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Abstract

We propose a mixture model approach to decompose environmental productivity into a man-

agerial and a technological dimension, and to identify locally optimal technologies. For a large

sample of plants covered by the EU Emission Trading System, we find that the average output

gains, emissions being equal, that plants could reach by adopting the locally optimal technology

and the best managerial practices available in the sector are 162% and 53% respectively, with

significant cross-plant and cross-sector differentials. This data-driven decomposition delivers im-

portant policy insights, as it helps predicting larger reductions in emission intensity from flexible

policies than from one-size-fits-all technology-based standards.

Keywords: Environmental productivity, Emission intensity, Environmental technology, Environ-

mental management.

JEL classification: D24, L60, Q54, Q55

Acknowledgments. We thank Mariaelena Sciarra for excellent research assistance in data gathering. All

errors are ours.



1 Introduction

It is largely documented that in many OECD countries emission intensity of manufacturing

sectors has been falling over the last decades (e.g., Najjar and Cherniwchan (2020)). Looking at

the plant-level, recent empirical evidence shows that the decline of emission intensity is driven

primarily by a within-product increase in environmental productivity (i.e. output per unit of

emission) rather than changes in the composition of products produced (Shapiro and Walker,

2018). Yet, environmental productivity dispersion remains substantial even within narrowly

defined industries. In particular, it is still poorly understood whether cross-plant differentials

are to be explained mainly in terms of differences in the technology used by different groups of

firms or as idiosyncratic differences in managerial practices across firms using the same tech-

nology. Quantifying these dimensions has broad implications for environmental policy, because

it would help evaluating the potential gains of technology-oriented policies in comparison with

policies aimed at diffusing improved environmental management.1

The main reason of this lacuna is practical. Measuring the technological dimension of en-

vironmental productivity requires estimating as many production functions as the different

production technologies available in a sector, in order to obtain technology-specific emissions

coefficients. Under standard techniques, this is possible only after conducting some form of

clustering, e.g. based on an engineering approach with experts examining and classifying the

technology in use firm-by-firm. Such approaches are clearly unusable on a large scale. On

the other hand, obtaining residual TFP-like measures of environmental productivity under

the assumption that a single technology (i.e. production function) exists in a sector implies

confounding the firm-specific (managerial) and the group-specific (technological) dimensions

of environmental productivity. This is one of the reasons why research that studies the en-

vironmental performance of management employs measures of managerial quality obtained

from outside production data, typically from surveys (e.g., Bloom et al. (2010), Martin et al.

(2012)).

In this paper we use an innovative methodology to decompose plant-level environmental

productivity into a technological and a managerial dimension. We use data on plant-level pol-

lution emissions and output obtained from the European Union’s Operator Holding Accounts

1Technology-oriented policies cover a large array of measures, including both direct and indirect instruments,
such as technology standards and adoption subsidies (Fisher and Newell, 2008; Acemoglu et al., 2012). Policies
aimed at diffusing improved environmental management are typically more nuanced. One example of policies of
this type is the support for adopting environmental management systems, such as those certified with the ISO
14001 (a standard released by the International Organization for Standardization that sets out the requirements
for more efficient use of resources and reduction of waste).
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(EU OHA hereafter), which provide detailed information on verified CO2 emissions and al-

located emission permits for all European plants regulated under the EU Emission Trading

System (EU ETS). We restrict our study to the EU ETS Phase 3, which means the period

2013-2019. This allows us to recover physical output levels for each plant from the inverse per-

mit allocation rule, thereby affording additional granularity relative to the existing literature.2

Then, our analysis proceeds in two main stages.

We first employ an empirical mixture model to identify different “environmental-production

functions” (E-PFs) within narrowly defined industries. The estimation determines the number

of E-PFs available in a sector, with each E-PF reflecting an environmental production technol-

ogy defined in terms of physical output generated per unit of emissions. The model leaves the

estimation free to determine both the number of E-PFs available in each sector and the prob-

ability of each firm using each E-PF. Hence, the estimation provides us, for each sector, with

the number of available environmental technologies and, for each plant, with the probability

of adopting each technology, including the one reflected into the frontier E-PF (i.e. associated

with the minimum emission intensity).3 Brought to our data, this exercise delivers a number

of technologies ranging from one (in mineral wool manufacturing) to six (in the production of

aluminium), with most sectors having more than two technologies. We then use the difference

between the observed output of each plant and the estimated output associated with each

E-PF to compute a plant-level measure of “environmental-total factor productivity” (E-TFP),

weighted by the plant’s probability of adopting each available technology. The E-TFP can be

interpreted as the idiosyncratic (i.e. managerial) component of the environmental performance

of a plant, given the production technology.4 We find that the probability weighted share of

firms adopting the frontier technology is about 25% and that the dispersion of the E-TFP

varies substantially depending on the technology in use (with the E-TFP variance being in

most sectors lower for the firms using the frontier technology).

