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Abstract

This paper assesses the probability of occurrence of tipping points conditional on a given
temperature scenario by combining probability intervals from elicited experts opinions using
the data of Kriegler et al. (2009). The computation of such conditional probabilities is based
on the aggregation of imprecise probability judgments through the Steiner point. In addition,
the probability of a tipping point can be updated via the standard Bayes rule to generate
tipping point scenarios. Our results suggest that tipping events may happen with relatively
large probabilities, in contrast with the view that tipping points are low-probability-high-
impact events.

Keywords: Bayesian updating; aggregation; global warming; judgmental forecasting; Steiner
point; tipping points.
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1 Introduction

On the basis of estimates and information from paleo-climate data, new model simulations and
combined evidences about human influence on climate variables, the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC), is definitive and clear: “It is un-
equivocal that human influence has warmed the atmosphere, ocean and land. Widespread and
rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred” (IPCC, 2021,
p. 4). Greenhouse gas (GHG) concentrations have been increasing since 1750, reaching annual
averages of 410 ppm for CO2 (carbon dioxide), 1866 ppm for CH4 (methane) and 332 ppm
for N2O (nitrous oxide) in 2019: this situation is unequivocally due to human activities. The
scale of such changes in the climate system as a whole has been never found in the history of
the Earth that could induce unpredictable rare and extreme climate events. IPCC’s recommen-
dations are unequivocal: “From a physical science perspective, limiting human-induced global
warming to a specific level requires limiting cumulative CO2 emissions, reaching at least net zero
CO2 emissions, along with strong reductions in other greenhouse gas emissions. Strong, rapid
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and sustained reductions in CH4 emissions would also limit the warming effect resulting from
declining aerosol pollution and would improve air quality”(IPCC, 2021, p. 27). In spite of such
recommendations, the leaders of the World’s richest economies and biggest polluters struggle to
find a common ground and take actions that may effectively change the current state of affairs
(see for example the conclusions of the recent G20 and COP26 meetings G20, 2021; COP26,
2021).

As of today, there is a large literature suggesting that the consequences of climate change may
involve abrupt changes and tipping points (e.g. Lenton et al., 2019).1 The concept of tipping
point was introduced into the scientific debate in the ’80s of the last century by the IPCC to
represent large scale discontinuities in the climate system. At that time, experts believed that
tipping points would be crossed if global warming had exceeded 5◦C. In the 2018 IPCC report
(IPCC, 2018b) experts suggested that tipping points could be crossed even between 1 and 2◦C
of global warming. Lenton et al. mention that some “models suggest that the Greenland Ice
sheet could be doomed at 1.5◦C of warming, which could happen as soon as 2030” (Lenton et
al., 2019, p. 592). This seems to point to the fact that, even if experts’ judgments are obtained
under irreversibility and uncertainty, such extreme events, characterised by low probabilities and
catastrophic consequences, could be more likely than it was once thought.

Providing a realistic assessment of the probability of a tipping event may have a fundamental
impact in influencing policy decisions concerning climate change. Unfortunately, there are very
few models able to simulate abrupt climate changes as consequences of realistic external forcing
and, even when sophisticated climate models show effects, in particular a temperature response,
they are weak with respect to Dansgaard-Oeschger events.2 To manage the complexity and the
uncertainty implied in climate models, policy makers (PMs) have no alternative but to resort to
experts and obtain experts’ elicitations; that is, expert probabilistic judgments (Colson & Cooke,
2018). In order to elicit experts’ opinions about tipping points, it is customary to interview
(face-to-face) leading climate scientists about the possible effects of global climate change and
response of the climate system to future trajectories of radiative forcing (i.e., Zickfeld et al., 2007;
Kriegler et al., 2009; Zickfeld et al., 2010; IPCC, 2017). Once the elicitation is completed, the
data are aggregated using a suitable combination approach. Using a reliable method to provide
a synthesis of the various opinions seems of paramount importance, also given the fact that no
clear dominant approach exists.

