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STRATEGY-PROOF AGGREGATION RULES IN
MEDIAN SEMILATTICES WITH APPLICATIONS TO

PREFERENCE AGGREGATION

ERNESTO SAVAGLIO AND STEFANO VANNUCCI

Abstract. Two characterizations of the whole class of strategy-
proof aggregation rules on rich domains of locally unimodal pre-
orders in �nite median join-semilattices are provided. In particular,
it is shown that such a class consists precisely of generalized weak
sponsorship rules induced by certain families of order �lters of the
coalition poset. It follows that the co-majority rule and many other
inclusive aggregation rules belong to that class. The co-majority
rule for an odd number of agents is characterized and shown to
be equivalent to a Condorcet-Kemeny rule. Applications to prefer-
ence aggregation rules including Arrowian social welfare functions
are also considered. The existence of strategy-proof anonymous
neutral and
unanimity-respecting social welfare functions which are de�ned

on arbitrary pro�les of total preorders and satisfy a suitably relaxed
independence condition is shown to follow from our characteriza-
tions.
JEL Classi�cation D71

1. Introduction

The present work is devoted to characterizing those aggregation rules
in �nite median join-semilattices which are strategy-proof on rich do-
mains of locally unimodal (or single peaked) total preorders. More-
over, the co-majority (or median) rule is characterized within the class
of such strategy-proof rules as the only one that is anonymous and bi-
idempotent when the number of agents is odd. Two applications of our
characterization results to preference aggregation rules including social
welfare functions are also provided, and their connections to two clas-
sical ways out of Arrow�s �impossibility theorem�suggested from the

2000 Mathematics Subject Classi�cation. Primary 05C05; Secondary 52021,
52037.
Key words and phrases. Strategy-proofness, single peakedness, median join-

semilattice, social welfare function.
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2 ERNESTO SAVAGLIO AND STEFANO VANNUCCI

social choice-theoretic literature are emphasized and discussed. In par-
ticular, a new characterization of generalized Condorcet-Kemeny rules
for an odd number of agents is established.
Thus, the foregoing results jointly address several related issues: the

characterization of the entire class of strategy-proof aggregation rules
in median �nite semilattices, a speci�c characterization of �median�
rules amongst them, and -as a by�product- both a general characteriza-
tion of strategy-proof preference aggregation rules including social wel-
fare functions, and a speci�c characterization of the Condorcet-Kemeny
aggregation rule in a �xed population setting.
Now, such issues have been previously considered in the literature,

but most typically from mutually �disconnected�perspectives. For in-
stance, aggregation rules in semilattices and lattices have been stud-
ied in depth in seminal contributions mostly due to Monjardet and
his co-workers (see e.g. Monjardet (1990)), but with no reference to
strategy-proofness issues. Condorcet-Kemeny aggregation rules have
been characterized at least for the case of linear orders and in a variable
population setting (see e.g. Young, Levenglick (1978)), but again with
no reference to strategy-proofness properties. By contrast, Bossert,
Sprumont (2014) does consider strategy-proofness issues, and also pro-
vides characterizations of some strategy-proof preference aggregation
rules in a variable population setting, but focusses in fact on restricted
aggregation rules which admit total preorders as possible outputs while
being only de�ned on pro�les of linear orders. Most recently, Bonifacio,
Massó (2020) essentially characterizes the sub-class of anonymous and
unanimity-respecting aggregation rules in arbitrary join-semilattices which
are strategy-proof on �single-peaked�domains of total preorders (accord-
ing to a notion of �single-peakedness�that re�ects the structure of the
underlying join-semilattice). Since the relevant join-semilattice may
not be median, however, �median� rules such as Condorcet-Kemeny
rules are in general not available, and a speci�c application to the case
of total preorders and consequently to classical Arrowian social welfare
functions is in fact out of reach in that general framework without some
further structure.
On the contrary, focussing on the case of median join-semilattices

makes it possible and natural to address jointly all of the previous
issues: that is precisely what is done in the present work. The appli-
cation of its main results to two prominent examples of median join-
semilattices (namely, the median semilattice of total preorders and the
distributive lattice of re�exive binary relations on a �nite set) provides,
as a by-product, a simple concrete instance for each one of two classical
ways out of Arrow�s �impossibility theorem�. The �rst one consists in a
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considerable relaxation of Arrow�s Independence of Irrelevant Alterna-
tives, while the second one consists in dropping entirely connectedness
and transitivity-like requirements on preferences both as an input and
as an output for the relevant preference aggregation rule.
The rest of the paper is organized as follows: Section 2.1 is devoted to

the basic de�nitions and preliminaries of our model, while Section 2.2
includes the main results. Section 3 is devoted to two applications of the
foregoing results to preference aggregation rules for total preorders and
arbitrary re�exive relations, respectively. Finally, Section 4 includes a
detailed discussion of related literature and some concluding remarks.

2. Strategy-proof aggregation rules in finite median
join-semilattices: model and results

2.1. De�nitions and preliminaries. Let N = f1; ::; ng denote the
�nite population of voters, X an arbitrary nonempty �nite set of al-
ternatives and 6 a partial order i.e. a re�exive, transitive and anti-
symmetric binary relation on X, and X = (X;6) the corresponding
partially ordered set, or poset, on X. We assume that n � 3 in order
to avoid tedious quali�cations. The subsets of N are also referred to
as coalitions, and (P(N);�) denotes the partially ordered set of coali-
tions induced by set-inclusion. An order �lter of (P(N);�) is a set
F � P(N) of coalitions such that for any S 2 F and any T � N , if
S � T then T 2 F . The basis of order �lter F is the set of inclusion-
minimal elements/coalitions of F , and is denoted by Fmin.
A chain of poset X = (X;6) is a set Y � X such that for any

distinct u; v 2 Y either u 6 v or v 6 u holds, and its length l(Y )
is jY j � 1 (where jY j denote its size). A chain Y of (X;6) having
x as its 6-minimum and y as its 6-maximum is maximal if there is
no z 2 X n Y such that x 6 z 6 y. For any x; y 2 X such that
x < y (i.e. x 6 y and not y 6 x) the length of the order-interval
[x; y] := fz 2 X : x 6 z 6 yg, written l([x; y]), is the length of a (max-
imal) chain of maximum length having x as its 6-minimum and y as
its 6-maximum. In particular, x 2 X is said to be covered by y 2 X,
written x� y, i¤ x < y and [x; y] = fx; yg, namely l(fx; yg) = 1. The
covering graph C(X ) = (X;E�) of C is the undirected graph having
X as vertex-set and E� := ffx; yg � X : x� y or y � xg as edge-
set. A path �xy of C(X ) connecting two vertices x and y is a maximal
chain fz0; ::::; zkg of X such that fz0; zkg = fx; yg and zi � zi+1, for
any i = 1; :::; k � 1, and is of length l(�xy) = k. The set of all paths
of C(X ) connecting x and y is denoted by �xy. A geodesic from x
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to y on C(X ) is a path of minimum length (or equivalently a short-
est path) connecting x and y. It can be easily proved (and left to the
reader to check) that the shortest length function �C(X ) : X �X ! Z+
such that, for any x; y 2 X, �C(X )(x; y) := l(�xy) (where �xy is a
path of minimum length in �xy) is indeed a metric namely for any
x; y; z 2 X: (i) �C(X )(x; y) = 0 i¤ x = y, (ii) �C(X )(x; y) = �C(X )(y; x),
(iii) �C(X )(x; y) � �C(X )(x; z) + �C(X )(z; y).
We denote by _ and ^ the least-upper-bound and greatest-lower-

bound binary partial operations on X as induced by 6, respectively,
while for any Y � X , _Y and ^Y denote the least-upper-bound and
greatest-lower-bound of Y (whenever they exist). We also posit -for any
x 2 X- " x = fy 2 X : x 6 yg i.e. the (principal) order �lter1 gener-
ated by x. An element x 2 X ismeet-irreducible (join-irreducible) if for
any Y � X, x = ^Y entails x 2 Y (x = _Y entails x 2 Y ). Moreover,
for any Y � X, ^Y (_Y , respectively) is well-de�ned if and only if there
exists z 2 X such that z 6 y (y 6 z, respectively) for all y 2 Y , namely
the elements of Y have a common lower (upper) bound. The set of all
meet-irreducible elements (join-irreducible elements) of X = (X;6)
will be denoted by MX (JX , respectively). Notice that, by construc-
tion, for every x 2 X, x = ^M(x) where M(x) := fm 2MX : x 6 mg
and, dually x = _J(x) where J(x) := fj 2 JX : j 6 xg.
The partially ordered set X = (X;6) is a (�nite) join-semilattice

(meet-semilattice, respectively) if and only if the least upper bound or
join x_ y (the greatest lower bound or meet x^ y) is well-de�ned in X
for all x; y 2 X so that _ : X�X ! X (^ : X�X ! X) is a function,
and a lattice if it is both a join-semilattice and a meet-semilattice.
Notice that a �nite join-semilattice X = (X;6) has a (unique) uni-

versal upper bound or top element 1 = _X, and its co-atoms are those
elements x 2 X such that x � 1: the set of co-atoms of X = (X;6)
is denoted by CX . Dually, a �nite meet-semilattice X = (X;6) has
a (unique) universal lower bound or bottom element 0 = ^X, and its
atoms are those elements x 2 X such that 0 � x: the set of atoms
of X is denoted by AX . Notice that a co-atom (atom, respectively) is
also a meet-irreducible (join-irreducible, respectively) element. When
co-atoms and meet-irreducibles (atoms and join-irreducibles) do in fact
coincide the join-semilattice (meet-semilattice) is said to be coatomistic
(atomistic, respectively). Let us now introduce the class of �nite join-
semilattices which is the focus of the present paper.

1An order �lter of a partially ordered set (X;6) is a set Y � X such that, for
any y; z 2 X, if y 6 z and y 2 Y then z 2 Y .
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The (�nite) join-semilattice X = (X;6) is median if it also satis�es
the following pair of conditions:
(i) upper distributivity: for all u 2 X, and for all x; y; z 2 X such

that u is a lower bound of fx; y; zg, x _ (y ^ z) = (x _ y) ^ (x _ z) (or,
equivalently, x^ (y_ z) = (x^ y)_ (x^ z)) holds i.e. (" u;6j"u) -where
6j"xdenotes the restriction of 6 to " u- is a distributive lattice2 ;
(ii) co-coronation (or meet-Helly) property: for all x; y; z 2 X if x^y,

y ^ z and x ^ z exist, then (x ^ y ^ z) also exists.