Next, we quantify the potential gains in environmental productivity from eliminating tech-

nological and managerial heterogeneity. We compute two counterfactual scenarios. One in

which the plant adopts the frontier E-PF available in its sector and one in which the plant

continues to be attached to the probability of adopting each technology as estimated in the first

2Firm level data of regulated units under the EU ETS have been used by recent literature, particularly for
examining the effects of cap-and-trade programs on the development and adoption of environmental technolo-
gies, as measured by low-carbon patenting and R&D spending (e.g., Calel and Dechezlepretre (2016), Calel
(2020)).

3This empirical mixture method is similar in spirit to the one developed by Battisti et al. (2020) in a more
classical TFP context.

4Previous productivity research has shown that the Solow residual in production function estimation is
largely accounted for by idiosyncratic managerial quality (e.g., Bhattacharya et al. (2013)).
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stage but shows the E-TFP of the top 5% performers in each technology group. For each plant,

we compare the output that would have been obtained under these two scenarios with the out-

put actually observed. We find that adopting the frontier technology would increase average

output at the plant-level by 162%, while using the best managerial practices would entail an

output gain of about 53%, emissions being equal. On average, the total gain from technology

upgrades when both sources of productivity dispersion are eliminated is about 216%. Behind

these averages, we also document that the growth margins of environmental productivity differ

substantially both across sectors and across plants within sectors.

Taken together, our results urge to reconsider one-size-fits-all direct regulations as the

preferred way for improving environmental productivity. Based on this conclusion, ambitious

public policy plans to address climate change, such as the Green New Deal in the US and

the European Green Deal, arguably would be required to complement prescriptive regulations

(e.g., technology standards) with sets of indirect policies allowing for flexible firm reactions.

This would leave each firm free to choose undertaking technology or managerial improvements

depending on the nature of its own environmental productivity gap—an insight in line with

the “narrow” version of the so-called Porter Hypothesis (Jaffe and Palmer, 1997; Lanoie et al.,

2011).

The paper proceeds as follows. In Section 2 we present the data. In Section 3 we explain in

detail the steps of our methodology. In Section 4 we provide a quantification of the technological

and the managerial components of environmental productivity dispersion. Section 5 concludes

by explaining the policy relevance of our analysis.

2 Data

We use plant-level data provided by the EU OHA, which is carried out by the European

Commission and covers all the installations regulated under the EU ETS. The database provides

accurate information on tons of verified CO2-equivalent emissions and the number of allocated

emission permits for each plant and year covered by the EU ETS, along with information on

the plant’s location and product sector.

For the years 2013-2019 we are able to retrieve the plant-level output from the inverse

allowance allocation rule employed in the EU ETS Phase 3. Allocation of allowances is admin-

istrated by the following rule:

Ai,t,s = ẽs λs,t ϑt Qi,s, (1)
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where Ai,t,s is the allowances to plant i in year t and sector s, ẽs is the sectoral benchmark emis-

sion intensity, λs,t is a carbon leakage exposure factor (CLEF), ϑt is a cross-sectoral correction

factor (CSCF) and Qi,s is the baseline activity level calculated as the median of the activity

level in 2005-2008. Since Ai,t,s, ẽs, λs,t and ϑt are known, Qi,s can be retrieved by manipulating

Equation (1).5 Plant-level annual tons of verified CO2-equivalent emissions (Ei,t,s) are directly

obtained from the EU OHA. Hence, a plant’s emission intensity can be calculated as:

ei,t,s =
Ei,t,s
Qi,s

. (2)

Environmental productivity is nothing else than the reciprocal of ei,t,s.

The distribution of ei,t,s within sectors is illustrated in Figure 1.6 As the figure shows, there

are significant emission intensity differentials across European plants both across and within

sectors. The sense of scale of these differentials can be grasped by considering that, in most

of the sectors, the emission intensity of the plant at the 75-th percentile of the distribution is

about as twice as the emission intensity of the plant at the 25-th percentile.

[insert Figure 1 about here]

While this evidence suggests that dispersion of environmental productivity is significant

even in narrowly defined industries, it reveals little as to whether this heterogeneity is driven

by plant-specific (managerial) or group-specific (technological) sources. This is explored next.

