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Abstract

The present work is devoted to the study of aggregation rules for several types of

approximate judgments and their strategy-proofness properties when the relevant

judgment space is lattice-ordered and endowed with a natural metric, and the

agents/experts have single-peaked preferences consistent with it. In particular,

approximate probability estimates as modeled by intervals of probability values,

numerical measurements with explicit error bounds, approximate classi�cations,

and conditional judgments that are amenable to composition by means of a set

of logical connectives are considered. Relying on (bounded) distributivity of

the relevant lattices, we prove the existence of a large class of inclusive and

unanimity-respecting strategy-proof aggregation rules for approximate assessments

or conditional judgments, consisting of sup-projections and sup-inf polynomials as

parameterized by certain families of locally winning coalitions called committees.

Amongst them, the majority aggregation rule is characterized as the only one that

ensures both anonymity (i.e. an equal treatment of agents) and bi-idempotence

(i.e. a de�nite choice between the only two judgments nominated by a maximally

polarized body).

JEL classi�cation: D71; D81

1 Introduction

In spring 2011, the President of United States, Barak Obama, decided to send the SEAL

TEAM SIX to Abbottabad, Pakistan, to hunt Osama bin Laden. His decision arrived
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after 40 reports from Intelligence Agencies and many meetings held in the White House

Situation Room. However, intelligence analysts�and o¢ cials�estimates �xed the chances

that Osama bin Laden was living in Abbottabad from a low of 10 percent to a high

of 95 percent.1 The President stated that he found this discussion confusing and even

misleading, nevertheless he had to interpret and combine these estimated probabilities

and articulate a single point estimate. Moreover, he also was very doubtful on which

kind of action to take: large bombing, surgical bombing, an attack from the ground or

simply doing nothing because of the uncertainty of �nding Osama in Abbottabad and

the hazard of a confrontation if Pakistan sounded an alarm. So, he said: �Look guys, this

is �fty-�fty, this is a �ip of a coin. I can�t base this decision on the notion that we have

any greater certainty than that�. This somewhat provocative attempt at summarizing

the practical import of the information provided by so many advisors conveys very

e¤ectively the presidential discomfort and frustration. And that frustration, arguably,

has at least two sources: not only the evidence that the available information is very

imprecise and unreliable, but also the feeling of impotence engendered by lack of any

clear and consistent amalgamation protocol enabling to make the best of it anyway.

Indeed, in such a highly dramatic situation, president Obama had to take a decision

without the support of any consistent rule to aggregate such an impressively large variety

of imprecise, approximate assessments or conditional judgements of so many discordant

advisors.

The foregoing momentous and exceedingly di¢ cult decision problem is in fact just a

very remarkable and comparatively simple instance of a wide class of similar problems

that arise whenever aggregation of possibly imprecise assessments and judgements

provided by a manifold of quali�ed sources is required.

Motivated by such a broad class of prominent examples (see below for more

1 In fact, according to those who investigated such a national security dilemma, the lead analyst at

CIA put the probability that bin Laden was there in the interval [90%-95%], the deputy director of the

CIA was around 60%, the CIA Red Team, a bunch of independent analysts charged to o¤er a �devil�s

advocate� position, put their position in [30%-40%] range, other analyst assessed probability around

10%, others around 40% and some assessed it as being close to 80%. Further, one week before the �nal

meeting, John Brennan, assistant to the President Obama for Homeland Security, had asked to the

Counterterrorism Center director, Mike Leiter, to assemble another team to assess the probability that

Osama bin laden was right in Abbottabad. So the �nal meeting began with the Leiter�s �ndings, which

were de�ating. Leiter told the President that this new group could arrive at only 40 percent certainty

that bin Laden was there (see e.g. Bowden (2012); Fiedman and Zeckhauser (2015)).
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details), the present article studies and singles out one possible median-based solution

to the problem of aggregating judgments in a very general framework that covers both

exact and approximate assessments and conditional judgments. Indeed, such an issue

arises quite regularly whenever a Decision Making Agency (DMA) has to collect the

information coming from a group of agents who independently vote or simply express

evaluations on a set of complex propositions with some interdependency constraints (as

e.g. transitivity when describing preferences) between them.

A DMA, for instance, needs to amalgamate the judgments of the group members on

an issue, as it is the case for a judge that needs to evaluate if the defendant is guilty after

that a jury of di¤erent jurors has expressed its own judgements or for the European

Central Bank council that might need to form a decision about the monetary policy

to be implemented after a committee of experts has been audited. These processes

of aggregating information matter in practice and therefore �nding suitable protocols,

namely compelling aggregation rules is certainly an exercise that is worth pursuing.

A juror or an expert could express exact judgments (guilty or not-guilty, increase the

money stock of 2% etc.) that can be ordered in a natural way or that can even be

representable by real-valued ordinal scales (but not necessarily by interval or ratio

numerical scales). However, reliable judgements are often available in an approximate

form or as imprecise and multiple measurements and classi�cations. Moreover, agents

may also be required to provide approximate conditional judgements, namely evaluations

that involve two, not necessarily distinct, propositions, one specifying the condition and

whose ful�lment then leads to the second being taken as asserted. In both cases, the

possibility of coherently aggregating di¤erent conditional judgments into a single one

that may be applied to the decision problem at hand is surely a issue worth investigating.

In what follows, we consider the entire class of inclusive aggregation rules, namely

protocols to amalgamate individual assessments�pro�les in which each expert�s proposal

might be pivotal. In particular, we put a special emphasis on median-based rules,

in view of their very interesting combination of unbiased input-responsivity, output-

unbiasedness, and decisiveness properties . In particular, we show that:

(i) if the relevant judgments are endowed with a natural order, and such an order

is a (bounded) lattice, namely it admits both a top and a bottom element and each pair

of judgments has both a least upper bound (or joint) and a greatest lower bound (or

meet), then both exact and approximate judgments can be aggregated by the median
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rule, which in turn can be computed by the simple majority rule, if and only if the

judgment lattice is also distributive2, and

(ii) if the evaluating agents�preferences on judgments are single-peaked, i.e. have

a unique maximum and consistently favor �closeness� to that maximum, then simple

majority is in fact a strategy-proof aggregation rule, namely it makes it impossible for

any agent to achieve a better aggregate outcome by making a proposal which is actually

not the best outcome according to her true preferences.

It should be emphasized that point (i) entails a considerable extension of the scope

for robust and inclusive aggregation of approximate judgments far beyond the standard

averaging-based rules, while (ii) ensures (on a very comprehensive class of single-peaked

preference domains) a safeguard against strategic manipulation which is much more

direct and simpler (and arguably more e¤ective) than reliance on the proper or strictly

proper scoring rules which are usually adjoined to averaging aggregation rules precisely

to discourage strategic transmission of false information.

Some observations are needed here to justify and clarify such statements. Concern-

ing point (i), notice that (bounded) distributive lattices are quite pervasive, or at least

very common: arbitrary (bounded) linearly ordered sets3, sets of admissible answers to

a �nite list of yes/no questions, admissible classi�cations of certain items by means of

an ordered list of binary characters or (bounded) grids as endowed with their respec-

tive �natural�component-wise orders are all positive examples of (bounded) distributive

lattices.

Moreover, concerning point (ii), observe that single-peakedness is a very natural

and comparatively mild restriction on preferences when the underlying outcome space

is endowed with a metric. Now, that is precisely the case with bounded distributive

lattices which typically admit an intrinsic and most �natural�metric based on the length

of the shortest path connecting the meet and the join of any pair of elements.

To be sure, probability distributions ordered by the natural component-wise order

are not even lattices, while discrete probability distributions ordered by dominance

(namely by concentration or, dually, by dispersion), or information partitions ordered

2Namely, its least upper bound and greatest lower bound behave (and mutually interact) very much

like propositional conjunctions �or� and �and�, respectively. See section 2 for a formal de�nition of

(bounded) distributive lattices.
3 Indeed, the structure underlying the �Obama�s problem�mentioned above belongs precisely to that

subclass of distributive lattices.
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by re�nement (or, dually, by coarsening) are de�nitely not distributive lattices. But

that is in fact part of the point the present paper purports to establish: the judgment

format can make a signi�cant di¤erence when it comes to judgment elicitation and

aggregation, and a judgment space that is a bounded distributive lattice may be very

helpful in that connection.

