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THE DUAL APPROCH IN AN INFINITE HORIZON MODEL
WITH A TIME-VARYING PARAMETER

by

Hans M. Amman and Marco P. Tucci

In a previous paper Amman and Tucci (2017) discuss the DUAL control method, based on Tse and
Bar-Shalom (1973) and (Kendrick, 1981) seminal works, applied to the BMW infinite horizon
model with an unknown but constant parameter. In these pages the DUAL solution to the BMW
infinite horizon model with one time-varying parameter is reported. The special case where the
desired path for the state and control are set equal to O and the linear system has no constant is
considered. The appropriate Riccati quantities for the augmented system are derived and the time-
invariant feedback rule are defined following the same steps as in Amman and Tucci (2017).
Finally the new approximate cost-to-go is presented. Two cases are considered. In the first one the
optimal control is selected using the updated estimate of the time-varying parameter in the model.
In the second one only an old estimate of that parameter is available at the time the decision maker
chooses her/his control. For the reader’s sake, most of the technical derivations are confined to a

number of short appendices.

1. Introduction

In a previous paper Amman and Tucci (2017) discuss the DUAL control method, based on Tse and
Bar-Shalom (1973) and (Kendrick, 1981) seminal works, applied to the BMW infinite horizon
model with an unknown but constant parameter. Building on their results, in these pages the DUAL
solution to the BMW infinite horizon model with one time-varying parameter associated to the
control variable is reported. The special case where the desired path for the state and control are set
equal to 0 and the linear system has no constant is considered. Two scenarios are studied. In the
first one the optimal control is selected using the updated estimate of the time-varying parameter in
the model. In the second one only an old estimate of that parameter is available at the time the
decision maker chooses her/his control. It is as if the estimate of the time-varying parameter
available to the decision maker at the time the control is selected, or the decision is made, is going
to be old by the time the control is applied. This situation is fairly common when deciding fiscal

policy for next period.



The paper is organized as follows. The problem is stated in Section 2 and the one-period ahead
projection of the mean and variance of the augmented state vector is discussed in Section 3. Section
4 is devoted to the compution of the nominal path for the state and control. The Riccati equations
and the updating of the covariances of the augmented system are then considered (Section 5 and 6).
In Section 7 the approximate cost-to-go is derived for the case where the updated estimate of the
time-varying parameter in the model is used. Finally the appropriate derivations for the case where
only an old estimate of that parameter is available at the time the decision maker chooses her/his
control are reported (Section 8). A number of short appendices contain most of the technical

derivations.

2. Statement of the Problem

Amman and Tucci (2017) consider an infinite horizon model in which the policy maker wants find
the set of controls u, fort=0, 1, ..., oo, where ¢ =0 denotes the current period, which minimizes the

linear functional

{(I/Z)i(xfwt +uf/1t)} (2-1)

where E, is the expectation operator conditional on the information available at time 0, 4, = p'A

and w, = p'w where p is the discount factor between 0 and 1, subject to
X, =oax,+pu +¢,, fort=0,1, ..., 00 (2-2)

with X, and u, the state and control variables, respectively. The parameters of the system equation

are o and [ with the latter assumed constant but unknown with mean, at time ¢, bt and variance

Gftﬂ . The error term &, | is assumed identically and independently distributed (i.i.d.) normal with

mean zero and variance g. Finally, the initial state X and the penalty weights w’s and A’s are

given constants. Also, the state is measured without error.!

I This is equivalent to setting H=I and R=0 in Kendrick (1981, 2002, Ch. 10 -11) or Tucci (2004, Ch. 2-5).



Following Tse and Bar-Shalom (1973) methods for solving active learning stochastic
control problem, Amman and Tucci (2017) compute, for each time period, the approximate cost-to-
go at different values of the control and then choose that value which yields the minimum
approximate cost.2 This approximate cost-to-go is decomposed into three terms and, for the present
problem, written as

JN = JD,N + JC,N +J (2-3)

PN

where J, is the total cost-to-go with N periods remaining and JD’ N JC’ y and JP’ y are the

deterministic, cautionary and probing component, respectively. The deterministic component
includes only terms which are not stochastic. The cautionary one includes uncertainty only in the
next time period and the probing term contains uncertainty in all future time periods. Thus the
probing term includes the motivation to perturb the controls in the present time period in order to

reduce future uncertainty about parameter values.?

