by             

Pr{𝑉(𝑝, 𝛿𝑝)} = {1 −
𝑎(𝑝)

𝑎
}

𝑛

                                                    (𝐵. 2) 

Then, substituting (B.2) into (B.1), under URS it holds that  

Pr{𝑦̂(𝑝) = 𝑦(𝑝)} ≥ 1 − {1 −
𝑎(𝑝)

𝑎
}

𝑛

                                            (𝐵. 3) 

 

or equivalently that   

Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)} ≤ {1 −
𝑎(𝑝)

𝑎
}

𝑛

                                                (𝐵. 4) 

in such a way that lim𝑛→∞ Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)} = 0, i.e., the probability of missing the true value by 

NN interpolation approaches 0 as 𝑛 increases. Therefore, because as proven in Appendix A, the 

error probability coincides with the absolute bias, the mean absolute error and the mean squared 

error, that proves the asymptotic unbiasedness and consistency of the NN interpolator of presence 

and association surface under URS at least at a 𝑐𝑛 rate, with 𝑐 ∈ (0,1).  

Similarly, if we consider richness surfaces, owing to their piecewise constant nature, the study area 

𝐴 is partitioned into 𝐾 sets, 𝐷0, … , 𝐷𝐾, where 𝐷𝑘 = {𝑝: 𝑝 ∈ 𝐴, 𝑦𝐿(𝑝) = 𝑘} denotes the set where 

richness is equal to 𝑘 (𝑘 = 0,1, … , 𝐾). Let 𝐶 =∪𝑘 𝜕𝐷𝑘 . If 𝑝 is a continuity point of 𝑦𝐿, i.e. 𝑝 ∈ 𝐴\𝐶, 

the greatest distance 𝛿𝑝 such that 𝐵(𝑝, 𝛿𝑝) ∩  𝐶 = ∅ defines the event 𝑉𝑐(𝑝, 𝛿𝑝) in such a way that 

if the event 𝑉𝑐(𝑝, 𝛿𝑝) occurs the event {𝑦̂𝐿(𝑝) = 𝑦𝐿(𝑝)} occurs. Therefore, an inequality similar to 

(A.4) can be derived under URS also for the mean absolute errors of richness surfaces. In this case, 

if 𝑦𝐿(𝑝) = 𝑘 and if 𝑝 ∈ 𝐴𝑘\𝐶, it follows that 

E{|𝑦̂𝐿(𝑝) − 𝑦𝐿(𝑝)|} = ∑ |ℎ − 𝑘|Pr{𝑦̂𝐿(𝑝) = ℎ}

𝐾

ℎ≠𝑘=1

 

≤ Pr{𝑦̂𝐿(𝑝) ≠ 𝑦𝐿(𝑝)} ∑ |ℎ − 𝑘|

𝐾

ℎ≠𝑘=1

≤ 𝑐𝑜𝑛𝑠𝑡𝑘  × {1 −
𝑎(𝑝)

𝑎
}

𝑛

 

in such a way that lim𝑛→∞E{|𝑦̂𝐿(𝑝) − 𝑦𝐿(𝑝)|} = 0. The same conclusion holds for the mean 

squared error, with quadrats instead of absolute values. That prove the consistency under URS of 

the NN interpolator of richness surface at least a 𝑐𝑛 rate, with 𝑐 ∈ (0,1).  

Regarding consistency under TSS and SGS, for a sample size 𝑛, denote by 𝐴1,𝑛, … , 𝐴𝑛,𝑛 the 𝑛 

patches of equal size |𝐴|/𝑛 partitioning 𝐴, and denote by 𝑖(𝑝) the label identifying the patch 



containing 𝑝. Suppose that as 𝑛 increases the 𝐴𝑖,𝑛s decrease in size in such a way that 

lim𝑛→∞ sup𝑖=1,…,𝑛 diam(𝐴𝑖,𝑛) = 0. Therefore, there exists a sample size 𝑛0 such that, for each 𝑛 >