Thus, in order to fully appreciate the potentially wide scope and relevance of the

proposed setting and thus furtherly motivate our paper, we also present some prominent

classes of examples in which A DMA needs to amalgamate the evaluations of experts

who have exact, approximate, imprecise, multiple measurements and classi�cations or

have to assess conditional judgements. In particular, we consider the following issues:

Aggregation of exact proposals when a DMA faces the problem of aggregating

the alternative proposals advanced by members of a panel committee who select an

appropriate pro�le of binary criteria to be satis�ed by candidates in order to qualify for

a certain position.

Aggregation of graded evaluations achieved by a population of students in di¤erent

subjects, of assessments of wines according to several alternative graded criteria or of

the graded performances of participants in a multi-trial competition or of computing

reputation systems both o­ ine and online.4

Aggregation of approximate classi�cations when an ensemble of rough experts,

trained on di¤erent training sets, predict, for instance, cases of viral infections from

a collection of easily detected symptoms. This kind of selection corresponds to de�ne

an approximate classi�cation of infected units from the sample, namely the rough set

analytically expressed by an order interval. The �nal ensemble decision is supposed to

produce a unique approximate classi�cation by aggregating the rough sets of pro�le of

experts�order intervals.

Aggregation of approximate measurements with error bounds when a �nite number of

experts have to estimate, for example, the global mean surface atmospheric temperature

(SAT) increase for selected emission scenarios whose realization depends on the possible

future states of the world. More in general, experts provides estimates, i.e. approximate

(numerical) measurements that are approximate numbers, namely an ordered pair

of the proposed numerical estimate with its error bound. In such a case, a DMA

4We observe that the latter issue is in fact a problem studied in an analytical setting recently proposed

by Balinski and Laraki (2010) in order to advance their case for majority judgment.
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needs to amalgamate all those approximate measurements in order to implement her

environmental policy.

Aggregation of interval probability estimates if a �nite number of experts have

to make judgments about, for instance, the probability of di¤erent pandemic event

occurrence, such as the global increase of the fatality rate as a function of the mean of

infected, expressed as subjective probability intervals. A DMA then has the problem to

aggregate these probability intervals in order to �x her future intervention policy aimed

to reduce as much as possible the probability that fatality rate increases too much in

the future.

Aggregation of conditional judgments if a DMA is interested, for example, to

evaluate climate response to alternative future trajectories of radiative forcing, but the

behavior of climate system is very uncertain and ambiguous probabilistic estimations of

equilibrium climate sensitivity result from models of di¤erent complexity and statistical

methods. Experts� judgments about global mean temperature are then considerably

di¤erent and the relevant conditional judgments may be represented by conditional

assertions.

The foregoing set of examples is of course not meant to be an exhaustive list, and

some of them may well refer to comparatively more uncommon or hypothetical decision

problems than others. However, that list provides in our view a quite representative

sample of the wide class of interesting aggregation problems to which our results on

strategy-proof aggregation rules of judgements in bounded distributive lattices do in fact

apply. We notice here that the examples on approximate and conditional judgements

will further be analyzed in detail below as applications of our main result (Theorem 2).

The paper is organized as follows. Section 2 introduces the model. Section 3 and

4 provide the main results of the paper. In Section 5, some applications emphasize the

signi�cance and possible practical import of our results. The last section includes a

discussion of the related literature and concludes, while Appendix 1 collects some more

speci�c technical notions and all the proofs.

2 The model: notation and de�nitions

Let X = (X;6) be a partially ordered set (poset) of judgements which is also a bounded
distributive lattice, namely a set X endowed with a partial order 6 (i.e. a re�exive,
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transitive and antisymmetric binary relation) such that (i) X includes both a maximum

> and a minimum ?; (ii) for any x; y 2 X both the least-upper-bound (l.u.b.) or join

_ and the greatest-lower-bound (g.l.b.) or meet ^ of x and y with respect to 6 are

well-de�ned binary operations on X, and (iii) the join and meet operation satisfy the

distributive identities namely x_(y^z) = (x_y)^(x_z) and x^(y_z) = (x^y)_(x^z),
for every x; y; z 2 X:5 As mentioned in the Introduction, examples abound: judgment set
X may consist of assignments of probability values to a given event (with 6 given by the
natural total order on real numbers), gradings of certain items by means of a common

bounded linearly ordered set of grades (with 6 given by the component-wise partial

order induced by grades), or conditional bets (with 6 given by the partial order induced
by the betting preorder on betting-equivalence classes of conditional statements)6.

To be sure, in many situations reliable judgments of the relevant sort are only

available in an approximate version. But then, approximate judgments in X =

(X;6) admit a convenient and natural representation via its order intervals, where,
for any x; y 2 X such that x 6 y, an order interval [x; y] of X is de�ned as

[x; y] := fz 2 X : x 6 z 6 yg. Thus, the set of order intervals of X is IX :=

f[x; y] : x; y 2 X; x 6 yg, which in turn can be partially ordered component-wise,

namely for any [x; y], [v; z] 2 IX , [x; y] b6 [v; z] if and only if x 6 v and y 6 z.

As a result, we end up with a new poset IX = (IX ; b6) of approximate judgments of
type X , to be adjoined to the original poset X of (exact) judgments.

The present work is mainly devoted to the study of aggregation rules for such

judgments, both exact and approximate. Accordingly, we denote by N = f1; :::; ng
a �nite population of agents/experts who are those who express judgments that are to

be aggregated and by J 2 fX; IX g the relevant set of judgments which may be indeed
either exact or approximate, and are endowed with the respective order � 2

n
6; b6o.

In any case, agents are only required to propose a single judgment in J as the one

5Moreover, both _ and ^ satisfy Associativity, Commutativity, Idempotency and are mutuality

related to Absorption as detailed in the Appendix. In particular, x _ y = y and x ^ y = x hold if and
only if x 6 y (hence the order 6 is easily and immediately recovered from _ or ^). Conversely, every
structure (X;_;^) where _ and ^ are binary operations on X which satisfy the foregoing gives rise to

a lattice (X;6) where x 6 y holds if and only if x _ y = y (or equivalently x ^ y = x). Those facts

shall be repeatedly used in the present work.
6The betting preorder 4 on conditional statements (denoted as p=q, s=t,...) is such that p=q 4 s=t if

and only if [(s and t) is a logical consequence of (p and q) and (q and not p) is a logical consequence of

(t and not s).
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they endorse or equivalently the one they most prefer in the relevant sense. We �rst

consider the case of exact judgments, which turns out to be very helpful to address the

aggregation problem for approximate judgments.

We also assume that each agent/expert i 2 N is endowed with a total preference

preorder (namely a re�exive, transitive and connected binary relation) < on X having

a unique maximum denoted top(<).7 Hence, the experts� preferences belong to the

set TX of all topped total preorders on X. In particular, we focus on single-peaked

total preorders a wide subclass of preference relations with a unique top element that

naturally arises whenever each agent�s representation of the outcome space is endowed

with some ternary betweenness relation, establishing, for any two judgments x; y 2 X,
whether an arbitrary z 2 X lies between x and y as a �genuine compromise�between

them, in that everyone agrees that z is not strictly worse than both x and y. In other

words, the betweenness relation is meant to represent a shared structure of compromises

between outcomes: such a shared structure may (though, of course, need not) be

induced by a common �natural� metric. Hence, single peaked preferences are aptly

described as those total preorders with a unique best outcome such that an outcome

located between the maximum and another distinct outcome is invariably regarded as

not worse than the latter. Or, simply put, single peaked preferences are consistent with

the �compromise-structure�represented by the (latticial) betweenness relation BX of

X = (X;6) de�ned as follows:

BX :=
�
(x; z; y) 2 X3 : x ^ y 6 z 6 x _ y

	
.

