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Abstract

Many econometrics textbooks imply that under mean independence of the regressors and the

error term, the OLS estimand has a causal interpretation. We provide counterexamples of

data-generating processes (DGPs) where the standard assumption of zero conditional mean

error is satisfied, but where OLS identifies a pseudo-parameter that does not have a causal

interpretation. No such counterexamples can be constructed when the assumption needed is

stated in the potential outcome framework, highlighting the fact that causal inference requires

causal, and not just stochastic, assumptions.
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1 Introduction

In their coverage of ordinary least squares (OLS) regression, many econometrics textbooks invoke

the assumption that the regression error is mean independent of the covariates, and has mean zero.

It is often claimed or implied that under this assumption (plus additional ones such as linearity and

no perfect collinearity), the OLS estimand has a causal interpretation. In this paper, we provide

counterexamples to those claims. In the data generating processes (DGPs) of our examples, the

zero conditional mean error assumption is satisfied, yet the OLS estimand does not have any

causal interpretation: it identifies a pseudo-parameter. We then show that a causal assumption–for

instance, one stated in the potential outcome framework–does not allow for such DGPs, permitting

identification of a suitably defined causal effect.

A review of econometrics textbooks reveals several examples of causal claims about the OLS

estimand under zero conditional mean error. For instance, the graduate textbook by Hayashi (2000)

claims that the regression coefficients represent the marginal effects of the regressors. Cameron

and Trivedi (2005) and Wooldridge (2010) imply that under zero conditional mean error, the OLS

estimand has a structural interpretation. And the introductory textbooks by Wooldridge (2019)

and Stock and Watson (2019) both claim that under the zero conditional mean error assumption,

the OLS estimand can be interpreted as a ceteris paribus effect.

An empirical example in Wooldridge (2019) highlights the problem with these claims. In the

example, yield is the regressand and fertilizer the regressor; “if fertilizer amounts are chosen inde-

pendently of other features of the plots, then [zero conditional mean error] will hold: the average

land quality will not depend on the amount of fertilizer. However, if more fertilizer is put on the

higher-quality plots of land, then the expected value of u [the error] changes with the level of fer-

tilizer, and [zero conditional mean error] fails.” The first sentence in this quote is true, but the

second not necessarily, as we will show. This stems from the fact that a lack of causal relations

between variables implies their statistical independence, but the converse is not true (Chalak and

White, 2012). This is why causal assumptions are required for a causal interpretation.

What our counterexamples have in common is that the DGPs feature cancellations of parameters

that generate stochastic (conditional) independence relations between variables despite the presence

of a causal relation between them. The existence of such ‘perverse’ DGPs that generate joint
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distributions featuring cancellations of parameters has long been acknowledged in other causal

inference frameworks. In the Pearl Causal Model (PCM), such joint distributions are termed

‘unfaithful’ to the DGP, and they are ruled out by the Causal Faithfulness assumption (e.g., Spirtes

et al. (2000); Pearl (2009)). In the settable systems extension of the PCM of White and Chalak

(2009) and Chalak and White (2012), these instances are referred to as P-stochastic isolation. Such

DGPs are special: the set of unfaithful distributions has Lebesgue measure zero. In this paper, we

show that these DGPs are ruled out when the assumption required for identification is stated in the

potential outcome framework. Indeed, if the assumption needed is stated in the causal language of

the potential outcome framework, then OLS does identify a causal parameter. This highlights the

fact that causal inference requires causal, and not just stochastic, assumptions.

2 Identification failure under the zero conditional mean assump-

tion

For the simple regression model

Yi = γ + λDi + εi,

it is often claimed or implied–as we reviewed in Section 1–that if E(εi|Di) = E(εi) = 0, then the

OLS estimand of λ has a causal interpretation (e.g., a marginal effect or a ceteris paribus effect).

We will now present a DGP where E(εi|Di) = E(εi) = 0, but where the OLS estimand of λ

identifies a pseudo-parameter that does not have a causal interpretation.

We will also show that if we impose an assumption on the potential outcomes instead, then

the OLS estimand does identify a meaningful parameter, and it is not possible to construct such a

counterexample as long as the potential outcomes are well defined.
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In particular, we assume that the data are generated as follows

Ui ∼ N (0, 1),

Di = I(Ui > 0),

Yi = κDi + αUi + νi,

κ = −2α
φ(0)

Φ(0)
,

E(νi|Di) = E(νi) = 0.

Given this DGP, the regression error term εi can be written as

εi ≡ Yi − γ − λDi = κDi + αUi + νi − γ − λDi.

Moreover, since E(Ui|Di = 1) = E(Ui|Ui > 0) = φ(0)
Φ(0) and E(Ui|Di = 0) = E(Ui|Ui ≤ 0) = − φ(0)

Φ(0) ,

their difference is

E(Ui|Di = 1)− E(Ui|Di = 0) = 2
φ(0)

Φ(0)
.

Putting it all together, we have that

E(εi|Di = 1)− E(εi|Di = 0) = γ − γ + α[E(Ui|Di = 1)− E(Ui|Di = 0)]

+ E(νi|Di = 1)− E(νi|Di = 0) + κ− λ

= 2α
φ(0)

Φ(0)
+ κ− λ

= 2α
φ(0)

Φ(0)
− 2α

φ(0)

Φ(0)
− λ

= −λ.