The main objective of this paper is to provide an assessment of the occurrence of tipping points
using the elicitation data in Kriegler et al. (2009). In Kriegler et al.’s seminal paper, experts are
asked to provide probability intervals about three temperature scenarios. The low temperature
scenario (Low) considers an increase between about 1◦C and 2◦C by year 2200 in comparison
with year 2000. The medium temperature scenario (Medium) considers an increase between
about 2◦C and 4◦C by year 2200 in comparison with year 2000. The high temperature scenario
(High) considers an increase between about 4◦C and 8◦C by year 2200 in comparison with
year 2000. This particularly long time horizon differs from that considered by the IPCC. The
IPCC uses the cumulative CO2 emissions from 2020 to 2050 for six illustrative scenarios SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 about the projected global warming that also

1A tipping point is defined as “[a] level of change in system properties beyond which a system reorganizes,
often abruptly, and does not return to the initial state even if the drivers of the change are abated. For the climate
system, it refers to a critical threshold when global or regional climate changes from one stable state to another
stable state” (IPCC, 2018b).

2Dansgaard-Oeschger events are rapid climate fluctuations such as the Greenland ice melting occurred in the
Eemian interglacial. This event took the form of rapid warming episodes, followed by gradual cooling periods,
that increased the average annual temperature on the Greenland ice sheet of 8 ◦C over 40 years (Heinrich, 1988;
Dansgaard et al., 1993).
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includes effects of anthropogenic forces. Kriegler et al. have different goals and the longer horizon,
up to 2200, is consistent with transition processes that take place in the cryosphere.

The aggregation approach considered in this paper uses a recently introduced method (Basili &
Chateauneuf, 2020) that allows a researcher to recover the probability distribution of the event
under investigation from opinions expressed as probability intervals. Using a standard Bayesian
updating rule we can provide posterior probabilities that may be used to generate scenarios or
hypotheses for future studies once more data become available.3

In this paper we assume that opinions are expressed through different probability distributions
and that there exists a PM who adopts a multiple priors decision model. The set of probability
distributions or lotteries of all experts can be considered a reflection of the PM’s assessment of
the reliability of available information about the underlying uncertainty, that is, her perception
of uncertainty; the optimal aggregation rule incorporates the PM’s attitude about scanty and
vague information. Facing the set of all probability distributions attached by experts to possible
events, the PM considers the weighted expected value of their common probability set, or their
probability intersection. Such a weighted average opinion is the Steiner point of the convex
capacity that emerges from the aggregation of experts’ opinions (see Appendix B for more details
on the aggregation approach).

In general, our results suggest that the interpretation of a tipping point as a high-impact-low-
probability event seems to be incorrect (see also Lenton et al., 2019; Lenton & Ciscar, 2013).
We find, in fact, that the probability of crossing a tipping point threshold is non trivially larger
than zero in nearly all cases, even for low climate change scenarios. Furthermore, it has been
recently claimed (Lenton & Ciscar, 2013) that a more adequate picture for the representation of
tipping points would be to provide the (joint) probability distribution for tipping each element.
Due to limited data availability, we can only recover the marginal distribution of tipping points.
In spite of this limitation, this paper is an effort towards that direction. We update the resulting
probabilities using a standard Bayes rule for all the possible combinations of the likelihood of
occurrence of a certain temperature scenario. This approach generates posterior probability
surfaces that may be interpreted as tipping points scenarios. The results suggest that some
tipping points (the dieback of the Boreal forest, the reorganization of the Atlantic meridional
overturning circulation, the decline of the ocean carbon sink and the melt of the West Antarctic
and Greenland ice) are extremely likely to occur under the high temperature scenario. On the
other hand, only committing to low climate change temperature corridors would substantially
reduce the probability of occurrence of most tipping points.

The paper proceeds as follows. Section 2 shows the related literature. Section 3 introduces
the fundamental aspects of our theoretical framework. In Section 4 we present the conditional
probabilities of occurrence of various tipping points computed via the Steiner point as well as
the results of the Bayesian updating. Finally, Section 5 concludes the study.

2 Related Literature

Communicating uncertainty about climate change is crucial to effectively influence policy de-
cisions and shape public opinion. In this context, the IPCC special report Global Warming

3It seems that there are no follow up studies on experts’ assessment of tipping points. This is also confirmed in
the correspondence with leading researchers in the field. Other recent studies use the data and results in Kriegler
et al. (2009), see, e.g.,Wunderling et al. (2021) and Gaucherel & Moron (2017).
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of 1.5◦C (IPCC, 2018a) is an important example. The IPCC special report is based “on the
assessment of around 6,000 peer-review publications, most of them published in the last few
years” (IPCC, 2018a, p. v). The report aggregates multiple forms of knowledge and uses a
specific language to address and communicate the degree of certainty (or lack thereof) of specific
findings.