All of this is made precise by the following:

Definition 2.1. A topped total preorder <2 TX , with top outcome top (<) = x�, is

single-peaked if and only if, for each y; z 2 X, z 2 BX (x�; :; y) implies that z < y.

We denote by UX� TX the set of all single-peaked total preorders (with respect to

BX ), while UNX is the corresponding set of all N -pro�les of single peaked total preorders.

We shall be mostly concerned with single-peaked total preorders domains that satisfy

the following richness condition:

Definition 2.2. A set DX � UX of single-peaked total preorders (with respect to

BX ) is rich if, for any x; y 2 X, there exists <2 DX such that top(<) = x and

7The asymmetric and symmetric components of < are denoted with � and �, respectively.
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UC(<; y) = fz 2 X : BX (x; z; y)g where the set UC(<; y) := fz 2 X : z < yg is the
upper contour of < at y 2 X.

Thus, a single peaked domainDX is rich whenever for each pair of outcomes x; y 2 X
there exists a preference relation in DX having x as its top outcome and such that the

subset of outcomes (weakly) preferred to y is precisely the interval between x and y.

In what follows, we mainly focus on a class of well-behaved aggregation rules

(AR) of individual judgements, namely functions f : XN ! X satisfying the following

benchmark properties:

Inclusiveness. For every i 2 N , there exist xN 2 XN and y 2 X such that

f(y; (xN )�i) 6= f(xN );

Idempotence. f(xN ) = x for any x 2 X and xN 2 XN such that xi = x for every

i 2 N ;

Strategy-proofness. on �i2NDi � UNX if and only if, for all xN 2 XN , i 2 N and

x0i 2 X, and for all <i 2 Di, f(top(<i); xNnfig) <i f(x0i; xNnfig).
An aggregation rule is Inclusive if for each agent there exists at least one pro�le of

proposed judgments at which her own proposal turns out to be pivotal; Idempotent

if whenever all the proposed judgments coincide, the aggregate outcome is indeed

the unanimously proposed judgment; Strategy-proof if it is immune to advantageous

individual manipulations through submission of false information. Arguably, those three

properties are minimal requirements to ensure that an aggregation rule has indeed the

potential to take advantage of any �diversity bonus�arising from information gradients

among the involved agents, by providing the latter with some basic incentives to share

their private information.

More speci�c and demanding requirements on an aggregation rule f will also be

considered, namely:

Anonymity. For all xN = (xi)i2N 2 XN and all permutations � : N ! N ,

f(xN ) = f(x�(N)) (where (x�(N) = (x�(i))i2N );

Neutrality. For all xN 2 XN , and all y; z 2 X: if Ny(xN ) = Nz(xN ) then

y 6 f(xN ) if and only if z 6 f(xN ) (where for any x 2 X, Nx(xN ) = fi 2 N : x 6 xig);

Bi-idempotence. For all xN = (xi)i2N 2 XN and all y; z 2 X, if xi 2 fy; zg for
all i 2 N then f(xN ) 2 fy; zg.

Anonymity requires an equal weight for all agents, Neutrality is an equal treatment

requirement for alternative judgments, while Bi-idempotence ensures that at maximally
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polarized pro�les the aggregation rule is able to select one of the advanced proposals.

In what follows, we �rst consider the case of exact judgments, which turns out to

be very helpful to address the aggregation problem for approximate judgments.

3 Aggregation of exact judgments

We aim at characterizing three nested classes of aggregation rules that are, respectively:

(i) Inclusive, Idempotent and Strategy-proof ;

(ii) Anonymous, Neutral and Strategy-proof ;

(iii) Anonymous, Bi-idempotent and Strategy-proof ;

on rich single peaked domains.

In order to describe such AR, we need to introduce some further de�nitions.

Definition 3.1. (Decisive Coalition) We call S � N a coalition of

agents/experts. We say that S is decisive with respect to z 2 X for aggregation rule

f : XN ! X if there exists a pro�le xN 2 XN such that Nz(xN ) = S and z 6 f(xN ),

and decisive for f if there exists some z 2 X such that S is decisive with respect to z

for f .

Thus, a coalition is decisive if it can �force� the outcome to be consistent with a

certain judgment. We denote by Wf the set of all decisive coalitions for an aggregation

rule f , and by Wf
m � Wf the set of all minimal decisive coalitions for f , (namely those

decisive coalitions for f such that all of their proper subcoalitions turn out to be not

decisive).

Definition 3.2. (Generalized Committee) A generalized committee in N is

a set of coalitionsW � P(N) such that T 2 W if and only if T � N and S � T for some

S 2 W . (In particular, a committee in N is a non-empty generalized committee in

N which does not include the empty coalition). The set Wm � W of minimal coalitions

of a generalized committee W � P(N) is called its basis.
We say that a generalized committee W � P(N) is:

Inclusive if
[
Wm = N ; moreover, a family

�
W i :W i� P(N)

	
i2I of (generalized)

committees is said to be inclusive if
S
i2I
W i
m = N .

Anonymous if, for any S; T � N such that jSj = jT j, S 2 W if and only if T 2 W.

Accordingly, an aggregation rule f : XN ! X is said to be Inclusive if and only

if
S

S2Wf
m

S = N . Therefore, an aggregation rule is inclusive if every agent turns out to
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be decisive or pivotal under certain circumstances.

To each generalized committee W several aggregation rules on the bounded

distributive lattice X = (X;6) of judgments can be attached in a natural way. For
instance, the maxmin (or disjunctive-normal-form) aggregation rule ofW is the function

f : XN ! X such that f(xN ) =
_
T2W

^
xi2T for every xN 2 XN : thus, its outcome is

the join of the consensus outcomes of the coalitions in W.
Moreover, aggregation rules can also be attached to a family

�
W i
	
i2I of

generalized committees, including the max (or disjunctive) aggregation rule of�
W i
	
i2I , which is the function f : XN ! X such that f(xN ) =_�

z 2 X : Nz(xN ) 2 W i for some i 2 I
	
for every xN 2 XN to the e¤ect of selecting

the join of outcomes that are accepted by all the members of some coalition of some

generalized committee Wi. This sort of rule can also be further speci�ed by attaching

distinct generalized committees to certain distinguished outcomes (see e.g. Monjardet

(1990)).

We are now ready to state our �rst characterization result of aggregation rules for

exact judgments in bounded distributive lattices.

Theorem 3.1. Let X = (X;6) be a bounded distributive lattice with jXj � 3 and
BX be its latticial betweenness relation, DX � UX a rich domain of single-peaked total

preorders on X (with respect to BX ), and N a �nite set with jN j � 3. Then, an

aggregation rule f : XN ! X is:

(i) inclusive, idempotent and strategy-proof on DN
X if and only if there exists

an inclusive family of committees
�
W i
	
i2I on N such that for any xN 2 XN :

(1) f(xN ) =
_�

x 2 X : Nx(xN ) 2 W i for some i 2 I
	
;

(ii) anonymous, neutral and strategy-proof on DN
X if and only if there exists a

�xed-quota-committee Wq = fS � N : jSj � qg, for some positive integer q � n, on

N such that f = fWq

f(xN ) =
_

S2Wq

^
i2S

xi

for all xN 2 XN ;

(iii) anonymous, bi-idempotent and strategy-proof on DN
X if and only if jN j

is odd and f is the simple majority rule fmaj, namely for all xN 2 XN ,

fmaj(xN ) =
_

S2Wmaj

^
i2S

xi
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where Wmaj =
n
S � N : jSj � b jN j+22 c

o
.