𝑛0 it holds that 𝐴𝑖(𝑝),𝑛 ⊂ 𝐵(𝑝, 𝛿𝑝), in such a way that  

Pr{𝑦̂(𝑝) = 𝑦(𝑝)} ≥ Pr{𝑉𝑐(𝑝, 𝛿𝑝)} 

≥ Pr{𝑃𝑖(𝑝) ∈ 𝐵(𝑝, 𝛿𝑝)} ≥ Pr{𝑃𝑖(𝑝) ∈ 𝐴𝑖(𝑝),𝑛} = 1 

That obviously prove the consistency of the NN interpolator of presence and association surfaces at 

any continuity point, i.e. almost everywhere, and the same result holds, mutatis mutandis, for the 

richness surfaces.  

 

Appendix C. Features of bootstrap estimators of precision indexes for presence, associations 

and richness maps.  

Consider presence or association surfaces. Owing to their dichotomous nature, for each 𝑝 ∈ 𝐴 the 

bootstrap means squared error (9) can be rewritten as  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝) =

1

𝐵
∑ [𝑦̂𝑏

∗(𝑝) − 𝑦̂(𝑝)]2
𝐵

𝑏=1
=

1

𝐵
∑ 𝐼[𝑦̂𝑏

∗(𝑝) ≠ 𝑦̂(𝑝)]
𝐵

𝑏=1
                          

Accordingly, for 𝐵 sufficiently large, owing to the strong law of large numbers and conditional to 

the original sample 𝑃1, … , 𝑃𝑛, it holds that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~𝐸{𝐼[𝑦̂∗(𝑝) ≠ 𝑦̂(𝑝)]|𝑃1, … , 𝑃𝑛} 

where 𝑦̂∗(𝑝) denotes the estimate of 𝑦(𝑝) occurred in a generic bootstrap resampling. 

Now, in analogy with the notation adopted in Appendix B, denote by 𝐷̂ = {𝑝: 𝑝 ∈ 𝐴, 𝑦̂(𝑝) = 1} the 

set where the estimates are equal to 1 and by 𝐷̂𝑐 = {𝑝: 𝑝 ∈ 𝐴, 𝑦̂(𝑝) = 0} the set where the estimates 

are equal to 0. In practice, 𝐷̂ and 𝐷̂𝑐 are the sample counterparts of 𝐷 and 𝐷𝑐, respectively. 

Obviously, 𝐷̂ can be rewritten as  

𝐷̂ = {𝑝: 𝑝 ∈ 𝐴, 𝑦̂(𝑝) = 1} = {𝑝: 𝑝 ∈ 𝐴, 𝑦(𝑃𝑁𝑁(𝑝)) = 1} = {𝑝: 𝑝 ∈ 𝐴, 𝑃𝑁𝑁(𝑝) ∈ 𝐷} 

in such a way that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~𝐸{𝐼[𝑦̂∗(𝑝) ≠ 𝑦̂(𝑝)]|𝑃1, … , 𝑃𝑛} 

 = 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷)𝐸{𝐼(𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂𝑐)|𝑃1, … , 𝑃𝑛} + 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐)𝐸{𝐼(𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂|𝑃1, … , 𝑃𝑛)}            

= 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷)Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂𝑐|𝑃1, … , 𝑃𝑛} + 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐)Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂|𝑃1, … , 𝑃𝑛}          (𝐶. 1) 

where 𝑃𝑁𝑁(𝑝)
∗  denotes the nearest neighbour of 𝑝 occurred in a generic bootstrap resampling.   