In general, however, some critical issues emerge in the treatment of uncertainty: findings are
based on multiple lines of evidence and are expressed using confidence qualifiers and many of
them depend on certain model assumptions. In addition to that, findings have to be updated if
new information becomes available. Borsuk & Tomassini (2005), Tomassini et al. (2007), Knutti
et al. (2008), Zickfeld et al. (2007), Zickfeld et al. (2010), Kriegler et al. (2009) highlight that
aggregation of probabilistic projections with a variety of statistical models is an unsolved problem.
One fundamental challenge of the assessment process is to summarize such information into one
single quantity. However, due to the heterogeneity in sources and quality of the information,
obtaining a unique synthetic measure may become a daunting task.

Furthermore, when formal statistical procedures are unavailable, expert judgment approaches
are often employed to provide an assessment of uncertainty (see e.g. Mastrandrea et al., 2011).4

Significantly, “one option is to resort to imprecise probability (e.g., Kriegler & Held (2005); Hall
et al. (2007); Tomassini et al. (2007)), that is, consider an uncertainty in PDFs [probability
distribution functions] or sets of PDFs” (Knutti et al., 2008, p. 2658). If each expert has a
set of probability distributions, the mean value for each scenario is evaluated along with all the
individual PDFs (Tomassini et al., 2007).

Experts’ qualitative judgments are often elicited in face-to-face interviews. Then, using a range
of different procedures, mean (averaged over experts) ranks are computed (Kriegler et al., 2009;
Zickfeld et al., 2010) . In Zickfeld et al. (2010), 14 experts (leading climate scientists) discuss
about three scenarios (high, medium, low) of net radiative forcing at the top of the atmosphere
from anthropogenic sources through the year 2200. Experts use a cardinal scale from 0 (no
chance) to 1 (definite chance) for each of the three forcing trajectories. Experts elicit probabil-
ities for each scenario and in the following step they are asked to estimate the median of the
mean trajectories of warming between 2000 and 2050. What they find is that it falls between
0.16◦C/decade and 0.36◦C/decade. These results are qualitatively similar to those of Kriegler
et al. (2009).

From a more general point of view, the problem of eliciting information from experts may take
various forms (Garthwaite et al., 2005). Suppose, for example, that the PM wants to learn about
a certain phenomenon characterized by a random variable X and that there is a set of m experts
equipped with probability P (j) with j ∈ {1, . . . ,m}. The PM may supply the experts with a
probability for the phenomenon under investigation, say, p(PM) and in turn the experts would
provide a value for the quantile x, say, x(j). This definition of the problem is similar to what
one may find in the analysis of Zickfeld et al. (2010) and, more recently, of Bamber et al. (2019).
Alternatively, the generic expert j may be asked to assess the probability of an event associated
to X where x(PM) is a value provided by the PM and p(j) is expert j’s assessment. This is similar
to the case considered for example in Kriegler et al. (2009).

4In 1975, the U.S. Nuclear Regulatory Commission (NCR) introduced for the first time a procedure for the
elicitation process and, since then, techniques and methods have spread to other areas such as volcanology, public
health, ecology, aeronautics, climatology etc. (Cooke, 2013).
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3 Theoretical Framework

The aggregation process of probabilistic opinions (opinion pooling) entails a function, known as
a pooling rule, that elicits a consensus distribution. Such a consensus distribution is determined
among not necessarily independent and fully competent experts when each of them has multiple
priors on future states of the World.5

Under uncertainty or deep uncertainty experts have partial, incomplete or fuzzy knowledge and
their beliefs cannot be represented by a unique, additive and fully reliable probability distribution,
but either by a finite set of them, an interval of probabilities or by a non necessarily additive
measure (e.g. a capacity) (e.g. Basili & Chateauneuf, 2011, 2016; Basili & Pratelli, 2015, and
references therein).6

When experts’ opinions are measured as probability intervals, their consensus distribution is
elicited by means of the Steiner point of the intersection (core) of all the experts’ probability
distributions. This type of aggregation assumes that experts have imprecise information, but
nothing about their competence, experience and independence. It is interesting to notice that
when the set of states of the World is finite, the Steiner point coincides with the Shapley value
(Shapley, 1971; Pechersky, 2015; Basili & Chateauneuf, 2020). The Shapley value is defined
as

Πv
i =

∑
si∈A⊆S

(|A| − 1)!(n− |A|)!
n!