Thus, we have three distinct algebraic closed-form representations of two signi�cant

classes of aggregation rules and of a version of the simple majority rule for those

judgements which amount to points of a bounded distributive lattice. Speci�cally,

the �rst and most comprehensive class collects all the aggregation rules which respect

unanimity, ensure a locally pivotal role to every agent while being at the same time

strategy-proof on a large class of single peaked domains. The second class is the subclass

of the previous one consisting of aggregation rules which are also anonymous and neutral:

they are given in terms of certain lattice polynomials in disjunctive-normal form. Since

polynomials can be regarded as e¢ cient algorithms, it follows that the outputs of such

polynomial aggregation rules are by de�nition �easily�computed. Within the latter class

the simple majority rule is characterized by bi-idempotence, the property requiring

selection of an uncompromising proposal in maximally polarized situations8.

4 Aggregation of approximate judgments

In what follows, we apply Theorem 1 to the aggregation of approximate assessments of

several sorts. Indeed, as previously observed, on many occasions approximate versions of

assessments and judgements most typically amount to speci�cations of order intervals

of such values, namely of the values comprised between the smallest and the largest

one of a pair of ordered values. This is clearly the case for approximate probability

estimates, measurements with explicit error bounds, approximate classi�cations of

objects according to a somewhat imprecise type. As a matter of fact, it also applies (as

we shall see below) even to conditional judgments, since they too are representable by

certain order interval.

Thus, in order to apply Theorem 1, the following Claim is key in that connection,

because it ensures that the partially ordered sets of order intervals alluded to above are

indeed bounded distributive lattices.

Claim 1. Let (L;_;^) be a lattice, and IL the set of its order intervals, i.e.

IL := f[x; y] : x; y 2 L; x 6 yg, with x 6 y if and only if x^y = x or equivalently x 6 y

8 Indeed, a strategy-proof and bi-idempotent aggregation rule on a bounded distributive lattice is

also neutral (see Vannucci (2019), Theorem 1).
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if and only if x_y = y and [x; y] := fz 2 L : x 6 z 6 yg, and for any [x; y]; [w; z] 2 IL:

[x; y]b_[w; z] : = fu _ v : u 2 [x; y]; v 2 [w; z]g ,

[x; y]b̂[w; z] : = fu ^ v : u 2 [x; y]; v 2 [w; z]g .

Then, the following statements are equivalent:

(i) (L;_;^) is a (bounded) distributive lattice;
(ii) (IL; b_; b̂) is a (bounded) lattice;
(iii) (IL; b_; b̂) is a (bounded) distributive lattice.9
We are now ready to prove the main result of the present paper, namely:

Theorem 4.1. Let X = (X;6) be a (bounded) lattice with jJ j � 3, IX = (IX ; b6)
the (bounded) poset of its order intervals, BIX its latticial betweenness relation, DIX
� UIX a rich domain of single-peaked total preorders on X (with respect to BIX ), and

f : INX ! IX an anonymous and bi-idempotent aggregation rule which is strategy-proof

on DN
IX with n = jN j � 3 and odd. Then, the following statements are equivalent:
(i) IX = (IX ; b6) is a (bounded) lattice;
(ii) IX = (IX ; b6) is a (bounded) distributive lattice;
(iii) f is the majority rule fmaj, namely for all xN 2 INX ,

f(xN ) =
_

S2Wmaj

^
i2Sxi

where Wmaj =
n
S � N : jSj � b jN j+22 c

o
.

Proof. (i)() (ii): Immediate from Claim 1 by taking L = X.

(ii) =) (iii): If IX is a (bounded) distributive lattice then fmaj is well-de�ned and
is the unique anonymous bi-idempotent and strategy-proof on DN

IJ with n = jN j odd
by Theorem 1 (iii).

(iii) =) (ii): If fmaj is a well-de�ned aggregation rule with domain INJ then IX =
(IJ ; b6) must be a distributive lattice, because otherwise Wfmajhas a unique minimal

element (or �winning coalition�), a contradiction since by de�nitionWfmaj =Wmaj and

(with n = 2k+1)Wmaj has in fact
�
n
k+1

�
> 1 minimal elements (or �winning coalitions�).

�

9To the best of the authors�knowledge, Claim 1 has never been stated and proved in previous works,

though some (but by no means all) of its constitutive implications have been established by Fitting

(1991) or Milne (2004) (more details on that issue are available from the authors upon request).



14

Thus, if the set of agents is odd, the majority aggregation rule can be characterized

as the only anonymous and bi-idempotent rule which is strategy-proof on any single-

peaked domain and applies both to a latticial judgment space and to its respective

approximate version. As mentioned above, the foregoing theorem can be immediately

applied to the aggregation of approximate assessments of several sorts.

5 Applications

In what follows, we provide some applications of Theorem 2 to the very general

problem of aggregation of pro�les of approximate, imprecise multiple measurements and

classi�cations or approximate conditional judgements, a problem that typically arises

whenever a DMA must collect information that comes from the evaluation on a certain

issue by a group of experts. All the expert elicitation protocols, as for instance Delphi,

Q-methodology, Nominal Group technique etc., su¤er from problems of polarization,

strategic manipulation, overcon�dence, self-censorship, pressure to conform, anchoring,

adjustment etc. The proposed aggregation rules help to avoid at least some of the

possible aforementioned drawbacks and easily apply to cases whose outcome space is

possible to model as a bounded distributive lattice.

In what follows, we go back to the examples presented in the Introduction, we

formally state them and we show that our results easily apply to those prominet

aggregation issues.

5.1 Approximate classi�cations

An ensemble E of rough classi�ers, trained on di¤erent training sets, predict cases of

viral infections from a collection of easily detected symptoms. The available cases are

characterized by a pro�le of values f0; 1g for each of the following health troubles:

U =

(
Runny Nose (RN), Nausea (N), Headache (H), Sore Throat (ST), Cough (C),

Fever (F), Feeling of Being Unwell (FBU), Shortness of Breath (SB), Infected (I)

)
,

where each attribute takes value 0 if the patient monitored is not a¤ected, for instance

by cough, and 1 otherwise. For a subset D � U , an expert may be required to produce

a D-based classi�cation of those who are infected. This kind of selection corresponds to

de�ne an approximate classi�cation of infected units from the sample, namely the rough

set analytically expressed by an order interval. The �nal ensemble decision is supposed

to produce a unique approximate classi�cation by aggregating the rough sets of pro�le
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of experts�order intervals.

We show here that the outcome space of the di¤erent approximate classi�cations of

the elements of a set, based on some criteria and due to a committee of rough experts,

is a bounded distributive lattice. In order to do that, we rely on a result due to Milne

(2004), that allows us to directly apply Theorem 2 to this remarkable case.

To start with, we denote withX the universal set of objects to be classi�ed according

to some prescribed type(s), U the universal �nite set of criteria/attributes, Vp the set of

possible values of criterion p, for any p 2 U , and f : X !
Q
p2U

Vp the information function

(see Comer (1991)) that just classi�es the objects according to their own characteristics.

The structure I = (X;U; (Vp)p2U ; f) is usually called an information system. For any
P � U , we say that �P is an equivalence relation on X if, for each x; y 2 X, x �P y

if and only if (f(x))p = (f(y))p for each p 2 P . The pair (X;�P ) is said to be an
approximation space for knowledge P , and the equivalence classes of �P , written as
[x]�Pwith x 2 X, are called the P -elementary concepts.

Both a closure operator P : P(X)! P(X) (i.e. a monotonic, idempotent, extensive
function), and an interior operator P � : P(X)! P(X) (i.e. a monotonic, idempotent,
function) can be attached to (X;�P ) by the following de�nitions: for any A � X,

P (A) :=
S
f[x]�P : x 2 Ag and P �(A) :=

S
f[x]�P : [x]�P � Ag .

By construction, P �(A) � A � P (A), with P �(A) that is also denoted as the P -lower

approximation of A, and P (A) as the P -upper approximation of A. A is said to be

P -de�nable if and only if it is P -closed, i.e. if and only if it is a �xed point of P .