In the following pages, this model is rewritten to allow for a time-varying parameter /3, i.e.
X, =ax,+pu +¢&,, fort=0,1,...,0 (2-4a)

with

Ba=¢(B~B)+B+n,,. (2-4b)
The parameters of the system equation are ¢ and g, with the latter assumed evolving over time
according to a mean-reverting, or return to normality, model with £ its unconditional mean, ¢ the

transition parameter and the stochastic term 7,,, assumed 1.i.d. normal with mean zero and variance
2 . . . o) ® 2
o, - For simplicity sake it is here assumed that the hyperstructural parameters S, ¢and o, , as well

as «a, are known with certainty.* Furthermore, the constraint |¢| <1 is imposed for stationarity

reasons.

The control problem (2-2) and (2-4) is solved treating the stochastic parameters as additional state

variables (Kendrick, 1981, 2002, Ch. 10) and restating it in terms of an augmented state vector z

as: find the controls u, fort=0, 1, ..., c0 minimizing

2 See Kendrick (1981, 2002, Ch. 9-10) or Tucci (2004, Ch. 2) for details.

3 See Kendrick (1981, 2002, pp. 97-98) for an introduction to this decomposition.

4 See, e.g., Tucci (2004, Ch. 2) for details. The case where the hyperstructural parameters are assumed known with
uncertainty is discussed in Chapter 3 and 4 of the same reference.



{(1/2)2( ;Wt*zt+uf/1t)} (2-5)

t=0

with W, having w

+on the top left corner and zeros elsewhere, subject to the discrete-time system

equations, with no measurement equation,

z,, =1 (z,u,)+&", (2-6)

t+1

with the arrays defined as

X ax, + pu, £
= f Z: . 2_
s PRCOE P R @

Problems (2-2) and (2-4) and (2-5)-(2-7) are equivalent “however the first is described as a linear

quadratic problem with random coefficients and the second as a non linear (in x, u and f)

stochastic control problem” as noted in Kendrick (1981, 2002, p. 94).

3. One-period ahead projection of the mean and variance of the augmented state vector z

For this simple model the one-period ahead projection of the mean of the augmented state vector z,
after control at time zero is applied, is
5&1\0 =ax, + ﬂo\o”g (3-1)

B =9(By—B)+B (3-2)

where X is the initial condition for the state, ug is the search control at iteration 7, with the
Certainty Equivalence (CE) solution being the first search control, i.e. ué = uoC *from now on simply
u, to save on notation, and ﬂl‘o is the estimate of the unknown parameter at time 1 given its
estimated value at time zero, i.e. ﬂo‘o with estimated variance 0'0‘0 For the BMW problem with no

measurement error, the projected variances in this case look like>

5 See, e.g., Kendrick (1981, 2002, Ch. 10, pp. 102) or Tucci (2004, Ch. 2, pp. 21-2) for details.



XX

(Y
01\0 _(uo) Go\o +q

1\0 ¢O_£oﬂ 0 (3-3)

o =’ +
1\0 ¢ 0\0

4. The nominal path for the state and control

At this point the nominal, or CE, path for state and control are needed. This is done by solving the

CE problem for the unaugmented system from time 1 on, using fcl‘o =x,, as initial condition and the

nominal path for the time-varying parameter generated using Eq. (3-2). Then the nominal control

for a generic period j in the time-horizon can be expressed as
j-1
u,,=Gx,, =G, {H(aﬂé’mGi)xo’l} for j=1 ey o0 (4-1)
i=1

As explained in Appendix A, in this case G, is not time-invariant as in Amman and Tucci (2017, p.
17) and is defined as

_ 0(,3‘0 i+ _ 0![5"0 i+l
G, —( PR } and (a+[3ioGl)—(a 7 +,3‘0 Hl] (4-2)

‘0 i+1
where S, = E| ( ﬂ,) =¢ ( ,BO‘ B ) + . However for j—oo the estimate of the unknown time-varying

parameter ,Bj at time O, i.e.ﬂﬂo, and Gj converge to £ and G, , respectively, and Eq. (4-1)

simplifies to
u,, =G, (a+pG,) "x

o,n

for j=nn+1,... (4-3)
with

- Tlee el (4

1=

where 7 indicates the first period in which ,811 =B

Therefore when the conditions for the existence of an infinite horizon solution are satisfied,® the

results in Amman and Tucci (2017, App. A) remain valid after convergence of the projected value

of the time-varying parameter to its unconditional mean when X is used as initial nominal state.