(v(A)− v(A\{si}) , i = 1, . . . , n (1)

where v(·) is a capacity (see equation B.2 in Appendix B) and S = {s1, . . . sn} is a set of states
of the World. Our problem consists of two states of the World (n = 2), this is, whether a tipping
point occurs (Tip) or it does not occur (No Tip). The two states of the World occur with
probability Πv

1 and Πv
2 = 1−Πv

1 respectively.

Let us now define the random variables T ∈ {Tip,No T ip} denoting the occurrence (or not) of
a tipping point and C ∈ {Low,Medium,High} representing possible temperature scenarios as
defined in Section 1. Hence, we have the following Bayes rule

P (T = Tip|C) =
P (C|T = Tip)P (T = Tip)

P (C|T = No Tip)P (T = No Tip) + P (C|T = Tip)P (T = Tip)
. (2)

The Bayes rule in equation 2 can be used to update the probability of occurrence of a tipping
point obtained via the Steiner point. Specifically, we choose Πv

1 for P (T = Tip) as a prior
probability, while P (C|T = Tip) and P (C|T = No Tip) can be obtained from expert knowledge.
Alternatively, they can be left unspecified. In this last case the posterior probability P (T =
Tip|C) can be represented as a surface. For the empirical analysis in Section 4 we opt for the
latter.

4 Eliciting the Probability of a Tipping Point by the Steiner Point

Kriegler et al. (2009) elicited beliefs of experts about the probability of triggering major changes

5Further details on the theoretical features of the aggregation approach can be found in Appendix B.
6Deep uncertainty includes “situations in which we are still able (or assume) to bound the future around many

possible plausible futures and situations in which we only know that we do not know” (Marchau et al., 2019). See
also Rohmer et al. (2019) and Frederikse et al. (2020) for some recent discussion of the concepts of uncertainty
in the context of climate change issues.
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in the Earth system associated to seven tipping points, (see Table 1 for the definition of the
tipping points under analysis) for three different global median temperature scenarios. The
elicitation was developed in multiple rounds, including revisions of previously stated opinions.
The revisions also included consistency checks.

The data are summarized in the dumbbell plots in Figures A.1 to A.7 in Appendix A. Each
figure consists of three plots and each plot refers to one of the three temperature scenarios.
To every row in the plots we attach one single expert. By direct inspection, we note, as also
stressed in Kriegler et al. (2009), the tendency of the experts to place high probability in the
high temperature scenarios.

AMAZ Dieback of the Amazon rainforest.
BOFO Dieback of Boreal forests.
AMOC Reorganization of the Atlantic meridional overturning circulation.
DAIS Disintegration of the West Antarctic ice sheet.
MGIS Melt of the Greenland ice sheet.
DOCS Decline in ocean carbon sink.
NINO Shift to a more persistent El Niño regime.

Table 1: Definition of the tipping points considered in Kriegler et al. (2009).

In order to provide policy relevant information Kriegler et al. (2009) combine, using an appropri-
ate combination rule (see Clemen & Winkler, 1999; Nau, 2002), the probability intervals supplied
by the experts for every tipping point and every temperature scenario.7 Their aggregation rule
produces upper and lower probabilities. Our approach is substantially different. In fact, the
Shapley value described in equation 1 returns the probability of occurrence of a tipping point
conditional on a given temperature scenario.

In Figure 1 we see that, in general, high climate change scenarios (red triangles) are more likely
to trigger a tipping point. While this result is not too surprising, we also observe that there is
a certain degree of heterogeneity across scenarios and tipping points. Specifically, AMOC has a
very low chance to occur for the low climate change scenario. All the other tipping points have,
for the same scenario a non trivial (say, larger than 10%) probability to occur. As we consider
the higher climate change scenarios, Medium and High, the probability of having a tipping
point increases. It is remarkable that for High, the probability of occurrence for BOFO, DAIS,
DOCS and MGIS is 50% or higher.