A rough set is de�ned as the order interval [P �(A); P (A)] of the poset (P(X);�)
and can be regarded as a P -based approximate classi�cation of the objects of X in

terms of some target label having A as its extension in X.10 Now, let IP(X) be the

set of all order intervals of (P(X);�) and IPP(X) � IP(X) the set of all such P -based

approximate classi�cations of a certain type of tokens in X. Suppose now that a set

of experts may be required to produce a P -based classi�cation of a certain target type

by selecting a suitable set A � X. This sort of classi�cation amounts precisely to a

P -based approximate classi�cation, i.e. an order interval [P �(A); P (A)] 2 IPP(X). Again,
de�ne, for any [P �(A); P (A)],[P �(B); P (B)] 2 IPP(X), the partial order 6 on IPP(X) as

10Roughness or uncertainty of a rough set is represented by its boundary region: the larger the

boundary region is, the greater the roughness is.



16

follows:

[P �(A); P (A)] 6 [P �(B); P (B)] if and only if P �(A) � P �(B) and P (A) � P (B).

Now, by Milne (2004) (Theorem 3.4.1, p. 515) the poset (IPP(X);6) is a bounded
distributive lattice. It follows that Theorem 2 applies to the poset (IPP(X);6)
of approximate classi�cations and then suitable aggregation rules for approximate

classi�cations exist and satisfy some compelling properties including that making the

aggregation of approximate classi�cations of a set of objects by a team of experts

protected against strategic manipulations.

5.2 Approximate measurements with error bounds

Let i = f1; 2; 3g be a �nite number of experts that has to estimate the global mean
surface atmopheric temperature (SAT) increase for the fs1; s2; s3) selected emission
scenarios of possible future states of the world. Assume that each expert i has a

probability distribution function on each possible scenario. As a consequence of the

variety, di¤erent quality and origin of the information, an expert de�nes the mean of

SAT by considering the lower and upper probabilities for every scenario (see Kriegler

et al. (2009)) as follows:

s1 s2 s3

1 := f (0:25; 0:45) (0:22; 0:38) (0:34; 0:36) g
2 := f (0:34; 0:36) (0:38; 0:40) (0:28; 0:38) g
2 := f (0:36; 0:50) (0:40; 0:50) (0:42; 0:52) g

Thus, the mean value for every scenario can be elicited with an error bound, i.e.:

s1 s2 s3

1 := f (0:35� 0:10) (0:30� 0:08) (0:35� 0:01) g
2 := f (0:35� 0:01) (0:39� 0:01) (0:33� 0:05) g
2 := f (0:43� 0:07) (0:45� 0:05) (0:47� 0:05) g

Then, for each scenario j = 1; 2; 3 we have the following pro�les to be amalgamated:

[(0:35� 0:01) � (0:35� 0:10) � (0:43� 0:07)];

[(0:30� 0:08) � (0:39� 0:01) � (0:45� 0:05)] ;

[(0:33� 0:05); (0:35� 0:01); (0:47� 0:05)]g:
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More in general, a set of experts provides estimates, i.e. approximate (numerical)

measurements that are approximate numbers, namely an ordered pair (m; �) 2 R+�R+,
where m is the proposed numerical estimate and � (with m � � � 0) its error bound

(see e.g. Markov (2016)).

Clearly, there is an obvious one-to-one correspondence between approximate num-

bers and order intervals [x; y] � R+ of (R+;�) namely ' : R+�R+ ! P(R+) as de�ned
by the rule '(m; �) = [m��;m+�], and the inverse of its corestriction  : '(R+�R+)!
R+�R+ as de�ned by the rule  ([x; y]) = (y�x2 ; x+y2 ). In order to check validity of that

statement, observe that ( � ')(m; �) =  ('(m; �)) =  ([m� �;m+ �]) = (m; �)).
It follows that an aggregation rule for N -pro�les of approximate numbers, or order

intervals, of (R+;�) essentially amounts to an aggregation rule f : IN[0;1] ! I[0;1], where

I[0;1] denotes the set of order intervals of the bounded distributive lattice ([0; 1];�).
But then, by Claim 1, the poset (I[0;1];6), with the partial order 6 de�ned to as

[x; y] 6 [w; z] if and only if [x; y]b_[w; z] = [w; z], is a bounded distributive lattice, hence
Theorem 2 applies and again we obtain a wide class of interesting aggregation rules for

the problem of amalgamating numerical estimates with error bounds which are provided

by a set of experts concerning a certain issue.

5.3 Aggregation of interval probability estimates

Let i = f1; 2; 3g be a �nite number of experts that have to make judgments about the
probability of di¤erent pandemic event occurrence, such as the global increase of the

fatality rate as a function of the mean of infected, as espressed as subjective probability

intervals. They have di¤erent available global datasets and any information about past

conditions is a compromise between other data. As a result of their analysis, they expect

that the impact of the lockdown withdrawn will increase the global pandemic of 1.5%

between the month of April and June. They estimate that this state can be reached

with a certain probability that can vary in an interval [a; b]i, where i = 1; 2; 3 denotes

the expert concerned and a; b 2 [0; 1], as follows:
[a; b]1 = [0:55; 0:6], low probability;

[a; b]2 = [0:62; 0:7], middle probability;

[a; b]3 = [0:68; 0:72], high probability;

A DMA has the problem to aggregate these probability intervals in order to �x

her future intervention policy aimed to reduce as much as possible the probability that

fatality rate increases too much in the future.
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In general let I[0;1] := f[a; b] : a; b 2 [0; 1]; a � bg be the set of all closed probability
intervals de�ned on the ordered real unit interval [0; 1], that is in fact a bounded

distributive lattice. A panel of N = f1; :::; ng experts have to make judgements about
the probability of the occurrence of an event. Those n subjective probability judgments

are collected in the set J and expressed as intervals, an expert judgment on an uncertain

event is therefore a closed interval of possible probability values [aj ; bj ] 2 I[0;1], where aj
and bj respectively denote the lower and the higher probabilities that an event happens,

hence, J = IN[0;1]. Such intervals can be compared by a partial order 6 saying that, for
any [a; b]; [c; d] 2 I[0;1], [a; b] 6 [c; d] if and only if a � c and b � d. As a consequence of

Claim 1, (J;6) is also a bounded distributive lattice, and then Theorem 2 applies.11

5.4 Conditional judgments and conditional bets

A DMA is interested to evaluate climate response to alternative future trajectories

of radiative forcing. Unfortunately, the behavior of climate system is very uncertain

and ambiguous probabilistic estimations of equilibrium climate sensitivity result from

models of di¤erent complexity and statistical methods. Then, experts�judgments about

global mean temperature are considerable di¤erent.

Consider the following list of plausible levels of global warming within a certain

conveniently �xed time frame:

q1 = negligible increase �T of global mean temperature (0 � �T � 2 �C)
q2 = medium increase �T of global mean temperature (2 �C < �T � 4 �C)
q3 = high increase �T of global mean temperature (4 �C < �T ).

Then, consider the following list of large-scale events in the Earth system (�tipping

points�: see e.g. Kriegler et al. (2009)):

p1 = reorganisation of the Atlantic Meridional overturning circulation (drastic

reduction in deep water over�ow across the Greenland-Scotland ridge),

p2 = dieback of the Amazon rainforest,

p3 = melt of the Greenland ice sheet,

p4 = disintegration of the West Antarctic ice sheet.

11 It is worth remarking here that if the probability intervals elicited by Obama�s experts had been

compared by a partial order in order to get a bounded distributive lattice as judgment space, then

Obama could have taken his decision by simply applying the median rule.
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The relevant conditional judgments may be represented by conditional assertions

(e.g. if the global mean temparature increases of 4 �C, then the Greenland ice sheet

will melt). Conditional assertions are informally identi�ed with certain conditional

events. They are represented as conditional propositions p=q (namely �p given q�in a

suitably de�ned propositional calculus CA12) which may be regarded as the objects of

conditional bets. Conditional assertions can be ordered in a natural way by the �betting�

entailment (or betting preorder) saying that p=q 4 s=t if and only if [(s and t) is a logical

consequence of (p and q) and (q and not p) is a logical consequence of (t and not s)].13

In particular, two conditional assertions p=q, s=t are �betting�-equivalent -written

p=q � s=t- if and only if both p=q 4 s=t and s=t 4 p=q hold. Of course, the resulting

equivalence classes [p=q]� of conditional assertions are a partially ordered set or poset

with the partial order 6 de�ned in the obvious way, namely for any pair of conditional
assertions p=q, s=t, [p=q]� 6 [s=t]� if and only if p=q 4 s=t.