3 Environmental production functions estimation

The environmental-production function of plant i is:

ln(Qi) = αi,τ + ατ + βτ ln(Ei), (3)

5The CLEF is constant 1 or decreasing at a predetermined rate depending on the carbon leakage status of the
sector, while the CSCF is a time-varying factor (constant across sectors) ensuring that total allocation remains
below the maximum amount pursuant to article 10a(5) of the EU ETS Directive (European Commission,
2015). Product-specific benchmark emission intensities are listed in European Commission (2011) according
to a classification that is more granular than the EU OHA sectors classification. We cross-walked the two
classifications using product-sector description matching. Unmatched sectors are left out of the analysis. We
remain with 13269 installation-year observations. Details on CLEF, CSCF and benchmark emission intensities
are provided in the online Appendix.

6The countries covered are: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands,
Norway, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden, United Kingdom.
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where τ denotes the technology adopted by plant i among the T technologies available in sector

s. The parameters ατ and βτ are the constant and shape coefficients of the τ -technology’s E-PF.

Hence, in this framework technology τ in sector s is defined by the set {ατ , βτ}. The residual

productivity term is αi,τ , which reflects the idiosyncratic deviation of firm i’s output with

respect to the fitted output of the firms adopting the same technology τ . We refer to αi,τ as the

environmental-total factor productivity (E-TFP), which, net of the technological dimension,

can be thought of as representing the firm-specific managerial component of environmental

productivity. In Equation (3), the subscripts s and t are suppressed for ease of reading, as our

estimation is carried out on pooled within-sector sub-samples (hence, hereafter the unit i refers

to an installation-year observation in sector s).

We obtain ατ and βτ by estimating Equation (3) with a finite mixture model (McLachlan

et al., 2019) sector-by-sector. Under such type of modeling, the within-sector distribution of

ln(Qi) is the average of T distributions, each with own mean µτ and variance σ2
τ , weighted by

the ex-ante probabilities πτ of belonging to group τ , i.e.:

f
(
ln(Qi)|µ, σ2

)
=

T∑
τ=1

πτfτ
(
ln(Qi)|µτ , σ2

τ

)
, (4)

where

πτ =

∑N
i=1 pi,τ∑T

τ=1

∑N
i=1 pi,τ

, (5)

with N being the number of plants and pi,τ the posterior probabilities. It is imposed that∑T
τ=1 πτ = 1.

Posterior probabilities pi,τ are obtained by using an expectation-maximization (EM) al-

gorithm to the sector-by-sector weighted least squares estimation of Equation (3). In the

expectation (E) step, posterior probabilities pi,τ are computed as

pi,τ =
πτfτ{ln(Qi)|µτ ;σ2

τ}∑T
τ=1 πτfτ{ln(Qi)|µτ ;σ2

τ}
, (6)

starting from random values of πτ . In the maximization (M) step, the likelihood for Equation

(3) is maximized using observation weights:

γi,τ =
√
pi,τ . (7)
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The two steps are iterated until the likelihood converges. We denote with p̃i,τ the posterior

probabilities obtained after the last EM iteration, once the likelihood is converged.

We leave the model free to choose, in each sector, the number of technologies that best

fits the data. We do so by running the mixture model estimation of Equation (3) repeatedly,

imposing in each round a different number of technology clusters T ∈ [1, 10] and selecting the

number of clusters that minimizes the Bayesian information criterion (BIC).7 We denote with

T̃ such optimal number.

Table 1 reports the estimated ατ and βτ coefficients for the T̃ technologies identified in each

sector. As shown in the table, our mixture model estimation delivers a number of technologies

ranging from one (in mineral wool manufacturing) to six (in the production of aluminium),

with most sectors having more than two technologies. Interestingly enough, while the emission

coefficient βτ is generally lower than one, a number of technologies have βτ greater than one.

All the technology-specific E-PFs are plotted in Figure 2.

[insert Table 1 about here]

[insert Figure 2 about here]

Once the parameters describing each technology are obtained, we are able to identify

the locally optimal technology τ ∗, referred to as the technology such that ln(Q̂i,τ∗)|Ei >

ln(Q̂i,τ )|Ei ∀τ 6= τ ∗. Note that τ ∗ is “locally” optimal because conditional on Ei, i.e. two

or more E-PFs may intersect at some point of the distribution of Ei. Indeed, as shown in

Figure 2, in all sectors where T̃ > 1, we observe that there is not a unique optimal technology

for any level of Ei. This means that the relative performance of environmental technologies

is emission-contingent, with the technologies which perform relatively well at low levels of

emissions tending to perform worse in highly polluting plants.