Three well-known properties of (�nite) upper distributive join-semilattices
that will be used below are collected in the following

Claim 1. (i) Let m 2 MX be a meet-irreducible element of an upper
distributive �nite join-semilattice X = (X;6) and Y � X such that
^Y exists. If ^Y < m then there also exists some y 2 Y such that
y 6 m (see e.g. Monjardet (1990));
(ii) a �nite upper distributive join-semilattice X = (X;6) is graded

i.e. it admits a rank function namely a function r : X ! Z+ such
that for any x; y 2 X if x � y then r(y) = r(x) + 1 (see Barbut,
Monjardet (1970), Leclerc (1994));
(iii) the rank function of a �nite upper distributive join-semilattice is

a valuation, namely for any x; y 2 X the following condition holds:
if the meet x^ y exists then r(x) + r(y) = r(x_ y) + r(x^ y) (Leclerc
(1994)).

Moreover, it is easily checked that if X = (X;6) is a median join-
semilattice then the partial function � : X3 ! X de�ned as follows:
for all x; y; z 2 X, �(x; y; z) = (x _ y) ^ (y _ z) ^ (x _ z)
is indeed a well-de�ned ternary operation on X, the median of X

which satis�es the following two characteristic properties (see Sholan-
der (1952, 1954):
(�1) �(x; x; y) = x for all x; y 2 X
(�2) �(�(x; y; v); �(x; y; w); z) = �(�(v; w; z); x; y) for all x; y; v; w; z 2

X.
2A poset (Y;6) is a distributive lattice i¤, for any x; y; z 2 X , x^y and x_y exist,

and x^ (y _ z) = (x^ y)_ (x^ z) (or, equivalently, x_ (y ^ z) = (x_ y)^ (x_ z)).
Moreover, a (distributive) lattice X is said to be lower (upper) bounded if there
exists ? 2 X (> 2 X) such that ? 6 x (x 6 >) for all x 2 X, and bounded if it is
both lower bounded and upper bounded. A bounded distributive lattice (X;6) is
Boolean if for each x 2 X there exists a complement namely an x0 2 X such that
x _ x0 = > and x ^ x0 = ?.
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Relying on �, a ternary (median-induced) betweenness relation
B� = f(x; z; y) 2 X3 : z = �(x; y; z)g is de�ned on X ,
and for any x; y 2 X,
I�(x; y) := B�(x; :; y) = fz 2 X : z = �(x; y; z)g is the interval in-

duced by x and y: therefore, for any x; y; z 2 X; (x; z; y) 2 B� (also
written B�(x; z; y)) if and only if z 2 I�(x; y):
Furthermore, in a (�nite) median join-semilattice X = (X;6) a met-

ric dr : X �X ! Z+ can be de�ned in a natural way by the following
rule3: for any x; y 2 X, dr(x; y) = 2r(x _ y)� r(x)� r(y).
Let < denote a preorder i.e. a re�exive and transitive binary relation

on X (we shall denote by � and � its asymmetric and symmetric com-
ponents, respectively, by Top(<) the possibly empty set of its maxima,
and by jj the set of its incomparable ordered pairs i.e. xjjy i¤ neither
x < y nor y < x hold). Then, < is said to be locally unimodal with
respect to betweenness relation B� - or B�-lu - if and only if
U -(i) there exists a unique maximum of < in X, its top outcome

-denoted top(<)- and
U -(ii) for all x; y; z 2 X, if z 2 I�(top(<); y) r ftop(<)g then not

y � z.
We denote by UB� the set of all B�-lu preorders on X. An N -pro�le

of B�-lu preorders is a mapping from N into UB�. We denote by U
N
B�

the set of all N -pro�les of B�-lu preorders.
Moreover, A set D � UNB� of locally unimodal preorders w.r.t. B� is

rich if for all x; y 2 X there exists <2 DX such that top(<) = x and
UC(�; y) = I�(x; y) (where UC(�; y) := fy 2 X : x < yg is the upper
contour of < at y).
An aggregation rule for (N;X) is a function f : XN ! X 4. An

aggregation rule f is strategy-proof on UNB� i¤ for all B�-unimodal

3A metric on X is a real-valued function � : X � X ! R+ such that for any
x; y; z 2 X :
(i) �(x; y) = 0 i¤ x = y,
(ii) �(x; y) = �(y; x)
(iii) �(x; z) � �(x; y) + �(y; z).
4Occasionally, both weaker and stricter versions of aggregation rules will be

considered, namely restricted aggregation rules, multi-aggregation rules and con-
strained aggregation rules.
A restricted aggregation rule for (N;X) is a function f : D ! X for some

D � XN . A multi-aggregation rule for (N;X) is a function f : XN ! P(X) n f;g.
Notice that a multi-aggregation aggregation rule for (N;X) can also be regarded
as an instance of a restricted aggregation rule for (N;P(X)).
By contrast, a constrained aggregation rule for (N;X) is a function f : XN ! C

for some C � X:
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N -pro�les (<i)i2N 2 UNB�, and for all i 2 N , yi 2 X, and (xj)j2N 2 XN

such that xj = top(<j) for each j 2 N , not f((yi; (xj)j2Nrfig)) �i
f((xj)j2N). Finally, an aggregation rule f : XN ! X isB�-monotonic
i¤ for all i 2 N , yi 2 X, and (xj)j2N 2 XN ,
f((xj)j2N) 2 I�(xi; f(yi; (xj)j2Nrfig)).5
Non-trivial strategy-proof aggregation rules should be -at least to

some extent- input-responsive and output-unbiased. A few require-
ments can be deployed to present several versions and degrees of input-
responsiveness and output-unbiasedness of aggregation rules, namely
Inclusiveness: an aggregation rule for (N;X) is inclusive if and

only if for each voter i 2 N there exist xN 2 XN and yi 2 X such that
f(xNrfig; yi) 6= f(xN):
Anonymity: an aggregation rule f for (N;X) is anonymous if for

each xN 2 XN and each permutation � of N , f(xN) = f(x�(N)) (where
x�(N) = (x�(1); :::; x�(n))).
Idempotence: an aggregation rule f for (N;X) is idempotent (or

unanimity-respecting) if f(x; :::; x) = x for each x 2 X:
Sovereignty: an aggregation rule f for (N;X) is sovereign if for

each y 2 X there exists xN 2 XN such that f(xN) = y i.e. f is an
onto function.
Neutrality: an aggregation rule f for (N;X) is neutral if for each

xN 2 XN and each permutation � of X; f(�(xN)) = �(f(xN)) (where
�(xN) = (�(x1); :::; �(xk))):
Notice that both Idempotence andNeutrality imply Sovereignty

(but not conversely), while Anonymity and Sovereignty jointly im-
ply Inclusiveness (but not conversely). However, it is easily checked
that if Strategy-proofness holds, Sovereignty and Idempotence are
in fact equivalent.
In particular, let X = (X;6) be a �nite join-semilattice and MX

the set of its meet-irreducible elements, and for any xN 2 XN , and
any m 2 MX , posit Nm(xN) := fi 2 N : xi 6 mg. Then, the following
properties of an aggregation rule can also be introduced:
MX -Independence: an aggregation rule f : XN ! X is MX -

independent if and only if for all xN ; yN 2 XN and all m 2 MX : if
Nm(xN) = Nm(yN) then f(xN) 6 m if and only if f(yN) 6 m.

5B�-monotonicity (or, equivalently, I�-monotonicity) of f amounts to requiring
all of its projections fi to be gate maps to the image of f (see van de Vel (1993),
p.98 for a de�nition of gate maps). The introduction of B�-monotonic functions in
a strategic social choice setting is essentially due to Danilov (1994).
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Isotony: an aggregation rule f : XN ! X is Isotonic if f(xN) 6
f(x0N) for all xN ; x

0
N 2 XN such that xN6x0N (i.e. xi 6 x0i for each

i 2 N).
It can be easily shown (see Monjardet (1990)) that the conjunction

ofMX -Independence and Isotony is equivalent to the following con-
dition:
Monotonic MX -Independence: An aggregation rule f : XN !

X is monotonically MX -independent if and only if for all xN ; yN 2
XN and all m 2 MX : if Nm(xN) � Nm(yN) then f(xN) 6 m implies
f(yN) 6 m.6

2.2. Main results. We are now ready to state the main result of this
paper concerning strategy-proofness of aggregation rules on rich do-
mains of locally unimodal pro�les in median join-semilattices7.

Theorem 1. Let X = (X;6) be a �nite median join-semilattice, B� its
median-induced betweenness, and f : XN ! X an aggregation rule
for (N;X). Then, the following statements are equivalent:
(i) f is strategy-proof on DN for any rich domain D � UB� of

locally unimodal preorders w.r.t. B� on X;
(ii) f is B�-monotonic;
(iii) f is monotonically MX -independent.

Proof. (i)=)(ii) By contraposition. Let us assume that f : XN ! X
is not B�-monotonic: thus, there exist i 2 N , x0i 2 X and xN =
(xi)i2N 2 XN such that f(xN) =2 [xi; f(x0i; xNrfig)]. Then, consider a
preorder <�on X de�ned as follows: xi = top(<�) and for all y; z 2
X r fxig , y <� z i¤ (a) fy; zg � [xi; f(x

0
i; xNrfig)] r fxig or (b)

y 2 [xi; f(x0i; xNrfig)]r fxig and z =2 [xi; f(x0i; xNrfig)] or (c) y , z, y =2
[xi; f(x

0
i; xNrfig)] and z =2 [xi; f(x0i; xNrfig)]. Clearly, by construction

<�consists of three indi¤erence classes with fxig, [xi; f(x0i; xNrfig)] r
fxig andXr[xi; f(x0i; xNrfig)] as top, medium and bottom indi¤erence
classes, respectively. Now, observe that <�2 UB�(which is by de�nition
a rich locally unimodal domain w.r.t. B�). To check that such a
statement holds true, take any y; z; v 2 X such that y 6= z and v 2 [y; z]

6The notions of JX -Independence and Monotonic JX -Independence are de�ned
similarly by dualization for a �nite median inf-semilattice X = (X;6) as follows:
for all xN ; yN 2 XN and all j 2 JX , if
Nj(xN ) := fi 2 N : j 6 xig �
� Nj(yN ) := fi 2 N : j 6 yig
then j 6 f(xN ) implies j 6 f(yN ).
7A similar result holds for �nite median meet-semilattices, and can be easily

established by dualization of the relevant arguments.
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i.e. �(y; v; z) = v (if y = z then v = y = z and there is in fact
nothing to prove). If fy; zg � [xi; f(x

0
i; xNrfig)] then by de�nition

�(xi; f(x
0
i; xNrfig); y) = y and �(xi; f(x0i; xNrfig); z) = z. Thus, by

property (�2) of �,
�(�(xi; f(x

0
i; xNrfig); y); �(xi; f(x

0
i; xNrfig); z); v) =

= �(�(y; z; v); xi; f(x
0
i; xNrfig), whence

�(�(xi; f(x
0
i; xNrfig); y); �(xi; f(x

0
i; xNrfig); z); v) =

= �(y; z; v) = v implies
�(�(y; z; v); xi; f(x

0
i; xNrfig) = �(y; z; v) = v i.e. v 2 [xi; f(x0i; xNrfig)].