The relevant conditional judgments in the example may be represented by condi-

tional assertions pih=qj , i = 1; 2; 3; 4, h = 1; :::; k, j = 1; 2; 3 and their disjunctions,

conjunctions, implications and negations.

Each expert is asked to select the conditional judgment she regards as most plausible

(to repeat, multiple submissions are admissible but treated as a disjunction of the

single items). Finally, a DMA needs to amalgamate all the information received. We

identify the set J of conditional judgments precisely with such equivalence classes of

conditional assertions with respect to the betting preorder. Hence, we end up with

a poset (J;6) of conditional judgments of the conditional assertion calculus CA that

is precisely the outcome space of our aggregation problem. It turns out that, thanks

to the structure imposed on conditional assertions by their propositional calculus and

the corresponding �betting�entailments, (J;6) inherits a very rich algebraic structure
denoted as de Finetti algebra (see Milne (2004) for details). Milne (2004) in particular

shows that the poset (JCA;6) of conditional judgments ofCA is a de Finetti algebra and
that the latter is a bounded distributive lattice with some supplementary structure. Of

12That kind of calculus is outlined in de Finetti (1936), and made more precise by Milne (2004), but

its details need not detain us here.
13Thus, the �betting�entailment preserves truth from premises to conclusions of deductive inferences,

and retransmits falsity from a conclusion to some of the corresponding premises. Or, to put in �betting�

terms all the way, the bet on s=t is won whenever the bet on p=q is won, and the bet on p=q is lost

whenever the bet on s=t is lost (see e.g. de Finetti (1936), Milne (2004)).
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course, the key point of the foregoing representation theorem is, from our own present

perspective, that conditional judgments are in fact a special instance of a bounded

distributive lattice. Hence, Theorem 2 does apply to (JCA;6) and we have shown that
the aggregation of conditional judgments that is a process that requires an e¤ective

elicitation of individual (conditional) judgments, might produce a reliable and therefore

strategy-proof (conditional) judgment as an output.

6 Related literature and concluding remarks

Indeed, the extant literature on aggregation of (expert) opinions on uncertain events

is vast. But the format of the relevant opinions may be not that of intervals of

bounded distributive lattices or conditional judgments as presented above. Moreover,

the aggregation protocols considered may not be aggregation operations.

To be sure, experts are sometimes asked probability estimates on a certain family

of events, possibly including conditional events (see e.g. Dalkey (1975)): in particular,

a list of events to be classi�ed as �probable� or �not probable�by experts is given in

order to get an aggregate assessment with the same format. Hence, we are given a

bounded distributive lattice and an aggregation problem that �ts our present model. In

some cases experts are asked to submit positive probability values -to be chosen from a

pre-�xed �nite set fp1; :::; pmg- to a �nite set of independent uncertain events (see e.g.
Cooke (1991), ch. 12). If the possible outcomes are arbitrary combinations of those

probability values for each event then again our results do apply.

Interestingly for our paper, Cooke (1991) concludes that "point prediction as

medians of experts�combined distributions outperform combined medians" by inducing

a 65% improvement with performance weighted combinations and 46% improvement

with equally weighted combinations.

By contrast, allowing for probability estimates of distinct subfamilies on the part of

distinct experts (see e.g. Osherson,Vardi (2006)) gives rise to a partial aggregation rule

(which is not covered by our results).

Moreover, it is also common to consider opinions consisting of probability distrib-

utions (see e.g. Lehrer and Wagner (1981), Rubinstein and Fishburn (1986), Barrett

and Pattanaik (1987), Clemen and Winkler (1999, 2007), Basili and Pratelli (2015)).

But of course, under the component-wise natural order probability distributions are not

a lattice. To be sure, under the majorization or dominance order (discrete) probabil-

ity distributions do constitute a lattice: but such a lattice is de�nitely nondistributive
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(actually it does not admit a rank function hence it is not even semimodular: see e.g.

Brylawski (1973)).

More recently, several authors consider the aggregation of imprecise probability

assessments modeled by convex sets of admissible probability measures or by probability

intervals to produce a more precise aggregate probability estimate (see among others

Nau (2002), Crès, Gilboa and Vieille (2011), Gajdos and Vergnaud (2013), Basili and

Chateauneuf (2020)). Of course, that approach amounts to a codomain-constrained

aggregation exercise, which would not �t our present framework even if the domain of

imprecise probability assessments were a bounded distributive lattice (which is typically

not the case anyway). Conversely, Stewart and Quintana (2018) consider aggregation

of probability distributions into a set of admissible probability distributions, i.e. an

imprecise aggregate opinion: but this kind of pooling exercise amounts of a restricted

aggregation exercise on sets of probability distributions (by taking the class of singleton

sets of probability distributions as its restricted domain).

Other works model expert opinions by opinion functions, i.e. functions on a

complementation-closed set E of events that are extendable to probability measures
on the �-algebra generated by E (see Dietrich, List (2017)). Even qualitative prob-
ability relations have been considered (Weymark (1997)) as the target of the opinion

aggregation exercise: however, it is easily checked that in general qualitative probability

relations ordered by set inclusion are not even a lattice since the trivial top preorder

(the one consisting of a single indi¤erence class) is not a qualitative probability relation

(recall that a qualitative probability relation is a total preorder < on a Boolean algebra
of subsets with state space X and such that X � ?, hence P(X) � P(X) does not
qualify).

Any such model of expert opinions has its own merits. When it comes to aggregation

problems, however, most of those formats do not support inclusive and strategy-

proof rules on suitably rich preference domains. Our results then (i) highlight some

distinctive advantages of those formats that in fact, thanks to their bounded distributive

latticial structure, do support use of median rules hence in particular of majority rule

along several other inclusive aggregation rules that turn out to be strategy-proof on

arbitrary rich single-peaked domains; (ii) show that such �majority-friendly� formats

include conditional judgements and conditional bets, probability intervals, approximate

measurements with explicit error bounds, and approximate classi�cations.

Summing up, the main message of the present work is that whenever the domain of
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relevant judgments is a bounded distributive lattice, the aggregation of such judgments

- as provided e.g. from a committee of experts - can always be performed by computing

their median by means of a suitably de�ned majority rule. Moreover, the same holds

for approximate versions of such judgments as representable by ordered intervals of the

relevant values. Furthermore, even if each agent/expert wishes her opinion to prevail

such a median-based aggregation is strategy-proof provided that her preferences are

single-peaked. A distinctive advantage of strategy-proofness of the aggregation rule -

thus secured - is that it dispenses with the whole apparatus of proper and strictly proper

scoring rules that is commonly deployed in order to induce truth-telling when expert

judgment aggregation is performed through weighted means (see e.g Cooke (1991)).

Furthermore, the single peakedness requirement is arguably not particularly demanding

in the present context, since (as previously observed) a natural metric on opinions is

available in the case under consideration.

However, the feasibility of such robust median-based judgment aggregation rule

relies on two basic structural requirements: (i) the space of alternative outcomes must

be a bounded distributive lattice and (ii) the aggregation rule must be a well-de�ned

operation on the space of alternative outcomes. It remains to be seen if and to what

extent aggregation problems that have been traditionally approached with other formats

are amenable to reformulations that are consistent with the framework advanced here.

Appendix 1: Proofs

To begin with, it should be recalled that a partially ordered set (poset) X = (X;6)
is a lattice precisely when the structure (X;_;^) with x_ y = y and x^ y = x i¤ x 6 y

satis�es the following four properties which shall be freely and repeatedly used in the

following proofs:

� Associativity: (x_y)_z = x_(y_z) and (x^y)^z = x^(y^z) for all x; y; z 2 X;

� Commutativity: x _ y = y _ x and x ^ y = y ^ x for all x; y 2 X;

� Idempotency: x _ x = x and x ^ x = x for all x 2 X;

� Absorption: x _ (x ^ y) = x and x ^ (x _ y) = x for all x; y 2 X.