For each plant-year observation we have the probability p̃i,τ of adopting each technology

τ as well as the probability p̃i,τ∗ of adopting the locally optimal technology τ ∗. Hence, we

can calculate the probability-weighted size of each technology cluster, including the one that

is locally optimal. We observe that the cross-technology distribution of plants vary consider-

ably both within and across sectors. In particular, the within-sector share of plants adopting

7A number of T higher than 10 could be considered, but we observed empirically that in our data the model
does not converge for T > 7 in any sector. Detailed results of this BIC-based selection procedure are relegated
in the online Appendix.
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technology τ ∗ ranges from 6.87% in the aluminium industry to 54.80% in the production of

pulp from timber, it being 24.98% on average.8 This result unveils that the accessibility of the

frontier technology may differ remarkably across industries, with most plants in most sectors

using sub-optimal technologies.

Finally, we obtain the E-TFP term αi,τ as the difference between the plant’s observed

output and the fitted output under each E-PF (weighted by the probability of adopting each

E-PF), i.e. as

ln(Qi)−
T̃∑
τ=1

p̃i,τ ln(Q̂i,τ ), (8)

with ln(Q̂i,τ ) = ατ + βτ ln(Ei).

To understand how the dispersion of the E-TFP varies conditional on the technology in use

at the plant level, we compute two additional versions of αi,τ , conditional respectively on the

locally optimal and sub-optimal technologies, i.e.

αi,τ∗ = ln(Qi)− p̃i,τ∗ ln(Q̂i,τ∗) and αi,τ 6=τ∗ = ln(Qi)−
T̃∑
τ=1

p̃i,τ ln(Q̂i,τ ) ∀τ 6= τ ∗, (9)

and compare their estimated variances. Sectoral figures are in Table 2. We find that V̂ar(αi,τ∗) >

V̂ar(αi,τ 6=τ∗) only in the production of pig iron, steel and other pulp, while the opposite holds

in all the other sectors, thereby revealing that the use of the frontier technology may help to

reduce cross-plant differentials in managerial environmental performance. This may be con-

sistent with very recent research showing that environmental management quality correlates

positively with green investments at the firm level (De Haas et al., 2021).

[insert Table 2 about here]

4 Gains from eliminating environmental productivity dispersion

In this section, we conduct a counterfactual exercise to give a sense of magnitude of the eco-

nomic significance of the technological and the managerial dimensions of environmental pro-

ductivity.

First, we measure an E-PF gain index, obtained as the difference between the output

associated with the best available technology in the sector and the weighted fitted output

8A complete table of technology-sector distributions is provided in the online Appendix.
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associated with the technology actually in use by the individual plant. Formally:

E-PF gain = ln(Q̂i,τ∗)−
T̃∑
τ=1

p̃i,τ ln(Q̂i,τ ), (10)

In simple words, E-PF gain measures the increase in output that would be associated with a

switch to the technological frontier, the plant’s E-TFP being zero.

Second, we compute an index of the output gain that a plant could obtain by adopting the

best managerial practices available in the sector, the technology in use being the same. We

refer to this index as E-TFP gain and obtain it as the difference between the E-TFP of the

top 5% performers in the sector and the E-TFP of the individual plant. More formally:

E-TFP gain = α∗ − αi,τ (11)

where αi,τ is defined as in (8) and α∗ is the average αi,τ of the best 5% of plants in the

within-sector distribution of αi,τ .
9

As a difference between logarithmic terms, both E-PF gain and E-TFP gain can be directly

interpreted as output gains in percentage points. By construction, the sum of E-PF gain plus

E-TFP gain is the total environmental productivity distance from the “frontier installation”,

referred to as the installation in the top 5% performers in terms of E-TFP that adopts the

locally optimal technology. Denote the sum E-PF gain + E-TFP gain with Total gain.

Table 3 reports the sectoral averages of E-PF gain, E-TFP gain and Total gain.10

[insert Table 3 about here]

Two main results emerge. On the one side, both the technology and the managerial di-

mensions are associated with economically significant productivity dispersion. In particular,

switching to the frontier technology would increase average output at the plant-level by 162%,

while using the best managerial practices would entail an output gain of about 53%, emissions

being equal. When both sources of productivity dispersion are eliminated, the total gain in

environmental productivity is about 216%.

On the other side, we also find significant heterogeneity in the relative size of these gains

across sectors. In the production of aluminium, paper and cardboard, the technology dimension

9We use the average of the top 5% performers instead of the E-TFP of the best individual plant not to have
the E-TFP gain index driven by an outlier.