Clearly, fy; zg 6= fxig since y 6= z. Now, assume without loss of
generality that y 6= xi : thus v <� y by de�nition of <�. If on the
contrary fy; zg\(Xr [xi; f(x0i; xNrfig)]) 6= ? then clearly by de�nition
of <�there exists w 2 fy; zg such that v <� w. Thus, <�2 UB� as
claimed. Also, by assumption f(xN) 2 X r [xi; f(x0i; xNrfig)] whence
by construction f(x0i; xNrfig) �� f(xN). But then, f is not strategy-
proof on UNB� .
(ii)=)(i) Conversely, let f be B�-monotonic. Now, consider any

< = (<j)j2N 2 UNB� and any i 2 N . By de�nition of B�-monotonicity,
f(top(<i); xNrfig) 2 [top(<i); f(xi; xNrfig)] for all xNrfig 2 XNrfig and
xi 2 X. But then, since clearly top(<i) <i f(top(<i); xNrfig), either
f(top(<i); xNrfig) = top(<i) or not f(xi; xNrfig) �i f(top(<i); xNrfig)
by local unimodality of <iw.r.t. B�. Hence, not f(xi; xNrfig) �i
f(top(<i); xNrfig) in any case. It follows that f is indeed strategy-
proof on UNB�.
(ii))(iii) Suppose that f is B�-monotonic. Hence, for all i 2 N ,

yi 2 X, and (xj)j2N 2 XN , f((xj)j2N) 2 I�(xi; f(yi; (xj)j2Nnfig) i.e.
f((xj)j2N) = �(xi; f((xj)j2N); f(yi; (xj)j2Nrfig)). Therefore, for any
meet-irreducible element m 2 MX , f((xj)j2N) 6 m if and only if
�(xi; f((xj)j2N); f(yi; (xj)j2Nrfig)) = (xi _ f((xj)j2N))^ (f((xj)j2N)_
f(yi; (xj)j2Nrfig)) ^ (xi _ f(yi; (xj)j2Nrfig)) 6 m.
It follows that if f((xj)j2N) 6 m then [ xi 6 m or f(yi; (xj)j2Nrfig) 6

m ]. Indeed, suppose that f((xj)j2N) 6 m
yet [ xi 
 m and f(yi; (xj)j2Nrfig) 
 m]. Then, (xi _ f((xj)j2N)) 


m, f((xj)j2N) _ f(yi; (xj)j2Nrfig) 
 m, and xi _ f(yi; (xj)j2Nrfig) 

m. Therefore, since X is upper distributive, (xi _ f((xj)j2N)) ^
(f((xj)j2N) _ f(yi; (xj)j2Nrfig)) 
 m whence, by upper distributiv-
ity again, (xi _ f((xj)j2N)) ^ (f((xj)j2N) _ f(yi; (xj)j2Nrfig)) ^ (xi _
f(yi; (xj)j2Nrfig)) 
 m
i.e. �(xi; f((xj)j2N); f(yi; (xj)j2Nrfig)) = f((xj)j2N) 
 m, a con-

tradiction.
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Now, suppose that m 2 MX , f(xN) 6 m and Nm(xN) � Nm(yN)
for some xN := (xj)j2N , yN := (yj)j2N 2 XN : we need to establish the
claim that f(yN) 6 m as well.
By B�-monotonicity of f , xi 6 m or f(yi; (xj)j2Nrfig) 6 m for any

i 2 N . Thus, if xi 6 m then also yi 6 m, by assumption. Hence,
f((xj)j2N) 6 m and B�-monotonicity of f entail f(yi; (xj)j2Nrfig) 6
m: indeed, by B�-monotonicity f(yi; (xj)j2Nrfig) 2 I�(yi; f((xj)j2N))
i.e.
f(yi; (xj)j2Nrfig) = (yi _ f(yi; (xj)j2Nnfig)) ^ (f(yi; (xj)j2Nrfig) _

f((xj)j2N)) ^ (yi _ f((xj)j2N)) 6
6 (yi _ f((xj)j2N)) 6 m. It follows that f(yi; (xj)j2Nrfig) 6 m in

any case.
But then, from B�-monotonicity of f and f(yi; (xj)j2Nrfig) 6 m,

it similarly follows that xi+1 6 m or f((yi; yi+1; (xj)j2Nrfi;i+1g)) 6 m.
Now, xi+1 6 m entails yi+1 6 m as well hence f(yi; (xh)h2Nrfig) 6 m
and B�-monotonicity jointly imply f((yi; yi+1; (xj)j2Nrfi;i+1g)) 6 m,
by the same argument previously employed. Repeating the argument,
we eventually obtain f((yi)i2N) 6 m, which implies that f is indeed
monotonically MX -independent as required.
(iii) =)(ii) Suppose that f is monotonically MX -independent but

not B�-monotonic. Thus, there exist i 2 N , (xj)j2N 2 XN , yi 2 X
such that
f((xj)j2N) 6= �(xi; f((xj)j2N); f(yi; (xj)j2Nrfig))
i.e. there must exist m 2 MX such that f((xj)j2N) 6 m but (xi _

f((xj)j2N))^(f((xj)j2N)_f(yi; (xj)j2Nrfig)^(xi_f(yi; (xj)j2Nrfig)) 

m or (xi_f((xj)j2N))^(f((xj)j2N)_f(yi; (xj)j2Nrfig)^(xi_f(yi; (xj)j2Nrfig)) 6
m but f((xj)j2N) 
 m.
Thus, suppose that f((xj)j2N) 6 m and (xi_f((xj)j2N))^(f((xj)j2N)_

f(yi; (xj)j2Nrfig) ^ (xi _ f(yi; (xj)j2Nrfig)) 
 m.
Then, it must be the case that xi 
 m and f(yi; (xj)j2Nrfig) 


m whence by construction Nm((xj)j2N) � Nm((yi; (xj)j2Nrfig)) and
therefore f(yi; (xj)j2Nrfig) 6 m by monotonic MX -independence, a
contradiction.
Next, suppose that
(xi_f((xj)j2N))^(f((xj)j2N)_f(yi; (xj)j2Nrfig)^(xi_f(yi; (xj)j2Nrfig)) 6

m
and f((xj)j2N) 
 m.
Since, by upper distributivity of X , it must be the case that either

(xi _ f((xj)j2N)) 6 m or (f((xj)j2N) _ f(yi; (xj)j2Nrfig) 6 m or else
(xi_f(yi; (xj)j2Nrfig)) 6 m, it follows that (xi_f(yi; (xj)j2Nrfig)) 6 m
hence in particular both xi 6 m and f(yi; (xj)j2Nrfig) 6 m. Thus,
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Nj((yi; (xj)j2Nrfig)) � Nj((xj)j2N) and f(yi; (xj)j2Nrfig) 6 m whence,
by monotonicMX -independence, f((xj)j2N) 6 m, a contradiction again,
and the thesis is established. �

A similar argument is used for the case of total preorders on (not nec-
essarily �nite) bounded distributive lattices in Savaglio and Vannucci
(2019), and in Vannucci (2019). It should also be emphasized here that,
obviously, (�nite) distributive lattices are a prominent special subclass
of (�nite) median join-semilattices.

Corollary 1. Let X = (X;6) be a �nite median join-semilattice,
B� its median-induced betweenness, and f : XN ! X an aggrega-
tion rule. Then, the following statements are equivalent:
(i) f is strategy-proof on DN for every rich domain D � UB� of

locally unimodal preorders on w.r.t. B� on X;
(ii) for each m 2 MX there exists an order �lter Fm of (P(N);�)

such that
f(xN) = ffFm:m2MX g(xN) :=

V
fm 2MX : Nm(xN) 2 Fmg for all

xN 2 XN .

Proof. Immediate from Theorem 1 and dualization of Proposition 1.4
of Monjardet (1990). In particular, each order �lter Fm consists of the
locally m-winning coalitions for f , namely for every m 2MX

Fm :=

�
T � N : there exists xN 2 XN such that
fi 2 N : xi 6 mg = T and f(xN) 6 m

�
. �

It should be emphasized that the class of aggregation rules ffFm:m2MX g
identi�ed by Corollary 1 is in principle very comprehensive indeed.
More speci�cally, Corollary (ii) allows a broad description of such rules
as those returning the strictest consensus among the admissible alter-
natives actually sponsored by the agents of the relevant coalitions (as
speci�ed by the order �lters Fm). In particular, the class of aggrega-
tion rules thus characterized encompasses a lot of suitably �inclusive�
and/or �unbiased�rules, including the following:

� Quorum system aggregation rules, namely functions ffFm:m2MX g
such that every order �lter Fm is transversal i.e. S \T 6= ? for
all S; T 2 Fm.

� Inclusive aggregation rules, namely functions ffFm:m2MX g such

that
[

m2MX

Fminm = N .
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� Collegial aggregation rules, namely functions ffFm:m2MX g such
that for some m 2MX , there exists a non-empty Sm � N with
Fm � fT � N : Sm � Tg.

� Outcome-biased aggregation rules, namely functions ffFm:m2MX g
where Fm = ? for some m 2MX .

� Neutral aggregation rules, namely functions ffFm:m2MX g where
Fm = Fm0 whenever m ^m0 exists.

� Quota aggregation rules, namely anonymous aggregation rules
i.e. functions ffFm:m2MX g such that for each m 2 MX there
exists an integer q[m] � jN j with Fm =

�
T � N : q[m] � jT j

	
. In

particular, a quota aggregation rule is also neutral i¤ q[m] = q[m0]

whenever m ^m0 exists.
A prominent instance of a neutral quota aggregation rule is co-

majority as de�ned below.

De�nition 1. (Co-majority rule) Let X = (X;6) be a �nite median
join-semilattice, and N a �nite set. Then, the co-majority rule f@maj

for (N;X) is de�ned as follows: for all xN 2 XN ,

f@maj(xN) :=
^

S2Wmaj

(
_
i2S
xi)

where Wmaj =
n
S � N : jSj � b jN j+2

2
c
o
.

It is easily seen, and left to the reader to check, that the co-majority
rule is in particular a positive instance of an idempotent, inclusive and
transversal aggregation rule.
As a further corollary of Theorem 1 and Corollary 1 we obtain a

new characterization of the co-majority rule via strategy-proofness,
anonymity as de�ned above and the following well-known general prop-
erty for aggregation rules, namely

Bi-Idempotence: for any xN 2 XN and y; z 2 X, if xi 2 fy; zg for
all i 2 N , then f(xN) 2 fy; zg.