To provide further intuition for the interpretation of the plots in Figure 1, we adapt the ter-
minology used in Kriegler et al. (2009). This is, we label as remote the prospect of having a
tipping point if Πv

1 < 0.1, significant if Πv
1 ≥ 0.1 and large if Πv

1 ≥ 0.5. Under these criteria
only AMOC for the low temperature scenario has a remote chance of being triggered. DAIS and
MGIS have a large probability of being triggered under the high temperature scenario, while
BOFO and DOCS have a large probability of being triggered under both the medium and high
temperature scenario. The remaining scenarios have a significant probability of triggering a
tipping point.

By applying the Bayes rule in equation 2 we update the results obtained via the Steiner point
to generate tipping point scenarios for different combinations of P (C|T = 0) and P (C|T = 1).
Every point in the resulting surfaces (figures 2 to 8) is the conditional probability of crossing a

7Kriegler et al. (2009) introduce a novel aggregation rule called forced consensus pooling.
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tipping point given the likelihood of the (conditional) occurrence of the temperature scenario.
We notice that the high temperature scenario produces large probabilities for the occurrence of
tipping points. This is result is particularly clear for BOFO (figure 3 (c)), AMOC (figure 4 (c)),
DAIS (figure 5 (c)), DOCS (figure 6 (c)) and MGIS (figure 7 (c)). Committing to low climate
change scenarios may produce remote probabilities of tipping, at least for AMOC (figure 4 (a))
and DAIS (figure 5 (a)), yet in most of the remaining cases the probabilities of triggering a
tipping point are generally at least significant.

5 Conclusions

This paper considers the aggregation of experts’ opinions about uncertain climate change scenar-
ios. The aggregation rule based on the Steiner point provides a probability of the occurrence of a
tipping point. Our results suggests, as expected, that tipping points have higher probabilities to
occur under high temperature scenarios. Nonetheless, the probability of crossing a tipping point
threshold is non trivially different from zero, even under lower climate change scenarios and for
the majority of tipping points under investigation. Our analysis, consistently with the recent
literature on the topic, highlights the fact that these type of events may turn out to be one of
the main climatic emergencies in the upcoming years. Future research can further contribute
to the understanding of these issues by addressing problems concerning elicitation data and the
construction of joint distributions for tipping events.
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Figure 1: Steiner points. The Low, Medium and High climate change scenarios are denoted by a
circle, square and triangle respectively. Πv

1 is the probability that the tipping point is triggered,
while Πv

2 is the probability that the tipping point is not triggered.
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A Figures

This section displays a set of dumbbell plots that describe the data used in the analysis. The
plots are similar to those in Figure 1 of Kriegler et al. (2009). Furthermore, in Kriegler et al.
some of the experts are recognized as core experts. The caption of each plot indicates which
experts are not core experts.
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(a) Low (b) Medium (c) High

Figure A.1: Elicited probability intervals for the AMOC tipping point. In Kriegler et al. (2009)
C9, C20 and C22 are not classified as core experts.

(a) Low (b) Medium (c) High

Figure A.2: Elicited probability intervals for the MGIS tipping point. In Kriegler et al. (2009)
M1, M3 and M14 are not classified as core experts.

(a) Low (b) Medium (c) High

Figure A.3: Elicited probability intervals for the DAIS tipping point. In Kriegler et al. (2009)
D7 and D10 are not classified as core experts.
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(a) Low (b) Medium (c) High

Figure A.4: Elicited probability intervals for the AMAZ tipping point. In Kriegler et al. (2009)
A1, A6, A10 and A12 are not classified as core experts.

(a) Low (b) Medium (c) High

Figure A.5: Elicited probability intervals for the NINO tipping point. In Kriegler et al. (2009)
N3, N6 and N10 are not classified as core experts.

(a) Low (b) Medium (c) High

Figure A.6: Elicited probability intervals for the BOFO tipping point. In Kriegler et al. (2009)
B1 is not classified as a core experts.
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(a) Low (b) Medium (c) High

Figure A.7: Elicited probability intervals for the DOCS tipping point. In Kriegler et al. (2009)
O2 is not classified as a core experts.
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B Aggregation of Opinions and the Steiner Point

Let us consider a finite set S = {s1, . . . , sn} of states of the World and let Σ = 2S be the σ-
algebra associated to the set S. Since the study deals with discrete events, P is a probability
mass function (pmf) on (S,Σ) such that P : Σ → [0, 1]. For a specific pmf, p(si) = P (S = si)
for any i ∈ {1, . . . , n} and

∑n
i=1 p(si) = 1.