10Within-sector distributions are presented in the online Appendix.
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of environmental productivity dispersion is quantitatively the most significant, accounting by

more than two-thirds of the total dispersion. Productions of pulp from timber and other pulp

are associated with much larger idiosyncratic differences. Clearly, in the mineral wool industry,

where only one E-PF was found in our mixture model estimation, productivity gains would

come only from eliminating E-TFP dispersion.

5 Conclusions

In this paper we propose an innovative methodology to decompose environmental productivity

into a technological (group-specific) and a managerial (plant-specific) component. This method

has two main attractive properties: (i) it is entirely data-driven (i.e. it does not need assump-

tions on the number of technologies available in the sector and on the degree of technological

sharing across plants), and (ii) it only requires information on emissions and output levels,

which is typically available for large-scale samples of firms (in our exercise, we used freely

accessible data from the EU OHA database).

Our analysis yields the general result that cross-plants differentials in environmental man-

agement are non-negligible, the technological component of environmental productivity disper-

sion being however the most important dimension in most sectors. We find that more than

75% of plants uses sub-optimal technologies, whilst adopting the locally optimal technology

would lead on average to a 162% increase in output, emissions being equal. Interestingly, the

cross-plant variance of the managerial dimension of environmental productivity is lower for the

production units at the technological frontier.

Related literature on environmental technology adoption has explored a number of possible

causes leading firms not to adopt improved environmental technologies. In particular, some of

these technologies may not be profit enhancing and adopting them may be inconvenient for

profit-maximizing firms, absent public policy. Others may be profitable (e.g. because they are

energy-saving) but their adoption may be prevented by transaction costs, monitoring costs, ad-

ministrative costs and adjustment costs (De Canio and Watkins, 1998), which may be critical

especially for credit-constrained firms (De Haas et al., 2021). Our paper adds to this literature

in two distinct ways. First, it provides an easy to implement algorithm to quantify the poten-

tial gains in output, emissions being equal, that can be reached by boosting emission-saving

technology diffusion. With our method, this quantification can be done at the most granular

level, i.e. the plant level. Second, the paper shows that there is a great variability across

plants (even within countries and sectors) in both technological and managerial environmental

9



quality, with many plants adopting optimal (or close to optimal) technologies together with

environmentally harmful managerial practices. This lends support to flexible policy measures

that combine technology standards with market-based regulations inducing each firm to curb

its emissions by means of what arguably is the most effective strategy given the nature of

its own environmental efficiency bug. Related to this, we also find that what is an optimal

technology, in terms of environmental productivity, depends on the plant’s level of emissions.

Hence, one-size-fits-all technology standards may be inappropriate for some plants and less

effective, on average, than emission-contingent technology prescriptions.

Future research may take advantage from the methodology presented here to conduct policy

impact evaluation over a broad range of regulatory issues as well as to explore the relationship

between firm (or even plant) characteristics and both technology and managerial practices, e.g.

along the line initiated by Bloom et al. (2010) and Martin et al. (2012).
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Table 1: E-PF parameters from the sector-by-sector mixture model estimation.

Sector E-PF1 E-PF2 E-PF3 E-PF4 E-PF5 E-PF6

Aluminium β1 = 1.050 β2 = 0.104 β3 = 0.969 β4 = 0.054 β5 = 0.210 β6 = 0.841
α1 = −0.936 α2 = 8.836 α3 = 0.000 α4 = 11.367 α5 = 9.557 α6 = 1.528

Ammonia β1 = 0.677 β2 = 0.014 β3 = 0.384 β4 = 1.074
α1 = 3.449 α2 = 12.601 α3 = 7.952 α4 = −1.673

Carbon black β1 = 0.694 β2 = 0.296 β3 = 0.119 β4 = 0.216 β5 = 0.467
α1 = 3.449 α2 = 7.618 α3 = 9.771 α4 = 9.341 α5 = 6.386

Cement clinker β1 = 1.114 β2 = 0.577 β3 = 0.015 β4 = 0.200 β5 = 0.857
α1 = −1.190 α2 = 6.053 α3 = 13.227 α4 = 10.969 α5 = 0.000

Coke and coke ovens β1 = 0.488 β2 = 1.010 β3 = 0.496 β4 = 1.030
α1 = 7.206 α2 = 0.000 α3 = 0.000 α4 = 0.000

Glass β1 = 1.060 β2 = 0.714 β3 = 0.387 β4 = 0.915
α1 = 0.177 α2 = 0.000 α3 = 6.994 α4 = 0.000

Gypsum or plasterboard β1 = 0.938 β2 = 0.851
α1 = 4.020 α2 = 0.000

Lime and dolomite β1 = 1.154 β2 = 0.276 β3 = 0.833
α1 = −1.846 α2 = 8.096 α3 = 0.000