Clearly, Bi-Idempotence amounts to a local requirement combining
�decisiveness�(the ability to select a single outcome) and �faithfulness�
(the ability to select the outcome among the proposals actually ad-
vanced) both under perfect binary polarization and under perfect agree-
ment.
Thus, we have the following characterization result of the co-majority

rule.
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Proposition 1. Let X = (X;6) be a �nite median join-semilattice,
B� its median betweenness relation, D � UB� a rich domain of locally
unimodal preorders with respect to B�. Then, an aggregation rule f :
XN ! X satis�es Anonymity, Bi-Idempotence and is strategy-proof
on DN with jN j odd if and only if f is the co-majority rule f@maj:

Proof. Immediate from Theorem 1 above and a straightforward dual-
ization of Corollary 7.4 of Monjardet (1990). �

In order to appreciate the actual content of the co-majority rule and
its specialization to the case of total preorders to be discussed in the
next section, some further properties of median join-semilattices are to
be introduced and discussed here.

Claim 2. (Barthélemy (1978), Monjardet (1981), Leclerc (1994)). Let
X = (X;6) be a �nite upper distributive join-semilattice, 1 its top
element, C(X ) its covering graph, and r its normalized rank function
de�ned as follows: for any x 2 X, r(x) := r(1)� l([x; 1]). Then,
(i) the function dr : X �X ! Z+ such that for any x; y 2 X
dr(x; y) := 2r(x _ y)� r(x)� r(y)
is a metric on X;
(ii) dr = �C(X );
(iii) �C(X )(x; y) = �C(X )(x; z) + �C(X )(z; y) for any x; y; z 2 X such

that z 2 �xy for some geodesics �xy from x to y on C(X ).

Proof. See Barthélemy (1978) (Proposition 1), Monjardet (1981) (The-
orem 8), and Leclerc (1994) (Theorem 3.1). �

As a consequence, for any nonnegative integer n 2 N a nonempty
metric median set m(x1; :::; xn) can be de�ned on any �nite family -or
pro�le- of n elements xi, i = 1; :::; n of a �nite median join-semilattice
X = (X;6) with rank function r and covering graph C(X ) as follows:
m(x1; :::; xn) := argminy2X

Pn
i=1 d(y; xi), where d = dr = �C(X ) as

de�ned above.
Thus, a metric median function m :

[
n2N

Xn ! P(X) (where P(X)

denotes the power set of X), and all of its restrictions m(n) : X
n !

P(X) to a �xed n 2 N, are well-de�ned and nonempty-valued. In
particular, if n is odd then it is well-known and easily proved thatm(n)

is single-valued, hence it can also be regarded as an n-ary algebraic
operation on X, written bm(n) : X

n ! X (see e.g. Bandelt, Barthélemy
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(1984), Monjardet, Raderanirina (2004), Hudry, Leclerc, Monjardet,
Barthélemy (2009)).
The following well-known key result clari�es the tight connection

(indeed, the equivalence) between the co-majority aggregation rule and
the foregoing restrictions of the metric median function on a �nite
median join-semilattice X = (X;6).

Claim 3. (Bandelt, Barthélemy (1984)) Let X = (X;6) be a �nite
median join-semilattice and m its metric median function. Then, for
any n 2 N, and any (x1; :::; xn) 2 Xn

f@maj(xN) :=
^

S2Wmaj

(
_
i2S
xi) 2m(n)(x1; :::; xn).

Moreover, if n is odd then f@maj(xN) :=
=

^
S2Wmaj

(
_
i2S
xi) = bm(n)(x1; :::; xn).

Proof. Immediate, by Proposition 5 and dualization of Corollaries 1
and 2 of Bandelt, Barthélemy (1984). �

Thus, the co-majority rule is essentially the same as a metric median
rule, namely a rule that selects a metric median.
Finally, some further facts concerning betweenness relations in �nite

median join-semilattices are worth mentioning here in order to appreci-
ate the naturalness and robustness of the betweenness relation involved
in our main characterization Theorem.
Generally speaking, at least three distinct betweenness relations can

be de�ned in a natural way on any �nite graded join-semilattice (see
e.g. Sholander (1952, 1954), Avann (1961), Van de Vel (1993)), namely:
median betweenness B� (for all x; y; z 2 X, B�(x; y; z) i¤�(x; y; z) =

y where is the possibly partial median operation as de�ned above),
interval betweenness BI (for all x; y; z 2 X, BI(x; y; z) i¤ y 6 x _ z

and x 6 y or z 6 y),
metric betweenness Bd (for all x; y; z 2 X, Bd(x; y; z) i¤ d(x; y) +

d(y; z) = d(x; z), with d = dr = �C(X ) the interval-length-based metric
as de�ned above).
Now, it turns out that if a �nite join-semilattice is median then the

relationships among B�,BI and Bd is very tight, as made precise by
the following claim.
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Claim 4. (Sholander (1952, 1954), Avann (1961), Barbut, Monjardet
(1970), Leclerc (1994)). Let X = (X;6) be a �nite median join-
semilattice. Then, BI � B� = Bd. Moreover, if X = (X;6) is in
particular a distributive lattice, then
(i) BI(x; y; z) holds if and only if x ^ z 6 y 6 x _ z;
(ii) BI = B� = Bd;
(iii) dr(x; y) = r(x_y)�r(x^y) = j(M(x)n(M(y))[(M(y)nM(x))j

(where M(z) := fm 2MX : z 6 mg).

It is thus con�rmed, in particular, that local unimodality (the notion
of single-peakedness introduced above and used in Theorem 1) rests on
a very natural and robust notion of betweenness on the underlying
poset X = (X;6), which is in turn tightly anchored to an �intrinsic�
metric of X itself. It should also be emphasized here that if X is in
particular a distributive lattice of binary relations on a �nite set A
(e.g. the lattice of all re�exive binary relations on A to be considered
below), then point (iii) of the previous Claim establishes that dr is
precisely the so-called Kemeny distance for binary relations as de�ned
below (see Kemeny (1959)).

Kemeny distance on binary relations. Let A be a �nite set and
(BA;�) the poset of all binary relations on A 8. Then the Kemeny
distance on (BA;�) is the function dK : BA ! Z+ de�ned as follows:
for any R;R0 2 BA,
dK(R;R

0) := j f(x; y) 2 A� A : xRy and not yR0xg[
[ f(x; y) 2 A� A : xR0y and not yRxg j9.

We are now ready to consider a most signi�cant application of the
previous results that involves strategy-proof aggregation of prefer-
ences including (Arrowian) social welfare functions and their strategy-
proofness properties: the next section is entirely devoted to that topic.

3. Applications to strategy-proof preference
aggregation

The major examples of �nite median join-semilattices we are going
to consider involve the set of all total preorders on a �nite set. Indeed,
there are at least two natural but subtly distinct ways of relating the

8Observe that (BrA;�) is indeed a distributive lattice since it is obviously closed
with respect to both intersection \ and union [.

9Thus, the Kemeny distance is just a specialization of the set-theoretic symmetric
di¤erence metric to binary relations (see e.g. Barbut, Monjardet (1970)).
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latter set of total preorders to a median join-semilattice. Let us start
from the �rst, and more straightforward one.

Example 1. The join-semilattice of total preorders on a
�nite set.
Let A be a nonempty �nite set of alternative social states, RT

A the
set of all total preorders (i.e. re�exive, transitive and connected binary
relations) on A. Let us de�ne the join of two total preorders on A as the
transitive closure [ of their set-theoretic union. Then, by construction,
X 0 := (RT

A;[) is a join-semilattice, and satis�es both upper distributiv-
ity (by Claim (P.1) of Janowitz (1984)), and co-coronation (by Claims
(P.3) and (P.5) of Janowitz (1984)). It follows that (RT

A;[) thus de�ned
is indeed a median join-semilattice (whose median ternary operation
is denoted here �0), and its meet-irreducibles are the total preorders
RA1A2 2 RT

A having just two (non-empty) indi¤erence classes A1; A2
such that (i) (A1; A2) is a two-block ordered partition of A, written
(A1; A2) 2 �(2)A , namely A1 [ A2 = A, A1 \ A2 = ; and (ii) [xRA1A2y
and not yRA1A2x] if and only if x 2 A1 and y 2 A2. Such total pre-
orders RA1A2 with (A1; A2) 2 �

(2)
A are also the co-atoms of (RT

A;[)10.

Thus, a most interesting application of our main result involves ag-
gregation rules for preference pro�les consisting of total preorders on
the set of alternative outcomes, including social welfare functions in
the classic Arrowian sense11. Such an application is made precise by
the following de�nitions and propositions.

10Hence, the join-semilattice of total preorders is in particular co-atomistic (i.e.
every element which is not the maximum of the semilattice is the least upper bound
-or inductively extended join- of a family of meet-irreducible elements).

11Let N;A be two (�nite) sets and RT
A the set of all total preorders on A. An

(Arrowian) social welfare function for (N;A) is a function
f : (RT

A)
N ! RA,

namely a function specifying an unique total preference preorder on A for an
arbitrary pro�le of n total preference preorders on A.
In the rest of this paper Arrowian social welfare functions will be often referred

to simply as �social welfare functions�.
Occasionally, and somewhat confusingly, the very same label is also used to refer

to (what we shall rather denote as) Arrowian strict social welfare functions
f : (LA)N ! LA where LA is the set of all linear orders (i.e. antisymmetric

total preorders on A).
By contrast, a Bergson-Samuelson social welfare function for (N;A) is a function
f :
�
rN
	
! RT

A, with r
N 2 RT

A.
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Proposition 2. Let A be a nonempty �nite set of alternative social
states, RT

A the set of all total preorders (i.e. re�exive, transitive and
connected binary relations) on A, X 0 = (RT

A;[)) the join-semilattice
of total preorders on A, �0 its median ternary operation and B�0 the
corresponding betweenness as previously de�ned, and f : (RT

A)
N ! RT

A

an aggregation rule for (N;RT
A). Then, the following statements are

equivalent:
(i) f is strategy-proof on DN for every rich domain D � UB�0 of

locally unimodal preorders w.r.t. B�0 on RT
A;

(ii) for each RA1A2 2 MX 0 there exists an order �lter FA1A2 of
(P(N);�) such that
f(RN) = fnFA1A2 :(A1;A2)2�(2)A o(xN) :=
=
V
fRA1A2 2MX 0 : fi 2 N : Ri � RA1A2g 2 FA1A2g for all RN 2

(RT
A)
N .

Proof. Immediate, from Theorem 1 and Example 1. �

Notice that, as a consequence of the prevous characterization re-
sult, there exist a large class of �classical�Arrowian social welfare func-
tions on (N;A) which are inclusive and idempotent (or unanimity-
respecting) as well as strategy-proof on an arbitrary rich domains of lo-
cally unimodal preorders with respect to the betweenness relation B�0
of the median join-semilattice (RT

A;[) of total preorders on A. Such
a large class includes aggregation rules which are respectively neither
anonymous nor neutral, just anonymous, just neutral, or both anony-
mous and neutral. To see this, consider the following list of examples:

� Inclusive quorum systems , namely functions fn
FRA1A2

:RA1A22MX0
o

such that every order �lter FRA1A2 is transversal i.e. S \T 6= ?
for all S; T 2 FRA1A2 and

[
RA1A22MX

FminRA1A2
= N (observe that

such a class includes any rule such that for every RA1A2 2MX 0,
FRA1A2 is simple-majority collegial i.e. there exists a minimal

simple majority coalition SA1A2 � N , jSA1A2 j =
j
jN j+2
2

k
with

FRA1A2 = fT � N : SA1A2 � Tg). Generally speaking, inclusive
quorum systems need not be anonymous or neutral.