A few basic notions to be used in the proofs of the main results are now to be

introduced.
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� An order �lter of a lattice X is a set F � X such that z 2 F if and only if

z 2 X and y 6 z for some y 2 F : it is said to be non-trivial if F 6= ? and proper
if F 6= X.

� An order �lter F of X = (X;6) is a (latticial) �lter if x^y 2 F for any x; y 2 F ,
and a prime �lter if x _ y 2 F implies that x 2 F or y 2 F .

� A (latticial) �lter F of X = (X;6) is an ultra�lter if it is proper and maximal
(i.e. there is no proper �lter F 0of X such that F � F 0) and is principal if there

exists an x 2 X such that F = [x) := fy 2 X : x 6 yg.

Clearly, as it is easily checked, any proper principal �lter is an ultra�lter. We denote

with FP the set of all non-trivial and proper prime �lters of X .

We report here some important and well-known results that we use in the main text:

Proposition 6.1 (see e:g: Davey; Priestley (1990); ch:10). There is an isomor-

phism between the elements of a bounded distributive lattice X and the sets of prime

�lters of X they belong to, namely the function � : X ! 2FP de�ned by the rule

�(x) = fF 2 FP : x 2 Fg is both injective and surjective.

Bijection � is in fact the basis of Priestley�s representation theorem, establishing

that any bounded distributive lattice X is isomorphic to the lattice of all superset-

closed clopen sets of the ordered topological space (FP ; � ;�) where � is the smallest

topology on FP which includes the set-theoretic union of ffF 2 FP : x 2 Fg : x 2 Xg
and ffF 2 FP : x =2 Fg : x 2 Xg (see e.g. Davey and Priestley (1990), Theorem 10.18).

Proposition 6.2 (see Davey; Priestley (1990); Theorem 9:7). Every ultra�lter

(hence in particular every (proper) principal �lter) of a bounded distributive lattice is a

(proper) prime �lter.

Next, we introduce two key properties of aggregation rules which also have a key

role in the proofs. We say that an aggregation rule f : XN ! X is:

� BX -monotonic if and only if for all xN = (xj)j2N 2 XN , i 2 N and x0i 2 X,

f(xN ) 2 BX (xi; :; f(x0i; xNnfig);

� Monotonically Independent if and only if for all xN ; yN 2 XN and all F 2 FP ,

if NF (xN ) � NF (yN ), then f(xN ) 2 F implies f(yN ) 2 F .
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with the obvious meaning that an aggregation rule is BX -monotonic if for any agent

and any pro�le of proposals, proposing a certain outcome brings closer to that outcome

than any other alternative proposal, the outcome is a compromise of all individual

assessments and Monotonically Independent whenever social acceptance of an outcome

is never disrupted by an increasing support for that outcome.

The following two Lemma extending some previous results concerning strategy-

proofness of aggregation rules on trees and on bounded distributive lattices (see Danilov

(1994), Vannucci (2016)), will be used in the proof of our main results.

Lemma 6.1 (Vannucci (2019)). Let X = (X;6) be a bounded distributive lattice,
f : XN ! X an aggregation rule for (N;X), and DX a rich domain of single-peaked

total preorders (with respect to BX ). Then, the following statements are equivalent:

(i) f is strategy-proof on DN
X ;

(ii) f is BX -monotonic;

(iii) f is Monotonically Independent.

Remark 6.1. Notice that richness of the preference domain is only required to

prove that strategy-proofness implies BX -monotonicity, while the reverse implication

holds anyway. Without the richness restriction strategy-proofness is a weaker condition

than BX -monotonicity.

Lemma 6.2 (Vannucci (2016), Savaglio, Vannucci (2019)). Let X = (X;6)
be a bounded distributive lattice and BX its latticial betweenness relation. Then, a

generalized committee aggregation rule f : XN ! X is BX -monotonic.

We are now ready to prove our main results.

Proof of Theorem 1

(i) Let f : XN ! X be an inclusive and idempotent aggregation rule that is

strategy-proof on DN
X and F 2 FP an arbitrary nonempty and proper prime �lter of X .

To begin with, observe that by Lemma 1 f is also monotonically-independent, hence, in

particular, independent. By idempotence of f , there exists a coalition S � N which is

F -decisive for f . Moreover, S 6= ? by monotonic-independence of f (since by the latter
property S = ? entails f(xN ) 2 F for all xN 2 XN , contradicting idempotence of f).
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Then, for any F 2 FP , consider:

Wf
F = fT � N : T is F -decisive for fg =

= fT � N : T = NF (xN ) and f(xN ) 2 Fg .

Accordingly, (Wf
F )m denotes its subset of minimal coalitions, while Wf =

S
F2FP

Wf
F ,

and (Wf )m =
S

F2FP
(Wf

F )m. Clearly, W
f
F is an order �lter of (P(N);�) for all F 2 FP

since f is monotonically-independent, hence, by construction Wf , is also an order �lter

of (P(N);�).
Also, observe that for every xN 2 XN and x 2 X, x 6 f(xN ) if on only if x 2 F

entails f(xN ) 2 F for all F 2 FP (since any such F is by de�nition an order �lter, and

every (proper) principal �lter [x) is known to be in particular prime (see e.g. Davey,

Priestley (1990), Theorem 9.7). Therefore,

f(xN ) =
W
fx 2 X : x 6 f(xN )g =

=
W
fx 2 X : for all F 2 FP s.t. x 2 F , f(xN ) 2 F also holdsg =

=
Wn

x 2 X : for all F 2 FP s.t. x 2 F , NF (xN ) 2 W � Wf
o
,

where Wf is by hypothesis an inclusive committee.

Conversely, let f : XN ! X be such that, for all xN 2 XN ,

f(xN ) =
W
fx 2 X : for all F 2 FP s.t. x 2 F , NF (xN ) 2 Wg ,

for some inclusive order �lter W � P(N).
For every z 2 X, and every F 2 FP such that z 2 F , NF (xzN � (z; :::; z)) = N 2 W:

indeed, W 6= ? since W is inclusive, and by de�nition N 2 W 0 for each nontrivial

order �lter of (P(N);�). Thus, f(xzN ) = z, namely f is idempotent (hence, it is in

particular idempotent). Moreover, let F 2 FP , xN ; yN 2 XN such that f(xN ) 2 F and
NF (xN ) � NF (yN ). By de�nition of f , NF (xN ) 2 W whence NF (yN ) since W is an

order �lter. It follows that f is independently monotonic and therefore, by Lemma 1,

strategy-proof on DN
X .

(ii) Let f : XN ! X be an anonymous and neutral aggregation rule that is strategy-

proof on DN
X . Then f is monotonically-independent by Lemma 1.

Thus,

f(xN ) =
W
fx 2 X : x 6 f(xN )g =

=
Wn

x 2 X : for all F 2 FP s.t. x 2 F , NF (xN ) 2 Wf
o
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where for all F; F 0 2 FP and xN 2 XN such that NF (xN ) = NF 0(xN ), f(xN ) 2 F if and
only if f(xN ) 2 F 0, and Wf is anonymous. Therefore, there exists a positive integer

q � n = jN j such that for each x 2 X and F 2 FP s.t. x 2 F , f(xN ) 2 F if and only if

NF (xN ) 2 Wq � fT � N : jT j � qg, namely:

f(xN ) = _S2Wq(^i2Sxi).

Conversely, let q � n = jN j be a positive integer. Then, fWq is by construction

anonymous, and neutral (hence of course idempotent). Moreover, it is -again by

construction- monotonically-independent hence strategy-proof on DN
X by Lemma 1.