Mineral wool β1 = 1.039
α1 = 0.348

Nitric acid β1 = 1.359 β2 = 0.491 β3 = 0.695
α1 = −3.081 α2 = 0.000 α3 = 4.924

Other pulp β1 = 1.069 β2 = 0.643 β3 = 0.282
α1 = 1.954 α2 = 6.072 α3 = 10.689

Paper or cardboard β1 = 0.875 β2 = 0.041 β3 = 0.309
α1 = 2.290 α2 = 12.789 α3 = 9.034

Pig iron or steel β1 = 0.683 β2 = 0.751 β3 = 1.059
α1 = 4.747 α2 = 4.086 α3 = 0.602

Pulp from timber β1 = 0.822 β2 = 0.013
α1 = 4.980 α2 = 13.163

Note. All the reported parameters are statistically significant at the 1% level. Both α and β are considered
equal to zero if not statistically different from zero at the 1% level.
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Table 2: E-TFP dispersion conditional on technology.

Sector V̂ar(αi,τ∗) V̂ar(αi,τ 6=τ∗)
Aluminium 0.001 0.008
Ammonia 0.001 0.010
Carbon black 0.001 0.053
Cement clinker 0.002 0.024
Coke and coke ovens 0.002 0.006
Glass 0.013 0.018
Gypsum or plasterboard 0.001 0.023
Lime and dolomite 0.016 0.018
Mineral wool 0.119 –
Nitric acid 0.002 0.074
Other pulp 0.785 0.462
Paper or cardboard 0.006 0.107
Pig iron or steel 0.158 0.128
Pulp from timber 0.208 0.496

Note. In mineral wool manufacturing, only one technology is identified.
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Table 3: Potential gains from eliminating emission intensity dispersion.

Sector E-PF gain E-TFP gain Total gain
Aluminium 1.267 0.181 1.448

(1.028) (0.094) (1.037)
Ammonia 0.206 0.224 0.430

(0.292) (0.104) (0.305)
Carbon black 0.571 0.405 0.977

(0.454) (0.244) (0.535)
Cement clinker 0.584 0.315 0.900

(0.963) (0.170) (0.989)
Coke and coke ovens 0.285 0.178 0.464

(0.478) (0.094) (0.487)
Glass 0.209 0.314 0.523

(0.261) (0.157) (0.330)
Gypsum or plasterboard 0.209 0.314 0.446

(0.111) (0.159) (0.245)
Lime and dolomite 0.377 0.386 0.764

(0.666) (0.193) (0.720)
Mineral wool 0.000 0.619 0.619

(0.000) (0.345) (0.345)
Nitric acid 0.830 0.535 1.365

(0.746) (0.279) (0.845)
Other pulp 0.246 1.197 1.444

(0.350) (0.481) (0.651)
Paper or cardboard 5.648 0.550 6.199

(4.179) (0.329) (4.076)
Pig iron or steel 0.222 0.648 0.871

(0.304) (0.305) (0.464)
Pulp from timber 0.450 2.199 2.649

(0.787) (0.812) (1.076)
All sectors pooled 1.626 0.535 2.162

(3.086) (0.812) (3.089)

Note. E-PF gain quantifies the increase in Q that would be obtained by moving to the counterfactual scenario
where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels of Q. E-TFP
gain quantifies the increase in Q that would be obtained by moving to the counterfactual scenario where all
firms have E-TFP∗, the technology in use being equal, expressed as a ratio with respect to the observed (i.e.
actual) levels of Q. Total gain is the sum of E-PF gain plus E-TFP gain. E-PF gain, E-TFP gain and
Total gain are calculated at the installation-level and then reported in the table as sector-averages. Standard
deviation in parenthesis.
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Figure 1: Distribution of emission intensity within sectors.

Note. Emission intensity is measured at the plant-level as verified tons of CO2-equivalent emissions per unit
of output. The default unit of measurement of output is tons of product produced expressed as saleable net
production and to 100% purity of the substance concerned (details are in European Commission (2011)).
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Figure 2: Estimated environmental-production functions.

Note. E-PFs obtained from the mixture model estimation. The number of E-PFs in each sector is determined
as the result of optimal clustering selection based on BIC minimization. Details of the BIC-bases procedure for
selecting the optimal number of clusters is relegated to the online Appendix.
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A.1. Robustness checks

A.1.1. Unobservables longitudinal variations in output levels

We obtained the output level of plant i from the inverse allocation rule, i.e. as:

Qi,s =
Ai,t,s

ẽs λs,t ϑt
(12)

In (12), Qi,s is the baseline output level of plant i in sector s calculated as the median of

the activity level in 2005-2008. As such, Qi,s is time invariant. At the same time, however,

total emissions of installation i may vary over time. Hence, in our model, any variation in

total emissions causes variations in emission intensity. Nevertheless, there may be instances

in which variations in emissions reflect variations in output (e.g. when a product demand

shock occurs): yet, contemporaneous output is unobservable in our data and these cases are

erroneously treated as changes in environmental productivity (i.e. changes in the probability

p̃i,τ of adopting a given technology or changes in E-TFP or both).