� Outcome-biased aggregation rules, namely functions
fn
FRA1A2

:RA1A22MX0
o where FRA1A2 = ? for someRA1A2 2MX 0

(observe that they include the subclass of those aggregation
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rules such that for some total preorder R 2 RT
A, including pos-

sibly a linear order, FRA1A2 = ? for every RA1A2 2 MX 0 such
that R � RA1A2).

� Neutral aggregation rules, namely functions fn
FRA1A2

:RA1A22MX0
o

where FRA1A2 = FRA01A02m
0 whenever RA1A2 ^RA01A02 exists.

� Quota aggregation rules, i.e. functions fn
FRA1A2

:RA1A22MX0
o such

that for each RA1A2 2MX 0 there exists an integer q[RA1A2 ] � jN j
with Fm =

n
T � N : q[RA1A2 ] � jT j

o
(such rules are clearly

anonymous, but not necessarily neutral: they are of course neu-
tral as well if, furthermore, FRA1A2 = FRA01A02

whenever RA1A2 ^
RA01A02 exists).

A remarkable family of anonymous but typically not neutral aggre-
gation rules for (N;RT

A) is that of Condorcet-Kemeny rules, as de�ned
below (see also Young, Levenglick (1978), Young (1995)).

De�nition (Generalized Condorcet-Kemeny aggregation rules) Let
X 0 = (RT

A;[)) be the join-semilattice of total preorders on �nite set
A as de�ned above, C(X 0) its covering graph, �C(X 0) the shortest-path
metric on C(X 0), LA � RT

A the set of linear orders on A, N a �nite
set, and � a linear order on RT

A.
The generalized Condorcet-Kemeny aggregation rule for (N;RT

A) in-
duced by � is the function fCK

�
� : (RT

A)
N ! RT

A de�ned as follows:
for all RN 2 (RT

A)
N ,

fCK
�

� (RN) := min�

8<: R 2 RT
A :
X
i2N

�C(X 0)(R;Ri) �
X
i2N

�C(X 0)(R
0; Ri)

for all R0 2 RT
A

9=;.
In particular, the (strict) Condorcet-Kemeny aggregation rule for

(N;RT
A) induced by � is the function fCK� : (RT

A)
N ! LA de�ned

as follows: for all RN 2 (RT
A)
N ,

fCK� (RN) := min�

8<: R 2 LA :
X
i2N

�C(X 0)(R;Ri) �
X
i2N

�C(X 0)(R
0; Ri)

for all R0 2 LA

9=;.
Notice that a (strict) Condorcet-Kemeny rule amounts to a con-

strained generalized Condorcet-Kemeny rule. It should also be empha-
sized that generalized Condorcet-Kemeny aggregation rules require a
pre�xed linear order � as a tie-breaker device whenever the remote-
ness function

X
i2N

�C(X 0)(:; Ri) of a pro�le RN admits several distinct
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minima: that is the only role of � in fCK� and fCK
�

� , and the source of
the typical failure of Condorcet-Kemeny rules to satisfy Neutrality. It
follows that, to the extent that uniqueness of minima of the remoteness
function is warranted, the outcome of Condorcet-Kemeny rules is un-
a¤ected by the choice of � and Neutrality is restored. That is precisely
the case when the size n of the set of agents N is odd, as implied by
the following characterization result:

Proposition 3. Let RT
A be the set of all total preorders on a �nite

set A, X 0 = (RT
A;[)) the join-semilattice of total preorders on A, �0

its median ternary operation and B�0 the corresponding betweenness
relation as previously de�ned, N a �nite set such that jN j is an odd
number, and f : (RT

A)
N ! RT

A an aggregation rule for (N;RT
A). Then,

the following statements are equivalent:
(i) f satis�es Anonymity and Bi-Idempotence, and is strategy-proof

on DN for every rich domain D � UB�0 of locally unimodal preorders
w.r.t . B�0 on RT

A;
(ii) f = bf@majwhere bf@maj : (RT

A)
N ! RT

A denotes the co-majority
aggregation rule for (N;RT

A);
(iii) f = fCK� = fCK�0 i.e. the generalized Condorcet-Kemeny aggre-

gation rule for (N;RT
A) for any pair of linear orders �, �0 on RT

A.

Proof. Immediate from Theorem 1, Proposition 1, Claim 1, and Exam-
ple 1 above. �

Thus, in particular, when the size ofN is odd the generalized Condorcet-
Kemeny rule for (N;RT

A) is precisely the same as the co-majority rule,
and can be characterized as the unique aggregation rule for (N;RT

A)
(or, in other terms, the unique Arrowian social welfare function) which
is Anonymous, Bi-Idempotent and strategy-proof on UB�0 (and any of
its rich subdomains).12

12Is should be noticed that the requirement that n = jN j be odd is not at all as
restrictive as it might seem at �rst sight. In fact, for n even our aggregation rule
f for (N;RT

A) might be embedded in a natural way into a more comprehensive
aggregation rule ef for (N;RT

A � Z) (where Z denotes the set of integer numbers)
as supplemented with the natural projection from Z to the �nite additive group
Zn of integers modulo n. Such an aggregation rule implements a pseudo-random
�anonymous�selection of a �president�in N to the e¤ect of producing an arti�cially
but fairly augmented �electorate� of odd size. Furthermore, a similar construct
obtained by replacing Zn with Zk (where k := jAj) results in a further aggregation
rule

�!
f for (N;RT

A � Z) which implements a pseudorandom �neutral� choice of
one linear order among those consistent with the total preorder selected by f at
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Moreover, notice that (for an odd n) bf@maj � fCK
�

� satis�es a weak
version of the so-called Condorcet principle, namely for every
(Ri)i2N 2 RT

A and x 2 A, if x is a Condorcet winner -that is
fi 2 N : xRiy and not yRixg 2 Wmaj for every y 2 A n fxg- then

x 2 Top( bf@maj((Ri)i2N))
(where for any R 2 RT

A, Top(R) := fx 2 A : xRy for all y 2 Ag).
To check this, suppose x is indeed a Condorcet winner, yet x =2

Top( bf@maj((Ri)i2N)). Thus, there exist y 2 X n fxg and a meet-
irreducible R[y][x] of the join-semilattice (RT

A;[) (i.e. a two-indi¤erence-
class total preorder having y among its maxima and x among its min-
ima) such that Top( bf@maj((Ri)i2N)) � R[y][x]. But then, upper dis-
tributivity of (RT

A;[) entails that
S
i2T
Ri � R[y][x] for some T 2 Wmaj

whence Ri � R[y][x] for each i 2 T 2 Wmaj, a contradiction.
It is easily checked that bf@maj also satis�es Neutrality if n := jN j

is odd . It follows that for any odd n there exists an Arrowian so-
cial welfare function on the full domain of total preorders on an ar-
bitrary �nite set which is anonymous, neutral, idempotent (because
Bi-Idempotence clearly implies Idempotence), satis�es a monotonic in-
dependence property w.r.t. the meet-irreducible total preorders (which
are the co-atoms of the join-semilattice (RT

A;�) i.e. the total preorders
having just two indi¤erence classes) and is strategy-proof on any rich
locally unimodal preference domain on RT

A. Therefore, bf@maj is in par-
ticular a social welfare function that satis�es all the properties required
by Arrow�s (Im)Possibility Theorem except for the Independence of Ir-
relevant Alternatives (IIA) condition 13. What is then the relationship
betweenMX -Independence (MX -I) and IIA? It is quite clear that under
Idempotence MX -I is de�nitely weaker than IIA because, as a conse-
quence of Proposition 1, the former is consistent with Anonymity and
Neutrality of an (Arrowian) unanimity-respecting social welfare func-
tion while the latter is not. Indeed, as established by Hansson (1969),
IIA in combination with Anonymity and Neutrality provides a charac-
terization of the constant social welfare function having the universal
indi¤erence relation A�A as its unique value (hence in particular the

any pro�le. Such an aggregation rule
�!
f is in fact constrained (actually an LTA-

constrained one), since its values are constrained to lie in LTA � RT
A.

13Recall that Arrow�s IIA (in binary form) is a condition on social welfare func-
tions f :(RT

A)
N ! RT

A de�ned as follows: for every x,y 2 A and any
RN ; R0N 2 (RT

A)
N such that xRiy if and only if xR0iy for each i 2 N , xf(RN )y

entails xf((R0N )y.
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former combination of properties is inconsistent with Idempotence).
In other terms, strenghteningMX -Independence to IIA is just impossi-
ble for unanimity-respecting, anonymous and neutral Arrowian social
welfare functions.
As it turns out, reconciling unanimity-respecting and strategy-proof

preference aggregation to IIA is however possible by moving away from
the domain of total preorders, hence from Arrowian social welfare func-
tions, towards some more comprehensive preference domain. This ob-
servation brings us to our second leading example, to which we now
turn14.

Example 2. The lattice of re�exive binary relations on a
�nite set.
Clearly enough, any distributive lattice (X;_;^) also provides an

example of a median join-semilattice.
In particular, let A be a nonempty �nite set of alternative social

states, BrA the set of all re�exive binary relations on A, (B
r
A;�) the

set-inclusion poset on BrA. Let us then de�ne the join _ and meet ^ of
two re�exive binary relations on A as their set-theoretic union [ and
intersection \, respectively. Hence, X 00 := (BrA;[;\) is indeed, by con-
struction, a (bounded) distributive lattice. It follows that [-closedness
of BrA and both upper-distributivity and co-coronation trivially hold in
X 00 i.e. (BrA;[) is in particular a median join-semilattice whose me-
dian �00 is precisely the median of the distributive lattice (BrA;[;\).
Namely, for any R1; R2; R3 2 BrA,
�00(R1; R2; R3) = (R1 [ R2) \ (R2 [ R3) \ (R3 [ R1) = (R1 \ R2) [

(R2 \R3) [ (R3 \R1).
Moreover, it can be easily shown (and left to the reader to check)

that
MX 00 = CX 00 = fA2 n f(a; b)g : a; b 2 A; a 6= bg, and
JX 00 = AX 00 = f�A [ f(a; b)g : a; b 2 A; a 6= bg
where �A := f(a; a) : a 2 Ag.
Hence, X 00 is in particular a co-atomistic and atomistic lattice.
It should be emphasized that the set of all total preorders on A is

clearly a subset but not a sub-join semilattice of the join-semilattice
reduct (BrA;[) of the lattice (BrA;[;\), since the union of two total pre-
orders may not be transitive (to see this, consider e.g. A = fa; b; c; dg,
and the linear orders, R1 := abcd, R2 := dbca (written according to

14A third relevant example is the median join-semilattice RT
A � P(A), which is

particularly convenient when it comes to addressing squarely agenda-manipulation
issues. Such semilattice will be discussed in some detail elsewhere.
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the usual �decreasing�notation). Now, R1 [ R2 = f(x; x) : x 2 Ag [
f(a; b); (b; a); (a; c); (c; a); (a; d); (d; a); (b; c); (b; d); (d; b); (c; d); (d; c)g
which is not transitive since f(c; a); (a; b)g � R1 [ R2 but (c; b) =2

R1 [R2).