This shows that our standard textbook assumption E(εi|Di) = E(εi) = 0 is satisfied if and only if

λ = 0 even though the effect of Di on Yi is not in general equal to zero. The reason cancellation

occurs in this example is that the selection bias, caused by omitting Ui from the model, is exactly

equal in magnitude and of the opposite sign as the causal effect of Di on Yi. This makes the

statistical error εi and Di mean independent, but λ does not have a causal interpretation.
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The OLS estimand can, however, be given a causal interpretation, if causal assumptions are

imposed. Let Y d
i , d ∈ {0, 1} be the potential outcome unit i would get if we were able to set Di to

d, keeping everything else fixed. Hence, the treatment effect κi for unit i equals Y 1
i − Y 0

i . Under

the usual Stable Unit Treatment Value Assumption (SUTVA), we can observe only one of the two

potential outcomes for each unit according to the observational rule:

Yi = Y 1
i Di + Y 0

i (1−Di).

From the observational rule we can write

Yi = Y 1
i Di + Y 0

i (1−Di)

= Y 1
i Di + Y 0

i − Y 0
i Di

= (Y 1
i − Y 0

i )Di + Y 0
i

= κiDi + E(Y 0
i ) + ηi.

The last equation comes from the fact that one can always write the random variable Y 0
i as

E(Y 0
i ) + ηi with E(ηi) = 0. Without loss of generality and to simplify exposition we will normalize

E(Y 0
i ) = 0 and κi = κ ∀ i such that

Yi = κDi + ηi.

Notice that in the DGP of our counterexample E(Y 0
i |D = 1) = α φ(0)

Φ(0) 6= E(Y 0|D = 0) = −α φ(0)
Φ(0) 6=

0. Thus, the weakest possible assumption on the potential outcomes to interpret λ as a causal

effect, i.e., E(Y 0|D) = E(Y 0), is violated. This is because E(Y 0|D) = E(Y 0) directly assumes

zero selection bias and thus no cancellation can occur. This implies that when using a regression

model to estimate a causal effect, relying merely on a statistical assumption (zero conditional mean

error) does not suffice for identification. To identify a causal effect, one needs to impose causal

assumptions.

In Appendix A.1 we show a similar example of a DGP when adding a set of control variables Xi

that is not correlated with Di. We also present an example where Di depends on Xi. However, in
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this case, the treatment effect of Di on Yi has to be heterogeneous and depend on Xi. The reason

is that cancellation occurs when the selection bias and the causal effect are identical in magnitude

and of opposite sign. Since the selection bias depends on Xi when Di is affected by Xi, so must

the effect of Di on Yi to have cancellation. Finally, in a supplementary online appendix we provide

some numerical experiments that confirm our theoretical derivations.
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Appendix

A Adding control variables

A.1 Control variables that only affect the outcome

Herein, we generalize the above example to include a set of control variables Xi that only affects
the outcome Yi and not our main regressor Di. We modify our DGP as follows(

Ui
Xi

)
∼ N

[(
0
0

)
,

(
1 0
0 1

)]
,

Di = I(Ui > 0),

κ = −2α
φ(0)

Φ(0)
,

Yi = κDi + αUi + δXi + νi,

E(νi|Di, Xi) = E(νi) = 0.

Given this DGP, the regression error term εi can be written as

εi ≡ Yi − γ − λDi − βXi = κDi + αUi + δXi + νi − γ − λDi − βXi.

Moreover, since E(Ui|Di = 1, Xi) = E(Ui|Ui > 0) = φ(0)
Φ(0) and E(Ui|Di = 0, Xi) = E(Ui|Ui ≤ 0) =

− φ(0)
Φ(0) , their difference is

E(Ui|D = 1, Xi)− E(Ui|D = 0, Xi) = 2
φ(0)

Φ(0)
.

Putting it all together, we have that

E(ε|D = 1, Xi)− E(ε|D = 0, Xi) = γ − γ + α[E(Ui|D = 1, Xi)− E(Ui|D = 0, Xi)]

+ E(νi|D = 1, Xi)− E(νi|D = 0, Xi) + κ− λ
− βXi + βXi − δXi + δXi

= 2α
φ(0)

Φ(0)
+ κ− λ

= 2α
φ(0)

Φ(0)
− 2α

φ(0)

Φ(0)
− λ

= −λ.

This shows that our standard textbook assumption E(ε|D,X) = E(ε) is satisfied if and only if

λ = 0, but in this DGP the causal effect of D on Y is κ = −2α φ(0)
Φ(0) 6= 0 ∀ α 6= 0.
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A.2 Control variables that affect both the main regressor and the outcome

We now consider a set of control variables Xi that affects both Yi and Di. We modify our DGP as
follows (

Ui
Xi

)
∼ N

[(
0
0

)
,

(
1 0
0 1

)]
,

Di = I(Ui + πXi > 0),

κi = −2α
φ(πXi)

Φ(πXi)
,

Yi = κiDi + αUi + δXi + νi,

E(ν|D) = E(ν) = 0.