(iii) Clearly, fmaj is anonymous by de�nition, and strategy-proof onDN
X by Lemmas

1 and 2. Moreover, if jN j is odd then fmaj is bi-idempotent, by de�nition.
Conversely, suppose that f : XN ! X is anonymous, bi-idempotent and strategy-

proof on DN
X : Since f is strategy-proof on DN

X , it follows by Lemma 1 that f

is monotonically independent. But it can also be easily shown that (a) if f is

(monotonically) independent and bi-idempotent then it is also neutral, and (b) if f is

monotonically independent and neutral then f is a generalized committee aggregation

rule,14 i.e. there exists an order �lter W of (P(N);�) such that for all xN 2 XN :

f(xN ) =
_
A2W

^
i2A

xi.

Finally, notice that anonymity of f implies that there exists a positive in-

teger k � jN j such that W = fA � N : jAj � kg, and bi-idempotence of f

implies that jN j � k = k � 1 , whence n = jN j = 2k � 1 = 2(k � 1) + 1

and k = n+1
2 . Therefore, W =

�
A � N : jAj � n+1

2

	
= Wmaj , namely f =

fmaj . �

Remark 6.2. Notice that inclusivity and anonymity are mutually independent

conditions. Indeed, by de�nition the constant aggregation rules are trivially anonymous

but not inclusive while for any collegial W � P(N ) with
[
Wm = N (such as e.g.

W = ff1; 2; :::; ig ; fi; i+ 1; :::; ngg) fW is inclusive but not anonymous. However, it is

easily checked that any idempotent aggregation rule is anonymous only if it is also

inclusive (but not conversely).

14Broadly speaking, the proof of points (a) and (b) sketched above is an adaptation and extension

of a similar proof provided by Monjardet (1990) for �nite distributive lattices (see Vannucci (2019) for

more details).
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�

Proof of Claim 1

To begin with, observe that, by construction, for each x; y; w; z 2 L:

fu _ v : u 2 [x; y]; v 2 [w; z]g � [x _ w; y _ z],

x _ y 2 fu _ v : u 2 [x; y]; v 2 [w; z]g ,

y _ z 2 fu _ v : u 2 [x; y]; v 2 [w; z]g .

Thus, b_ and b̂ are well-de�ned binary operations on IL if and only if:
[x _ w; y _ z] � fu _ v : u 2 [x; y]; v 2 [w; z]g ,

and

[x ^ w; y ^ z] � fu ^ v : u 2 [x; y]; v 2 [w; z]g

as well.

Let us now show that if L is distributive then [x; y]b_[w; z] 2 IL holds for any

[x; y]; [w; z] 2 IL.
To see that, suppose that L is distributive and u0 2 [x _ w; y _ z]. Thus,

x = x ^ (x _ w) 6 x ^ u0 6 y ^ u0 6 y ^ (y _ z) = y, hence x ^ u0 2 [x; y]. Similarly,
w = w ^ (w _ x) 6 w ^ u0 6 z ^ u0 6 z ^ (y _ z) = z, hence w ^ u0 2 [w; z].

But then, u0 = u0 ^ (x _ w) = (u0 ^ x) _ (u0 ^ w) = (x ^ u0) _ (w ^ u0), namely
u0 2 fu _ v : u 2 [x; y]; v 2 [w; z]g, whence [x_w; y _ z] � fu _ v : u 2 [x; y]; v 2 [w; z]g.
Therefore, fu _ v : u 2 [x; y]; v 2 [w; z]g = [x_w; y_z]. It follows that [x; y]b_[w; z] 2 IL,
as claimed.

By the dual argument, [x; y]b̂[w; z] 2 IL also holds for any [x; y]; [w; z] 2 IL. Hence,b_ and b̂ are well-de�ned binary operations on IL. It remains to be checked that both b_
and b̂ do indeed satisfy Associativity, Commutativity, Idempotency, and Absorption.

To see this concerning b_, notice that for any x1; y1; x2; y2; x3; y3 2 L,
([x1; y1]b_[x2; y2])b_[x3; y3] = [(x1 _ x2); (y1 _ y2)]b_[x3; y3] =

= [(x1 _ x2) _ x3; (y1 _ y2) _ y3] =

= [x1 _ (x2 _ x3); y1 _ (y2 _ y3)] =

= [x1; y1]b_[x2 _ x3; y2 _ y3] =
= [x1; y1]b_([x2; y2]b_[x3; y3]).
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Moreover,

[x1; y1]b_[x2; y2] = [x1 _ x2; y1 _ y2] = [x2 _ x1; y2 _ y1] = [x2; y2]b_[x1; y1];
[x1; y1]b_[x1; y1] = [x1 _ x1; y1 _ y1] = [x1; y1],

and

[x1; y1]b_([x1; y1]b̂[x2; y2] = [x1; y1]b_([x1 ^ x2; y1 ^ y2] =
= [x1 _ (x1 ^ x2); y1 _ (y1 ^ y2)] = [x1; y1].

A dual argument establishes the same properties for b̂. It follows that (IL; b_; b̂) is
indeed a lattice.

Furthermore, suppose that (L;_;^) is bounded, with top element 1 and bottom
element 0. Then, it is easily checked that (IL; b_; b̂) is also bounded, with [1; 1] and [0; 0]
as its top and bottom elements, respectively.

Conversely, suppose that (IL; b_; b̂) is a lattice, i.e. both b_ and b̂ are well-de�ned
binary operations on IL (namely, for any [x; y]; [w; z] 2 IL, both [x; y]b_[w; z] 2 IL

and [x; y]b̂[w; z] 2 IL), and satisfy Associativity, Commutativity, Idempotency and

Absorption as de�ned above.

Since b_ is a well-de�ned operation, it follows from the de�nition of b_ and the

observation mentioned at the very beginning of the present proof that, for any

x; y; w; z 2 L,
[x _ w; y _ z] � fu _ v : u 2 [x; y]; v 2 [w; z]g .

Thus, for every t 2 L such that x _ w 6 t 6 y _ z it must be the case that t = u _ v
for some u 2 [x; y], v 2 [w; z]. Hence, t > (y ^ t) _ (z ^ t) > (u ^ t) _ (v ^ t) =
(u ^ (u _ v)) _ (v ^ (u _ v)) = u _ v = t. It follows that t = (u ^ t) _ (v ^ t), for every
t 2 [x _ w; y _ z]: in particular, t = (y ^ t) _ (z ^ t) also holds.

But then, since y _ z > t > t ^ (y _ z), t ^ (y _ z) = t whence t ^ (y _ z) =
(y ^ (t^ (y _ z))_ (z ^ (t^ (y _ z) = (y ^ t)_ (z ^ t) = (t^ y)_ (t^ z), and distributivity
of L is thus established (since t; y; z are in fact arbitrarily chosen).

Finally, suppose that (IL; b_; b̂) is a lattice. By the previous argument, L is a



29

distributive lattice. Then, for any x1; y1; x2; y2; x3; y3 2 L,

([x1; y1]b_[x2; y2])b̂([x1; y1]b_[x3; y3]) = [(x1 _ x2); (y1 _ y2)]b̂[(x1 _ x3); (y1 _ y3)] =
= [(x1 _ x2) ^ (x1 _ x3); (y1 _ y2) ^ (y1 _ y3)] =

= [x1 _ (x2 ^ x3); y1 _ (y2 ^ y3)] =

= [x1; y1]b_[x2 ^ x3; y2 ^ y3] =
= [x1; y1]b_([x2; y2]b̂[x3; y3].

Therefore, (IL; b_; b̂) is indeed a distributive lattice, as claimed.
Furthermore, suppose that (IL; b_; b̂) is bounded, and denote by [x>; y>] and [x?; y?]

its top and bottom elements, respectively. Then, for any [x; y] 2 IL, [x; y]b_[x>; y>] =
[x>; y>] and [x; y]b̂[x?; y?] = [x?; y?]. In particular, [y>; y>]b_[x>; y>] = [x>; y>] and
[x?; x?]b̂[x?; y?] = [x?; y?].

It follows that for any z 2 L, z 6 x> = y> and y? = x? 6 z, hence L is indeed

bounded with x>and x? as its top and bottom elements, respectively.

�
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