Here, we run a simple exercise to verify to which extent this problem may affect our results.

First, we inspect graphically the frequency and the magnitude of 1-year changes in p̃i,τ . Figure

6 displays the histograms of the 1-year changes in the plant’s probability of adopting each

technology, by pooling all sectors together. It is easy to see that such changes are zero (or very

close to it) for most observations. This means that the probability of each plant to adopt each

technology remains substantially unchanged over the considered period. Second, we re-compute

E-PF gain, E-TFP gain and Total gain by using p̄i,τ as a probability weight, instead of p̃i,τ ,

with p̄i,τ being the average of p̃i,τ over the period 2013-2019 for plant i. In this way, we eliminate

longitudinal variations in technology adoption at the plant-level. The results are collected in

Table 8. Reassuringly, we observe only minimal differences from our benchmark analysis and

our general findings remain qualitatively unchanged. From this exercise, we conclude that both

the technology clustering and the E-TFP measure obtained by means of our mixture model

strategy are substantially driven by cross-sectional heterogeneity, rather than by longitudinal

variations in plant-level emission intensities. Even if our empirical strategy may confound

variations in production levels with variations in environmental productivity, any noise resulting

from this appears to have negligible consequences on our statistical decomposition.
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A.2. Additional tables and figures

Table 4: CSCF and CLEF.

Year ϑt (CSCF) λs,t (CLEF) λs,t (CLEF)
sectors at risk sectors not at risk

of carbon leakage of carbon leakage
2013 0.94272151 1 0.8000
2014 0.92634731 1 0.7286
2015 0.90978052 1 0.6571
2016 0.89304105 1 0.5857
2017 0.87612124 1 0.5143
2018 0.81288476 1 0.4429
2019 0.79651677 1 0.3714

Note. The carbon leakage exposure factor - CLEF (λs,t) is constant 1 or decreasing at a predetermined rate
depending on the carbon leakage status of the sector. The cross-sectoral correction factor - CSCF (ϑt) ensures
that total allocation remains below the maximum amount pursuant to article 10a(5) of the EU ETS Directive
(European Commission, 2015).
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Table 5: List of sectors, benchmark emission intensities and carbon leakage risk.

s-sector Product-specific ẽs Exposure to
(EU-OHA classification) benchmark emission intensity carbon leakage risk
Aluminium Aluminium: 1.514 1.514 Yes

(1-to-1 match)

Ammonia Ammonia: 1.619 1.619 Yes
(1-to-1 match)

Carbon black Carbon black: 1.954 1.954 No
(1-to-1 match)

Cement clinker White cement clinker: 0.766 0.876 Yes
Grey cement clinker: 0.987 (average)

Coke and coke ovens Coke and coke ovens: 0.286 0.286 Yes
(1-to-1 match)

Glass Float glass: 0.453 0.380 Yes
Colourless glass: 0.382 (average)
Coloured glass: 0.306

Gypsum or plasterboard Plaster: 0.048 0.032 Yes
Gypsum: 0.017 (average) (No in 2013-14)

Lime and dolomite Lime: 0.954 1.013 Yes
Dolomite: 1.072 (average)

Mineral wool Mineral wool: 0.682 0.682 No
(1-to-1 match)

Nitric acid Nitric acid: 0.302 0.302 Yes
(1-to-1 match)

Other pulp Sulphite pulp: 0.020 0.067 Yes
Short fibre kraft pulp: 0.120 (average)
Long fibre kraft pulp: 0.060

Paper or cardboard Coated fine paper: 0.318 0.286 Yes
Uncoated fine paper: 0.318 (average)
Coated carton board: 0.273
Uncoated carton board: 0.237

Pig iron or steel Pig iron or steel: 0.325 0.325 Yes
(1-to-1 match)

Pulp from timber Pulp from timber: 0.039 0.039 Yes
(1-to-1 match)

Note. Product-specific benchmark emission intensities are listed in European Commission (2011) according
to a classification that is more granular than the EU-OHA sectors classification. We cross-walked the two
classifications using product-sector description matching: (i) 1-to-1 match is obtained when product and sector
descriptions perfectly coincide, (ii) where different products covered by a larger EU-OHA sector have different
product-specific benchmark emission intensities, the sectoral benchmark emission intensity ẽs is obtained as the
average of the product-specific benchmark emission intensities. Unmatched sectors are left out of the analysis.
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Table 7: Technology-sector distributions (%).