Then, if 𝑝 is a continuity point of y, i.e. 𝑝 ∈ 𝐴\𝜕𝐷 and 𝑝 ∈ 𝐷, i.e. 𝑦(𝑝) = 1, from (C.1) and from 

the identity 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷) = 1 − 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐) it follows that  

𝑚𝑠𝑒̂ 𝐵
∗ ~Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂𝑐|𝑃1, … , 𝑃𝑛} + (𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐)[2Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂|𝑃1, … , 𝑃𝑛} − 1] 



However, as stated in Appendix B, under URS, Pr(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐) quickly approaches 0 at a rate of 

at least 𝑐𝑛 with 𝑐 ∈ (0,1), while under SGS and TSS, it is definitively equal to 0 for a sufficiently 

large 𝑛. Therefore, the random variable 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐) converges almost surely to 0, in such a way 

that 

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂𝑐|𝑃1, … , 𝑃𝑛} 

Then, from (A.1), it holds that 

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
~

Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂𝑐|𝑃1, … , 𝑃𝑛}

Pr{𝑦̂(𝑝) = 0}
=

Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂𝑐|𝑃1, … , 𝑃𝑛}

Pr{𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑐}
                 (𝐶. 2) 

Similarly, but in a reversed way, if 𝑝 ∈ 𝐴\𝜕𝐷 and 𝑝 ∈ 𝐷𝑐, i.e. 𝑦(𝑝) = 0, it follows that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
~

Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂|𝑃1, … , 𝑃𝑛}

Pr{𝑃𝑁𝑁(𝑝) ∈ 𝐷}
                                             (𝐶. 3) 

The two relationships (C.2) and (C.3) can be rewritten in a unified way as 

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
~

Pr{𝑦̂∗(𝑝) ≠ 𝑦̂(𝑝)|𝑃1, … , 𝑃𝑛}

Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)}
                                           (𝐶. 4) 

It should be noticed that the denominator of (C.4) may be 0 for 𝑛 sufficiently large, as in the cases 

of TSS and SGS, and that (C.4) is the ratio of two quantities that approach 0 at rates at least of 

exponential nature and as such it may be very unstable especially for 𝑝 near to 𝜕𝐷. As a 

consequence, the conservative nature of 𝑚𝑠𝑒̂ 𝐵
∗ (𝑝) cannot be proved in this case because the 

expectation 

𝑏𝑜𝑟𝑎𝑡(𝑝) =
E{𝑚𝑠𝑒̂ 𝐵

∗ (𝑝)}

𝑚𝑠𝑒(𝑝)
~

E[Pr{𝑦̂∗(𝑝) ≠ 𝑦̂(𝑝)|𝑃1, … , 𝑃𝑛}]

Pr{𝑦̂(𝑝) ≠ 𝑦(𝑝)}
 

does not admit any upper bound greater than one, as proven in Proposition 3 by Fattorini et al. 

(2021) in the case of surfaces that are differentiable at 𝑝 with non-null derivatives.  

Similarly, in the case of richness surfaces, for 𝐵 sufficiently large, and owing to the strong law of 

large numbers, conditional to the original sample 𝑃1, … , 𝑃𝑛, it holds that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝) =

1

𝐵
∑ [𝑦̂𝐿,𝑏

∗ (𝑝) − 𝑦̂𝐿(𝑝)]
2𝐵

𝑏=1
~E{[𝑦̂𝐿

∗(𝑝) − 𝑦̂𝐿(𝑝)]2|𝑃1, … , 𝑃𝑛} 

where 𝑦̂𝐿
∗(𝑝) denotes the estimate of 𝑦𝐿(𝑝) occurred in a generic bootstrap resampling.  

Then, in analogy with the notation adopted in Appendix B, denote by 𝐷̂𝑘 = {𝑝: 𝑝 ∈ 𝐴, 𝑦̂𝐿(𝑝) = 𝑘} 

the set where the richness estimates are equal to 𝑘, with 𝑘 = 0,1, … , 𝐾. In practice, the 𝐷̂𝑘s are the 

sample counterparts of the 𝐷𝑘. Obviously, each 𝐷̂𝑘 can be rewritten as  

𝐷̂𝑘 = {𝑝: 𝑝 ∈ 𝐴, 𝑦̂𝐿(𝑝) = 𝑘} = {𝑝: 𝑝 ∈ 𝐴, 𝑦𝐿(𝑃𝑁𝑁(𝑝)) = 𝑘} = {𝑝: 𝑝 ∈ 𝐴, 𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘} 

in such a way that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~E{[𝑦̂𝐿

∗(𝑝) − 𝑦̂𝐿(𝑝)]2|𝑃1, … , 𝑃𝑛} 



= ∑ 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) ∑ (ℎ − 𝑘)2Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘=0