Let us now introduce the strenghtening ofMonotonic MX -Independence
which results from substituting IIA for MX -Independence.

De�nition 2. Monotonic IIA: Let (X;6) be a partially ordered set.
Then, an aggregation rule f : XN ! X is monotonically IIA if for
all xN ; yN 2 XN and all z 2 X: if Nm(xN) � Nm(yN) then f(xN) 6 z
implies f(yN) 6 z.15

We are now ready to show that when the relevant join-semilattice is
(the join-reduct of) X 00 := (BrA;[;\) we can rely on the full force of
a counterpart of Theorem 1 for bounded distributive lattices (see e.g.
Savaglio, Vannucci (2019)) to obtain the following result.

Proposition 4. Let A be a nonempty �nite set of alternative social
states, BrA the set of all re�exive binary relations on A,
X 00 := (BrA;[;\) the (bounded) distributive lattice induced on BrA by

[ and \, �00 its median ternary operation and B�00 the corresponding
betweenness as previously de�ned, and f : (BrA)N ! BrA an aggregation
rule for (N;BrA).
Then, the following statements are equivalent:
(i) f is strategy-proof on DN for every rich domain D � UB�00 of

locally unimodal preorders w.r.t. B�00 on BrA;
(ii) f is B�00-monotonic;
(iii) f is monotonically MX 00 -independent;
(iv) f is monotonically JX 00 -independent;
(v) f is monotonically IIA;
(vi) there exists an order �lter F of (P(N);�) and a family fRS 2 BrA : S 2 Fg

of re�exive relations on A such that
f(RN) =

\
S2F

(([i2SRi) [RS) for all RN 2 (BrA)N ;

(vii) there exists an order �lter F of (P(N);�) and a family fRS 2 BrA : S 2 Fg
of re�exive relations on A such that
f(RN) =

[
S2F

((\i2SRi) \RS) for all RN 2 (BrA)N .

15It should be remarked here that Monotonic IIA is indeed equivalent to the
conjunction of IIA and Isotony as de�ned above (see e.g. Monjardet (1990)).
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Proof. (i)()(ii)()(iii): Immediate, from Theorem 1 and Example 2
above.
(ii)()(vi)()(vii): It follows immediately fromTheorem 1 of Savaglio,

Vannucci (2019).
(ii)()(iv): It follows immediately from Theorem 1 of Vannucci

(2019).
(iii)()(iv): It follows from the following
Lemma: Let X � := (X;6) be a �nite distributive lattice, N a �nite

set and f : XN �! X an aggregation rule for (N;X). Then, f is
MX � -independent if and only if it is also JX � -independent.
Proof. It is well-known that if X � := (X;6) is a �nite distributive

lattice then (JX � ;6) and (MX � ;6) are order-isomorphic i.e. there is
a bijection � : JX � �! MX � such that, for any j; j0 2 JX � , j 6 j0 if
and only if �(j) 6 �(j0) (see e.g. Davey, Priestley (1990), p. 178): in
particular, for any j 2 JX � ,
mj = �(j) :=

_
(Xn " j) with # mj = Xn " j

(and dually, for any m 2 MX � , jm = ��1(m) :=
^
(Xn # m) with

" jm = Xn # m.
Indeed, �(jm) =

_
(Xn " jm) =

_
(X n(Xn # m)) =

_
(# m) = m).

Next, observe that for any j 2 JX � , i 2 N and xN 2 XN , j 6 xi
implies xi 2" j whence xi =2# mj, namely xi 
 mj and conversely,
xi 
 mj implies xi 2" j. Thus, Nj(xN) = N n Nmj

(xN). It follows
that, for any xN ; x0N 2 XN , Nj(xN) = Nj(x0N) if and only if Nmj

(xN) =

Nmj
(x0N). Now, suppose that f : X

N �! X is monotonically MX �-
independent, and suppose that for some j 2 JX � , and xN ; x0N 2 XN :
Nj(xN) = Nj(x

0
N) and j 6 f(xN). Then, Nmj

(xN) = Nmj
(x0N) and

f(xN) 
 mj hence f(x0N) 
 mj, by Monotonic MX �-Independence. As
a consequence j 6 f(x0N), by the previous observation. It follows that
f is monotonically JX �-independent as well. A dual argument involving
jm 2 JX � for an arbitrary m 2 MX �establishes the converse entailment
from Monotonic JX �-Independence to Monotonic MX �-Independence,
as required.
(iv)()(v): It follows immediately from our previous observation

that JX 00 = AX 00 = f�A [ f(a; b)g : a; b 2 A; a 6= bg (see Example 2
above), which implies the equivalence of JX 00-Independence and IIA
(hence of Monotonic JX 00-Independence and Monotonic IIA) for X 00 :=
(BrA;[;\). �

It goes without saying that the strategy-proof aggregation rules for
(N;BrA) characterized above comprise counterparts to inclusive quorum
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systems, quota rules and all the other aggregation rules for total pre-
orders mentioned above. The co-majority rule f@majr : (BrA)N ! BrA is
de�ned by the identity
f@majr (RN) =

\
S2Wmaj

([i2SRi) for each RN 2 (BrA)N , which is ob-

tained from the general formula under statement (vi) of the previous

proposition by setting F = Wmaj :=
n
S � N : jSj � b jN j+2

2
c
o
and

RS = �A for each S 2 Wmaj.
But new possibilities arise here: to begin with, a version of the ma-

jority rule fmajr : (BrA)N ! BrA is now well-de�ned by the identity
fmajr (RN) =

[
S2Wmaj

(\i2SRi) for each RN 2 (BrA)N ,

which is obtained from the general formula under statement (vii) of
the previous proposition by setting F = Wmaj and RS = A � A for
each S 2 Wmaj.
Of course, the outputs of fmajr (and f@majr , or for that matter of any

idempotent aggregation rule for (N;BrA)) may well be nontransitive or
even intransitive (i.e. include cycles with asymmetric components): to
see this, just consider a pro�le consisting of identical cyclic re�exive re-
lations. But then, it is easily seen (and left to the reader to check) that
the aggregation rules for (N;BrA) resulting from idempotent ones by
just removing cycles from their outputs through a minimal number of
pair-deletions are also B�00-monotonic (though, of course, not idempo-
tent but rather weakly idempotent in the following sense: for any pro�le
RN 2 (BrA)N such that Ri = Rj = R for all i; j 2 N , f(RN) � R).
Thus, here is a new (sub)class of interesting strategy-proof aggregation
rules for (N;BrA) whose output for any pro�le of total preorders is in-
deed a total preorder (let us call them minimal monotonic retracts just
for ease of reference).
Furthermore, for an odd-sized N the majority rule for (N;BrA) turns

out to coincide with the co-majority rule. This is made precise by the
following proposition.

Proposition 5. Let A be a nonempty �nite set of alternative social
states, BrA the set of all re�exive binary relations on A, X 00 := (BrA;[;\)
the (bounded) distributive lattice induced on BrA by [ and \, �00 its me-
dian ternary operation and B�00 the corresponding betweenness relation,
N a �nite set such that jN j is an odd number, and f : (BrA)N ! BrA
an aggregation rule for (N;BrA). Then, the following statements are
equivalent:
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(i) f satis�es Anonymity and Bi-Idempotence, and is strategy-proof
on DN for every rich domain D � UB�00 of locally unimodal preorders
w.r.t . B�00 on BrA;
(ii) f = fmajr = f@majr ;
(iii) f = fCK

r

� = fCK
r

�0 i.e. the generalized Condorcet-Kemeny aggre-
gation rule for (N;BrA) for any pair of linear orders �;�0 on BrA.

Proof. Immediate from Corollary 1 and Example 2. �

Thus, whenN has an odd size, generalized Condorcet-Kemeny aggre-
gation rules for (N;BrA) and (N;RT

A) are amenable to the same sort of
simple characterization via Anonymity, Bi-Idempotence and Strategy-
Proofness on certain rich single-peaked domains.

4. Related literature and concluding remarks

The present work focusses on strategy-proof aggregation rules in �-
nite median join-semilattices and their applications to several pref-
erence aggregation rules, including as a special prominent case (Ar-
rowian) social welfare functions, namely aggregation rules taking arbi-
trary pro�les of total preference preorders as inputs and returning a to-
tal preference preorder as output16. Now, addressing strategy-proofness
issues for such preference aggregation rules requires a suitable speci�ca-
tion of the agents�preferences on outcomes, namely their preferences on
preferences. It is well-known, in view of the Gibbard-Satterthwaite �im-
possibility theorem�, that (i) some domain-restriction on the foregoing
�preferences on preferences� is required in order to open up the possibil-
ity to design interesting and non-dictatorial strategy-proof preference-
aggregation rules, and (ii) some form of single-peakedness is a most
natural and plausible domain-restriction to that e¤ect. But single-
peakedness notions typically rely in turn on an underlying ternary
betweenness relation de�ned on the �preference space�which is sup-
posedly shared by the relevant agents and thus should presumably be
�naturally� embedded in that space. Therefore, we are immediately
confronted with a list of key issues to address, namely:

16It is worth emphasizing here that our usage of the term �Arrowian social welfare
function�-while arguably sound and well-grounded- is by no means widely estab-
lished. Sometimes that term is also used to denote aggregation rules for pro�les of
linear orders, possibly with the additional conditions of Idempotence and the Ar-
rowian �Independence of Irrelevant Alternatives�requirement (see e.g. Sethuraman,
Chung Piaw, Vohra (2003)).
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� What sort of preference relations are to be aggregated? Arbi-
trary re�exive binary relations, total preorders, linear orders, or
others? (Of course, the answer has to be related to the general
structure of the outcome space to focus on).

� Are the preference pro�les to be aggregated of an arbitrary but
�xed �nite size (�xed population approach), or of every possible
�nite size (variable population approach)?

� What type of aggregation protocol are we to consider? Namely,
given a pro�le of preference relations of the prescribed type as
input, what kind of object is the output required to be? A single
preference relation of the prescribed type (aggregation with no
quali�er, namely exact or pure aggregation), one or more prefer-
ence relations of the prescribed type (multi-aggregation), a sin-
gle preference relation belonging to a class which includes but
does not reduce to the prescribed type for the input ((domain-
)restricted aggregation), or a single preference relation of the
same type as that prescribed for inputs but enjoying some ad-
ditional requirements ((codomain-)constrained aggregation)?