Sector τ = τ1 τ = τ2 τ = τ3 τ = τ4 τ = τ5 τ = τ6 τ = τ∗

Aluminium 29.32 1.76 54.67 1.13 3.32 9.77 6.87
Ammonia 68.65 4.95 11.66 14.72 11.01
Carbon black 69.22 2.14 5.88 3.36 19.37 7.77
Cement clinker 32.26 10.19 0.84 4.91 51.78 10.21
Coke and coke ovens 12.29 48.56 19.55 19.58 15.74
Glass 30.82 23.87 2.88 42.41 24.55
Gypsum or plasterboard 67.58 32.41 32.41
Lime and dolomite 39.19 7.98 52.81 36.93
Mineral wool 100.00 100.00
Nitric acid 14.42 21.39 64.17 19.48
Other pulp 38.58 18.32 43.09 41.90
Paper or cardboard 68.78 7.95 23.25 8.68
Pig iron or steel 8.64 17.95 73.39 20.21
Pulp from timber 94.28 5.71 54.80
All sectors pooled 24.98
All sectors pooled (w/out mineral wool) 23.33

Note. Entries are within-sector shares (%) of plant-year observations across technology clusters, weighted by
the probability p̃i,τ of belonging to each cluster. The locally optimal technology cluster is τ∗.
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Table 8: Potential output gains under time invariant clustering.

Sector E-PF gain E-TFP gain Total gain
Aluminium 1.278 0.173 1.452

(1.028) (0.247) (1.046)
Ammonia 0.222 0.224 0.446

(0.278) (0.160) (0.314)
Carbon black 0.572 0.403 0.975

(0.429) (0.308) (0.550)
Cement clinker 0.627 0.295 0.922

(0.985) (0.334) (0.995)
Coke and coke ovens 0.460 0.178 0.639

(0.469) (0.127) (0.493)
Glass 0.224 0.308 0.533

(0.263) (0.279) (0.383)
Gypsum or plasterboard 0.220 0.225 0.446

(0.091) (0.208) (0.270)
Lime and dolomite 0.407 0.378 0.785

(0.658) (0.294) (0.741)
Mineral wool 0.000 0.613 0.613

(0.000) (0.381) (0.381)
Nitric acid 0.854 0.526 1.380

(0.729) (0.364) (0.891)
Other pulp 0.658 1.268 1.926

(0.633) (0.983) (1.214)
Paper or cardboard 5.671 0.547 6.218

(4.020) (0.533) (3.914)
Pig iron or steel 0.232 0.661 0.894

(0.291) (0.645) (0.720)
Pulp from timber 0.463 2.170 2.633

(0.775) (0.939) (1.133)
All sectors pooled 1.680 0.535 2.216

(3.027) (0.632) (3.055)

Note. E-PF gain quantifies the increase in Q that would be obtained by moving to the counterfactual scenario
where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels of Q. E-TFP
gain quantifies the increase in Q that would be obtained by moving to the counterfactual scenario where all
firms have E-TFP∗, the technology in use being equal, expressed as a ratio with respect to the observed (i.e.
actual) levels of Q. Total gain is the sum of E-PF gain plus E-TFP gain. E-PF gain, E-TFP gain and
Total gain are calculated at the installation-level and then reported in the table as sector-averages. Standard
deviation in parenthesis. All the gains reported in the table are computed by using p̄i,τ as a probability weight,
instead of p̃i,τ , with p̄i,τ being the average of p̃i,τ over the period 2013-2019 for installation i.
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Figure 3: 1-year changes in the probability of adopting each E-PF (all sectors pooled).

Note. Histograms of plant-level 1-year changes in the probability p̃i,τ of adopting each E-PF (all sectors pooled).
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Figure 4: Distribution of E-PF gain within sectors.

Note. E-PF gain quantifies the increase in Qi that would be obtained by a plant by switching to E-PFτ∗ ,
expressed as a ratio with respect to the observed (i.e. actual) levels of Qi. Production of mineral wool is
omitted because only one technology cluster was identified in this sector.
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Figure 5: Distribution of E-TFP gain within sectors.

Note. E-TFP gain quantifies the increase in Qi that would be obtained by a plant by having the same E-TFP
as the average of the top 5% performers, the technology in use being equal, expressed as a ratio with respect
to the observed (i.e. actual) levels of Qi.
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