𝐾

𝑘=0

                     (𝐶. 5) 

Then, if 𝑝 is a continuity point of 𝑦𝐿, i.e. 𝑝 ∈ 𝐴\𝐶, and 𝑝 ∈ 𝐷𝑘0
, i.e. 𝑦𝐿(𝑝) = 𝑘0, from (C.5) and 

from the identity that 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0
) = 1 − 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) it follows that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~ ∑ (ℎ − 𝑘0)2Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘0=0

 

−𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) ∑ (ℎ − 𝑘0)2Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛} +

𝐾

ℎ≠𝑘0=0

 

∑ 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) ∑ (ℎ − 𝑘)2Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛}     

𝐾

ℎ≠𝑘=0

𝐾

𝑘≠𝑘0=0

                (𝐶. 6) 

Once again, as stated in Appendix B, under URS, Pr(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) quickly approaches 0 at a rate 

of at least 𝑐𝑛 with 𝑐 ∈ (0,1), while under SGS and TSS, it is definitively equal to 0 for a 

sufficiently large 𝑛. Therefore, the random variable 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) converges almost surely to 0, 

and, a fortiori, each 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) for 𝑘 ≠ 𝑘0 converges almost surely to 0 Then, from (C.6) it 

holds that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)~ ∑ (ℎ − 𝑘0)2Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘0=0

 

in such a way that  

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
=

∑ (ℎ − 𝑘0)2Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ 𝐷̂ℎ|𝑃1, … , 𝑃𝑛} 𝐾

ℎ≠𝑘0=0

∑ (ℎ − 𝑘0)2Pr{𝑃𝑁𝑁(𝑝) ∈ 𝐷ℎ}                       𝐾
ℎ≠𝑘0=0

                        (𝐶. 7) 

Also in this case, in accordance with Appendix B, (C.7) is the ratio of two quantities that approach 

0 at rates at least of exponential nature and as such it may be very unstable especially for 𝑝 near to 

𝜕𝐶. The same considerations also hold for the ratio  

𝑟𝑟𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑟𝑟𝑚𝑠𝑒(𝑝)
=

𝑦𝐿(𝑝)

𝑦̂𝐿(𝑝)
√

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
                                                   (𝐶. 8) 

because the first ratio in the right side of (C.8) approaches 1 owing to the consistency of  𝑦̂𝐿(𝑝), in 

such a way that (C.8) is asymptotically equivalent to the squared root of (C.7). Therefore, owing to 

the volatility of (C.8), as in the case of dichotomous surfaces, the expectation    

 

𝑏𝑜𝑟𝑎𝑡(𝑝) =
E{𝑟𝑟𝑚𝑠𝑒̂ 𝐵

∗ (𝑝)}

𝑟𝑟𝑚𝑠𝑒(𝑝)
~𝐸 {√

𝑚𝑠𝑒̂ 𝐵
∗ (𝑝)

𝑚𝑠𝑒(𝑝)
}                                     (𝐶. 9) 



does not admit any upper bound greater than one. Anyway, BORAT values achieved with RRMSEs 

are likely to be more stable than those achieved with MSEs. Indeed, the squared root that is present 

in (C.9) mitigates the largest MSE ratios. Moreover, richness surfaces are likely to be more 

fragmented than dichotomous presence and association surfaces, with more discontinuity borders 

and smaller extents of inner zones (those far by discontinuity points) where estimation is precise, 

true MSEs approach 0 and MSEs ratios approach infinity.   
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