� What sort of single-peakedness property for the relevant �pref-
erences on preferences�are we to focus on, or equivalently, what
is the most natural/plausible notion of betweenness on the basic
�preference space�to refer to?

This paper relies on a de�nite choice of focus for each one of the
foregoing issues, namely:
(a) the basic preference domain should include all the total preorders;
(b) the preference pro�les to be aggregated are of some �xed size;
(c) the type of aggregation protocol to focus on is (pure) aggregation

(and possibly constrained aggregation);
(d) the betweenness relation to be used in order to de�ne single-

peaked �preferences on preferences�should be the one �naturally�dic-
tated by the underlying basic preference domain of the aggregation rule
under consideration.
In this section we shall use the characteristic features described by

points (a)-(b)-(c)-(d) above as a convenient benchmark in order to
locate the present paper and its marginal contribution within the non-
negligible body of related literature.
To begin with, the study of aggregation rules for ordered sets, semi-

lattices, and lattices was pioneered by Monjardet and his co-workers,
who provide characterizations of several classes of such rules mostly
within a �xed population setting but also, occasionally, within a vari-
able population framework (see e.g. Barthélemy, Monjardet (1981),
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Bandelt, Barthélemy (1984), Monjardet (1990), Barthélemy, Janowitz
(1991), Leclerc (1994), Monjardet, Raderanirina (2004), Hudry et al.
(2009)). In particular, characterizations of the simple majority and
co-majority rules (sometimes also denoted as �median�rules) are estab-
lished in several latticial and semilatticial settings both as aggregation
rules within a �xed population framework (see e.g. Monjardet (1990))
and as multi-aggregation rules within a variable population frame-
work (see e.g. Barthélemy, Janowitz (1991), Monjardet, Raderanirina
(2004)).
Concerning the special case of preference aggregation, an early char-

acterization of (a version of) the Condorcet-Kemeny rule, regarded
as a multi-aggregation rule for linear orders in a variable population
setting is due to Young, Levenglick (1978). Indeed, Young and Le-
venglick prove that the Condorcet-Kemeny multi-aggregation rule is
in fact the unique function f :

[
n2N

(LA)n �! P(LA) n f;g that satis-

�es the following three properties: neutrality (i.e. it is invariant with
respect to changes of labels of the elements of A), a version of the
Condorcet principle (namely, for any pro�le RN 2 (LA)n : (i) if x
has a strict majority against y at RN then y cannot be the imme-
diate predecessor of x in any �social� preference order R 2 f(RN),
and (ii) if individual preferences between x and y are equally split
at RN then if x is the immediate predecessor of y according to some
�social� preference order R 2 f(RN), then there also exists another
R0 2 f(RN) such that y is the immediate predecessor of x according to
R0), and �consistency�across committees/electorates (i.e. for any pair
of pro�les RN ; RM such that N \M = ;, if f(RN) \ f(RM) 6= ; then
f((RN ; RM)) = f(RN) \ f(RM)).17
In a similar vein, but in a much more general setting and build-

ing partly on Barthélemy, Janowitz (1991), McMorris, Mulder, Pow-
ers (2000) establishes a further elegant characterization of the median
function as a multi-aggregation rule

17In subsequent work (see e.g. Young (1995)), it is emphasized that at any
pro�le RN of linear orders on a �nite A the linear orders selected by the Condorcet-
Kemeny rules can also be regarded as the maximum likelihood rankings according
to the evidence provided by RN . It should be noted that Young�s argument is quite
general and also applies to wider classes of preference relations on A including the
set of all total preorders RT

A and the set of all re�exive relations BrA.
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f :
[
n2N

Xn �! (P(X) n f?g) for a median meet-semilattice (X;6)

in a variable population framework, using suitably generalized coun-
terparts of both part (ii) of the Condorcet principle (labelled as 1

2
-

Condorcet property) and �consistency� across populations/electorates
as presented above, and a very mild �faithfulness� condition simply
requiring f((x)) = fxg for each x in X.
The present paper obviously owes much to that most remarkable

body of literature. Notice, however, that the contributions mentioned
above do not consider at all strategy-proofness properties of aggregation
rules (or, for that matter, nonmanipulability properties of any sort).
The issue of strategy-proofness for preference aggregation rules has

been indeed addressed in the previous literature, but never -to the best
of the authors�knowledge- with respect to the �full�domain of all total
preorders. Under the heading �social welfare functions�, Bossert and
Storcken (1992) study in fact aggregation rules for linear orders on a
�nite set (hence what we refer to as strict social welfare functions) and
their coalitional strategy-proofness properties with respect to topped
metric total preference preorders (on the set of linear orders) as in-
duced by a suitably �renormalized�version of the Kemeny distance to
be further discussed below. They prove an impossibility theorem for
those coalitionally strategy-proof and sovereign strict social welfare
functions that also satisfy a certain condition of independence from
extrema.
Working within a variable population framework, Bossert and Spru-

mont (2014) o¤er several possibility results concerning restricted strategy-
proof aggregation rules (mapping pro�les of linear orders on a �nite set
A into total preorders on A) which are strategy-proof on the domain of
topped preferences (on the set of total preorders) that are single-peaked
with respect to the median betweenness of the distributive lattice of
re�exive binary relations on A (which amounts to an outcome space
BrAwhich is far more comprehensive than the �small�domain-base LA
or even the larger codomain RT

A of the aggregation rule
18). That paper

identi�es some (variable-population) strategy-proof restricted aggrega-
tion rules on RT

A including (strict) Condorcet-Kemeny rules, a class of
variable-population counterparts of our monotonic retracts of the ma-
jority relation as introduced above, and a family of rules denoted as
status-quo rules that are related to the class of outcome-biased rules

18Thus, in a sense, the median-induced betweenness relation under consideration
(and the resulting single-peakedness property) is not the one �naturally�dictated by
the codomain RT

A (let alone the strictly smaller domain-base LA) of the aggegation
rule.
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mentioned above as one family of examples covered by Proposition 2.
An (implicit) characterization of such monotonic majority-retracts is
also provided, and the family of status-quo rules is explicitly charac-
terized (but the strict Condorcet-Kemeny rules are not). Thus, the
present paper provides extensions of the �xed-population counterparts
of such strategy-proof restricted aggregation rules to strategy-proof ex-
act aggregation rules for total preorders, and a uni�ed joint character-
ization of all of them (see in particular Corollary 1, Propositions 2 and
Proposition 3 above), as well as a speci�c characterization of general-
ized Condorcet-Kemeny rules for the case of odd-dimensional domains.
Notice, however, that the notion of betweenness underlying the rele-
vant notion of single-peakedness for �preferences on preferences�that
guarantees the strategy-proofness of such exact rules in the present
paper is in fact a most �natural�one, namely the median betweenness
which is characteristic of their domain-baseRT

A (but is not well-de�ned
on its subdomain LA).
The issue of strategy-proof aggregation in arbitrary (possibly in�-

nite) join-semilattices is addressed in Bonifacio, Massó (2020) within a
�xed population framework. To be sure, that work focuses in fact on
so-called �simple rules�, namely anonymous and unanimity-respecting
social choice functions with the �tops-only�-property19. But then, such
�simple rules�are essentially equivalent to anonymous and idempotent
aggregation rules which are endowed with an explicitly pre-de�ned do-
main of preference pro�les of total preorders. In particular, the Authors
consider a restriction on total topped preference preorders they denote
(join-)�semilattice-single-peakedness�20 which results in a maximal do-
main that is consistent with the existence of strategy-proof �simple
rules�. Then, they proceed to characterize the subclass of anonymous
and idempotent strategy-proof aggregation rules, establishing that they
are precisely the �supremum�rule f_ and a family of �generalized quota-
supremum�rules21. It should also be noticed that such a comparatively

19A social choice function for (N;A) is a function f : DN ! A where D � RT
A:

it satis�es the tops-only property if f(RN ) = f(R0N ) whenever t(Ri) = t(R0i)
for each i 2 N , and jt(Ri)j = jt(R0i)j = 1 for all i 2 N (with t(Ri) :=
fx 2 A : xRiy for all y 2 Ag).

20The notion of semilattice-single-peakedness (SSP) for total preorders on a join-
semilattice (X;6) was �rst introduced in Chatterji, Massó (2018). A total preorder
R on X is SSP in (X;6) if and only if : (i) R has a unique maximum element x�

in X; (ii) yRz for each y; z 2 X such that x� 6 y 6 z;
(iii) (x� _ u)Ru for each u 2 X such that x 
 u.
21The �supremum� (or join n-projection ) rule f_ for (N;X) is de�ned as follows:

f_(xN ) := _i2Nxi: A generalized quota-supremum rule returns a certain pre�xed
alternative x� if x� reaches a prespeci�ed quota, and _i2Nxi otherwise.
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weak notion of semilattice-single-peakedness is admittedly consistent
with the notion of single-peakedness induced by metric-betweenness
according to the shortest-path-metric on the covering graph of the semi-
lattice22.
However, semilattice-single-peakedness is clearly bound to relinquish

any connection not only to a median-induced betweenness if the rel-
evant semilattice is not median, but also to the most natural rank-
based metric betweenness if the semilattice also happens to be not
even graded23. Therefore, in the latter case there is no natural metric
to ground the claim that a certain type of single-peakedness describes
a sort of �preferences on preferences� that are induced in a �natural�
-hence plausibly shared- way by the actual basic preferences of agents.
It is also worth mentioning here that, in any case, strategy-proofness

only concerns strategic manipulation of a preference-aggregation process,
namely manipulation of the outcome of a certain game by means of an
appropriate choice of strategy in the available strategy-set(s). In other
terms, a given game is implicitly being taken for granted, including of
course the population of its players and the set of its possible alterna-
tive outcomes, or its agenda. But then, manipulation of the agenda (or,
for that matter, of the relevant population of players itself) can also be
considered: notice, however, that from a game-theoretic perspective,
that is a kind of structural (as opposed to strategic) manipulation since
it amounts to a change of the game itself.
Such a broader perspective on manipulation issues in preference-

aggregation is apparent (if mostly implicit) in Sato (2015)24. Indeed,
Sato�s contribution relies on a �xed population framework and is mainly
focussed on strict social welfare functions as de�ned on some connected

22That is so because (if the join-semilattice (X;6) is discrete i.e. it has no
bounded in�nite chain) for any pair of elements x; y 2 X which are not 6-
comparable the join x _ y must lie on a shortest path from x to y of the covering
graph of the semilattice.

23Lattices (hence, of course, semilattices) which are not graded are quite com-
mon: in the present context, the lattice of partial preorders is perhaps the most
obvious example (see e.g. Barbut, Monjardet (1970)).