Consider now a non-negative set function v : Σ→ R. Such a function is a capacity on (S,Σ) if,
for any A,B ∈ Σ, A ⊆ B ⇒ v(A) ≤ v(B), v(Ø) = 0 and v(S) = 1, where Ø is the empty set. The
capacity v(·) is convex if v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). The corresponding dual capacity
is defined as v̄(A) = 1− v(Ac). The dual capacity v̄(A) is concave. Uncertainty is modeled via
the core of the convex capacity v. The core C(v) is a set of probability distributions P on (S,Σ)
such that P (A) ≥ v(A) ∀A ∈ Σ.

The PM’s problem is to learn the distribution of a certain event by aggregating experts’ opinions.
Let P0 denote the unobserved pmf that governs the phenomenon under study. She asks expert j,
(j = 1, . . . ,m), to provide a lower and upper bound for the probability pi = p0(si) = P0(S = si).
The set of possible probabilities considered by expert j is defined as

Pj =
{
P j =

(
pj1, . . . , p

j
i , . . . , p

j
n

)
: aji ≤ p

j
i ≤ b

j
i , i = 1, . . . , n

}
.

The PM will accept the expert’s opinion if two consistency conditions are met. Specifically, for
the expert’s opinions to make sense the bounds aji and bji must meet the following conditions of
individual consistency (I-consistency).

Condition 1. [ I-consistency] The bounds aji and bji satisfy the conditions 0 ≤ aji ≤ bji ≤ 1

and
∑n

i=1 a
j
i ≤ 1 ≤

∑n
i=1 b

j
i .

The set Pj is not empty if and only if the I-consistency condition is met. Furthermore, Pj can
be seen as the core C(vj) of a given convex capacity vj where

vj(A) = max

 ∑
i∈{i:si∈A}

aji , 1−
∑

i∈{i:si /∈A}

bji

 (B.1)

and the set A ⊆ S is a set of states of the World (Chateauneuf & Cornet, 2018; De Campos et
al., 1994). It is expected that the unknown distribution P0 be in the the set Pj of the generic
expert j, i.e. P0 ∈ Pj . In addition to that, it is expected also that P0 be in the intersection
of all Pj . Hence, the following group consistency (G-consistency) condition is supposed to be
met.

Condition 2. [ G-consistency] The intersection of the probability sets associated with the
pool of experts is non empty, i.e., P = ∩mj=1Pj 6= Ø and that P0 ∈ P.

Whenever the intersection set P = Ø, this is, when experts have conflicting opinions, the PM
should either require a revision of the experts’ opinions or change the expert panel. Notice
that, however, even when the G-consistency condition is not met, the PM may still be able to
extract valuable information by applying the G-consistency condition to a subset of experts.
This approach may reveal, for example, whether some experts are more or less optimistic about
a given phenomenon.
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The consensus distribution set is associated to a convex capacity v(·), defined as

v(A) = max

 ∑
i∈{i:si∈A}

ai, 1−
∑

i∈{i:si /∈A}

bi

 (B.2)

where ai = maxj a
j
i and bi = minj b

j
i . In this context the Steiner point is particularly relevant,

since the Steiner point of C(v) is the center of the core of the convex capacity v and represents
the consensus probability for the given set of experts. The Steiner point is denoted as Πv ∈
C(v).

In our framework the Steiner point coincides with the Shapley value and it is easily computed
via the following expression

Πv
i =

∑
si∈A⊆S

(|A| − 1)!(n− |A|)!
n!

(v(A)− v(A\{si}) , i = 1, . . . , n. (B.3)

Equation (B.3) shows how the Shapley value represents the average marginal individual contri-
bution over all the possible different permutations in which the grand coalition S may be formed
(Basili & Chateauneuf, 2020).8

8Recent research suggests that, for independent inputs, the Steiner point-Shapley value is bracketed between
two different Sobol’ indices. This result seems to hold also for the case of dependent inputs or expert judgments
(Song et al., 2016, see also Owen & Prieur (2017) for further uses of the Shapley value in the context of ANOVA).
Sobol’ index provides a measure of the importance of inputs to a function and is defined in terms of the functional
analysis variance decomposition (Sobol’, 1990, 1993).
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