Given this DGP, the regression error term εi can be written as

εi ≡ Yi − γ − λDi − βXi = κiDi + αUi + δXi + νi − γ − λDi − βXi.

Moreover, since E(Ui|Di = 1, Xi) = E(Ui|Ui > πXi, Xi) = φ(πXi)
Φ(πXi)

and E(Ui|Di = 0, Xi) =

E(Ui|Ui > πXi, Xi) = − φ(πXi)
Φ(πXi)

, their difference is

E(Ui|D = 1, Xi)− E(Ui|D = 0, Xi) = 2
φ(πXi)

Φ(πXi)
.

Putting it all together, gives us

E(ε|D = 1, Xi)− E(ε|D = 0, Xi) = γ − γ + α[E(Ui|D = 1, Xi)− E(Ui|D = 0, Xi)]

+ E(νi|D = 1, Xi)− E(νi|D = 0, Xi) + E(κi|Xi)− λ
− βXi + βXi − δXi + δXi,

= 2α
φ(πXi)

Φ(πXi)
+ E(κi|Xi)− λ,

= 2α
φ(πXi)

Φ(πXi)
− 2α

φ(πXi)

Φ(πXi)
− λ,

= −λ.

This shows that our standard textbook assumption E(ε|D,X) = E(ε) is satisfied if and only if

λ = 0, but in this DGP the individual treatment effect κi = −2α φ(πXi)
Φ(πXi)

6= 0 ∀ α 6= 0.
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1 Introduction

In this document we study the behavior of the OLS estimator under the data generating process

(DGP) described in Section 2 of the main text. In addition, we investigate the case where control

variables are included (Appendices A.1 and A.2 of the main text). For such a case we distinguish

the scenario where the additional controls only affect the outcome and the scenario where they

affect both the outcome and the treatment variable. To clarify the role played by the variables

in the simulation experiments, we accompany the DGPs with their corresponding directed acyclic

graph (DAG) representation.

2 A simple DGP

Let us consider the following model

Yi = κDi + αUi + νi (1)

where Ui ∼ N (0, 1), νi ∼ N (0, 1) and Di = I(Ui > 0).

The parameter of interest is set at κ = −2α φ(0)
Φ(0) , while the auxiliary parameter is α = 1. A

DAG representation for this DGP is provided in Figure 1, where we see the direct effect D → Y ,

which is what we want to identify and the fork structure Y ← U → D, which is a confounding

path. From the pair (Yi, Di), i = 1, . . . , n we estimate

Yi = γ + λDi + εi.

The sample size for this experiment is set to n = 1000 with 10,000 repetitions. The histogram in

Figure 2 shows how the estimates accumulate about zero and far away from the true parameter

(the vertical red line on the left). As shown in Section 2 of the main text, λ = 0 immediately

implies that the standard assumption E(εi|Di) = E(εi) = 0 is satisfied.

By adding the variable X, we may obtain different graphical structures. In particular, we are

interested in the situations where X → Y and Y ← X → D (see Figure 3 and Figure 4). In the first

case, X does not further interfere with the identification of the direct effect (besides the confounding
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D

U

Y

Figure 1: Confounding path and direct causal path with no additional regressors.

effect of U), while in the second case, further confounding effects are avoided by controlling for X.

Let us investigate those cases numerically. For simplicity, we consider Xi to be a scalar. Let us

define our model as

Yi = κDi + δXi + αUi + νi. (2)

The DGP is the same as that introduced in Equation 1 with the addition that Xi ∼ N (0, 1) and

δ = 1. The estimated model is

Yi = γ + λDi + βXi + εi.

We notice that Figure 5 is similar to Figure 2 which leads us to conclude that the inclusion of

covariates cannot help us estimate the causal effect (this can also be evinced from the DAG in

Figure 3).

Finally, in the last DGP, the variable Xi has an effect both on Yi and Di. As pointed out in

Appendix A.2 of the main text, this specification has some implications on the definition of the
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Figure 2: OLS estimates of λ. The red vertical line corresponds to the true value κ = −2 φ(0)
Φ(0) .

causal effect. Let us define the DGP as

Yi = κiDi + δXi + αUi + νi (3)

with κi = −2α φ(πXi)
Φ(πXi)

and Di = I(Ui + πXi > 0) where νi, Xi and Ui are identically and indepen-

dently sampled from a standard normal distribution. Furthermore, π = δ = α = 1. The results of

the simulation are displayed in Figure 6. Given that κi is not constant, we compute κ̄ = 1
n

n∑
i=1

κi

for every Monte Carlo replication, and we plot its corresponding histogram alongside the histogram

for λ̂. Also in this case, we find that the estimates for λ are well away from the values of κi.
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D

U

X

Y

Figure 3: Confounding path and direct causal path where X only affects Y.

D

U

X

Y

Figure 4: Confounding path and direct causal path where X affects both D and Y .
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Figure 5: OLS estimates of λ. The red vertical line corresponds to the true value κ = −2 φ(0)
Φ(0) .
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Figure 6: OLS estimates of λ and average value κ̄.
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