24This is also, arguably, Arrow�s own perspective on manipulation issues (see
Arrow (1963)), except that he overtly renounces to address strategic manipulation
issues, while acknowledging their substantial import (see e.g. Arrow (1963), chpt.
1). By contrast, agenda-manipulation issues play a key role in the arguments
o¤ered by Arrow to support his own proposal of the Independence of Irrelevant
Alternatives (IIA) condition for social welfare functions (a more detailed discussion
of the relationship of IIA to agenda manipulation will be provided elsewhere).
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domain of linear orders over a �nite set A25. However, it also considers
the family of social choice functions which are induced by any such
strict social welfare function on the subsets of A through maximization
-at each preference pro�le- of the �social�linear order selected at that
pro�le (as restricted to the relevant subset of A). In that connection,
four notions of nonmanipulability for strict social welfare functions are
considered, with the primary aim to address issues of strategic ma-
nipulation26. Then, relying on a renormalized and �contracted� versionbdK 27 of the Kemeny distance as de�ned previously, Sato introduces
a �continuity-type�condition for strict social welfare functions called
Bounded Response. A strict social welfare function f satis�es Bounded
Response if bdK(f(RN); f(R0N)) � 1 whenever two preference pro�les
RN ; R

0
N are the same except for the preference of a single agent i, and

Ri and R0i are adjacent (i.e. R
0
i is obtained from Ri by permuting the

Ri-ranks of a single pair of alternatives with consecutive Ri-ranks)28.
In a similar vein, a very mild Adjacency-Restricted Monotonicity con-
dition for strict social welfare functions is considered, requiring that for
any such pair of �adjacent�pro�les RN ; R0N and any x; y 2 A, if [yRix,
xR0iy and xf(RN)y] then xf(R

0
N)y as well. The main result estab-

lished by Sato (2015) is the equivalence of the following statements for
a strict social welfare function f on a connected domain of linear orders
on A: (1) f satis�es Bounded Response and at least one of the four
nonmanipulability conditions mentioned above; (2) f satis�es Bounded

25A connected domain of linear orders over A is a set D � LA such that for any
R;R0 2 D there exists a �nite family fR1; :::; Rkg � D such that (i) R1 = R; (ii)
Rk = R0; (iii) for every i = 1; :::; k � 1, Ri and Ri+1 can be mutually obtained
by reversing the respective ranks of two adjacent (or consecutive) elements of A
that are �adjacent�(i.e. consecutive) according to the other. Thus, a (strict) social
welfare function on a connected domain is a function f : DN �! LA (clearly, it
is also restricted for (N;LA) if D 6= LA). Observe that LA itself is of course a
connected domain.

26One of them is akin to the notion of strategy-proofness for aggregation rules
proposed by Bossert, Sprumont (2014) as discussed above, and another one relies
on the �renormalized� Kemeny distance for linear orders. By contrast, the last
two nonmanipulability notions invoke the induced maximizing choices on A, and
on its subsets, respectively (and are also most suitable to address certain agenda-
manipulation issues).

27Namely, the �halved�Kemeny distance for linear orders. That is essentially
the distance between rankings due to Kendall, given by the minimal number of
transpositions of adjacents elements that is necessary to obtain one linear order
starting from another one (see e.g. Kendall (1955)).

28It is worth recalling here that 1 is the minimum positive value of both dK andbdK .
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Response and each one of the four nonmanipulability conditions men-
tioned above; (3) f satis�es Adjacency-Restricted Monotonicity and
the Arrowian Independence of Irrelevant Alternatives (IIA) condition.
As a corollary of that result (and of arguments from standard proofs

of the Arrowian �impossibility�theorem for strict social welfare func-
tions) a new characterization of dictatorial strict social welfare func-
tions in terms of Bounded Response, one of the four equivalent non-
manipulability conditions mentioned above, and Sovereignty (or On-
toness)29 is established. Furthermore, the set Dsp(Q)of linear orders
on A which are single-peaked with respect to some �xed linear order
Q on A can also be shown to be a connected domain, and the strict
social welfare function fwmajinduced by the method of �(weak) major-
ity decision�30 clearly satis�es both Adjacency-Restricted Monotonicity
and IIA. Hence, it immediately follows that efwmaj : Dsp(Q) ! LA is a
(restricted) strict social welfare function which satis�es both Bounded
Response and all of the four nonmanipulability conditions mentioned
above (hence, in particular, the strategy-proofness properties implied
by the �rst two conditions from that list).
Thus, at least when applied to strict social welfare functions, the

combination of Bounded Response and standard nonmanipulability
conditions (including, more speci�cally, strategy-proofness requirements)
tends apparently to reproduce a well-known pattern. Namely, �impos-
sibility�theorems on the full domain of linear orders, and some �pos-
sibility�results on suitably restricted domains of linear orders (to the
e¤ect that e.g. several versions of the simple majority rule provide
well-de�ned and strategy-proof restricted strict social welfare functions
on certain single-peaked domains of linear orders31).
It should be noticed that the co-majoritarian �median�rules bf@maj,

f@majr (or, equivalently, generalized Condorcet-Kemeny rules fCK� , fCK
r

� ),
and the other strategy-proof rules characterized in Theorem 1 of the
present paper, are in fact well-de�ned on the full domain of linear or-
ders onA: however, only their strict versions induce strict social welfare
functions because otherwise their values at certain pro�les of linear or-
ders on A need not be themselves linear orders on A. Furthermore,

29A strict social welfare function f is sovereign if for any L 2 LA there exists
RN 2 LNA such that f(RN ) = L.

30Namely, for any RN 2 (LA)N , and x; y 2 A, xfwmaj(RN )y if and only if
jNx(RN )j � jNy(RN )j.
31The signi�cant body of literature devoted to the elaboration of such two related

themes is extensively reviewed in the fourth chapter of Gaertner (2001).
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the Kemeny distance is well-de�ned on their respective characteristic
domain-components and codomains (RT

A and BrA, respectively).
Therefore, the de�nition of Bounded Response can be easily refor-

mulated for aggregation rules f : (RT
A)
N �! RT

A and f : (BrA)N �! BrA
with respect to the Kemeny distance dK (as opposed to its �halved�ver-
sion bdK), and the same holds -incidentally- for Adjacency-Restricted
Monotonicity. But such an extended notion of Bounded Response
would be clearly distinct from the original one proposed by Sato and
considered above.
By contrast, the existence issue for strategy-proof social welfare func-

tions as aggregation rules on the full domain of total preorders or even
larger sets of re�exive binary relations on a �nite set has never been
addressed explicitly in previously published work, as mentioned above.
The results of the present work imply that, at least for an odd-sized
population of agents, even anonymous and neutral social welfare func-
tions on the full domain of total preference preorders on a �nite set do
exist, and are indeed strategy-proof on suitably de�ned single-peaked
domains of �preferences on preferences�(i.e. arbitrary rich locally uni-
modal domains).
Arguably, such social welfare functions may also be regarded as a

positive solution to a suitably reformulated version of the classic Ar-
rowian preference aggregation problem. Namely, the focus is restricted
to strategic as opposed to structural manipulation, and the Arrowian
Independence condition IIA is accordingly replaced with a most �nat-
ural�and milder independence requirement tightly related to the in-
trinsic order-theoretic structure of RT

A
32. In other words, we have

here a �rst explicit escape route from Arrow�s �impossibility�theorem
on preference aggregation, which relies on retention of the �transitivity
plus totality�format requirement for preference relations as combined

32Indeed, consider bf@maj for (N;A) with jN j = jAj = 3, and pro�les RN ; R0N of
linear orders with (under the usual permutation-based notation for linear orders,
and square-bracket notation to denote indi¤erence):
R1 = R

0
1 = xyz

R2 = R
0
2 = yzx

R3 = zxy; R
0
3 = xzy:

Note that R3 and R03 are adjacent.
Nevertheless, as it is easily checked,bf@maj(RN ) = [xyz], whilebf@maj(R0N ) = x[yz]:
It is then immediately seen that the co-majority rule (which clearly satis�esMX -

Independence with respect to X = (RT
A;[)) does not satisfy IIA with respect to X .

In fact, Rij fx; yg = R0ij fx; yg for every i 2 N . Yet, yf(RN )x while not yf(R0N )x.
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with a considerable weakening of IIA that relies on the (semi)latticial
structure of the set of total preorders33. That sort of weakening, how-
ever, requires in fact a �xed agenda setting. From a mechanism-design
perspective, it amounts to a sort of divide-and-conquer approach to
collective choice problems: the agenda-formation process and the un-
derlying protocols (if any) are to be taken for granted, and thereby
ignored34.
Furthermore, our results on strategy-proof aggregation rules for arbi-

trary re�exive preference relations suggest a second escape route from
Arrow�s �impossibility�theorem, which relies instead on retaining the
full force of IIA to ensure both strategy-proofness and (arguably) im-
munity to some sort of agenda-manipulation, while renouncing entirely
any substantial requirement on the structure of preference-information
outputs and inputs.
Remarkably, if perhaps unsurprisingly, such escape routes from Ar-

row�s �impossibility�result involve aggregation rules that share an al-
lowance for �universal indi¤erence�, namely for a global stalemate as a
possible output. Notice, however, that in both cases constrained aggre-
gation rules which invariably provide linear orders as their outputs can
be designed by augmenting them with a (pseudo-)random component
as previously mentioned (see Note 11 above). Moreover, versions of

33Such a weakening is totally unrelated to other sorts of weakenings of IIA previ-
ously proposed in the literature including several versions of Positionalist Indepen-
dence, as introduced and discussed by Hansson (1973) with no reference whatsoever
to nonmanipulability issues. The strongest of them, labelled as Strong Positionalist
Independence (SPI) by Hansson himself, requires invariance of aggregate preference
between any two alternatives x; y for any pair of preference pro�les whose restric-
tions to fx; yg are identical only if for every agent/voter the respective closed pref-
erence intervals having x and y as their extrema are also identical. SPI has been
recently rediscovered -and relabeled as Modi�ed IIA- by Maskin (2020). Maskin
motivates it in terms of resistance to certain sorts of �vote splitting�e¤ects, hence
broadly speaking with reference to manipulation issues, including strategic manipu-
lation. Notice, however, that what is at stake in that proposal is strategy-proofness
of the �maximizing�social choice function induced by a certain social welfare func-
tion (as opposed to strategy-proofness of the social welfare function itself).

34That is not meant to imply that disentangling structural and strategic ma-
nipulation is always easy or indeed possible in actual practice. For instance, if
alternative outcomes are candidates for an appointment or in a political election
then strategic candidacy is virtually always possible. But strategic candidacy may
be regarded precisely as a structural manipulation of the aggregation rule which
is channelled through a forced change of available strategies. Anyway, it is worth
noticing that under social choice functions which admit Condorcet winners at any
pro�le of their domain and select them, no agent can bene�t by giving up her own
candidacy (see Dutta, Jackson, Le Breton (2001), Proposition 1).
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each one of them have been repeatedly evoked in the previous social
choice-theoretic literature35, but have scarcely if ever been considered
together. What is arguably novel here, in that respect, is that the fore-
going classical �escape routes�are explicitly connected to both strategic
and/or structural manipulation issues, and given a most explicit for-
mulation within a common general framework.
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