6 See, e.g., De Koning (1982) and Hansen and Sargent (2007) and the results in Appendix A.



In this case, when A, = p’4 and w; = p’w, the Riccati equations are defined as’
2 -1
b=k =w, ok =(ak B ) (4 + k08, forj=n—1n-2,. (4-5)
and
k, =k =w, +a’pk, ~(apk, Y (2, + Pk B2) (4-6)

with £, the fixed point solution to the usual Riccati recursions, for j=n,n+Ln+2,....

5. Riccati equations for the arrays of the augmented system

The K Riccati array of the augmented system is partitioned as
kxx kx/)’
j

where the quantity k™ corresponds to k““discussed in the previous section. When the condition for

stabilizability hold the quantity k¥ = k”*and k™ reduces to, when ¢ < n ,

n—1

kP = D7 pk™ (ar+ G, { (48,0, )} X

n- i-1 B (5'2)
+zk:f1(a+ﬁ‘0 l)|: (a+ﬂ/‘0 j):| o,i ul k/ﬂozxol-i_klﬂ; ol_kéﬁxxo,l

i=( j=t

with
ap, k i1
‘0 1+1 .

G, =|- a+ .G, fori=1,...,n—1 (5-3)

’ ﬂ* +ﬂ\o i+l {H( o 1)}

where it is understood that when the lower limit of a summation is higher than its upper limit the
summation is zero and when the lower limit of a product is higher than its upper limit the product is

one. The finite summation in Eq. (5-2) disappears when £ > n. Then k" simplifies to

k" =D pk[* (a+BG,)G,x,, = p(a+pG,)] " k" (5-4)

7 As pointed out in Amman and Tucci (2017), in this case the Riccati equation is scalar function and can easily be
solved. The multi-dimensional case can be more complicated to solve. See, e.g., Amman and Neudecker(1997).



with k= D™ pk)* (a + BG,)G,x,,, and D = [1 -p(a+pG, )2} as shown in Appendix B.

Finally, k”” in Eq. (5-1) looks like

kjﬂﬂ (kﬁﬂ +kﬁ'ﬂ) 2 = kﬁ'ﬁ X2, (5-5)
for j <n, where the infinite summation from »n to oo is denoted by

i = D2 pkGE 1+ p(a+ G, ) —pk D7 B (A, + ok B )1} (5-6a)
and the summation of the first n—1 terms takes the form

i =nzl[k”G2 Y2NG, ~(k5G,, + k) Bo( A+ ,0)'1}. (5-6b)

i+l i+1
i=j

For j>n the finite summation disappears and kjﬁﬂ looks like

K = [ p(a+pG, )2}]'7" kX2, (5-7)

with £/’ identical to £/, in Eq. (5-6a) as shown in Appendix C.

6. Updating the covariances of the augmented system

For the BMW problem the updating equations for the covariances of the augmented system look
like®

0 0
2"J‘\j: _ B ( xx )1 1 Ej\j—l’ (6-1)

A1\

then the elements of the updated covariance matrix are defined as

-1
=0,0"= =0, % =c” - (c* | ¥ (6-2)
/\/ - /\/ i i1 111 1\ 7 -1 Ji-1

where the projected covariances take the form in (3-3) when j and j —1 replace 1 and 0, respectively.

8 See, e.g., Kendrick (1981, 2002, Ch. 10, pp. 103) or Tucci (2004, Ch. 2, pp. 27-8) for details.



Combining (6-2) and (3-3), it yields, forj =1,

2
off =(9°0ty +o7)~ (9o ) (ol +a) =#'oly (wolla +1) +07  (63)
and in general it can be shown that (Appendix D)
TENE .
o =" ol 4 + o Kz‘;(ﬂf MJAJ.J for j >1 (6-4)
with
_ j-1 _ j-1 j-1
=1+ > ¢S +o2g7'x] ZA ( A Gle, forj>1 (6-5)
i=1 m=2 i=m
wich\ =1, G ;as before and
S=u0//q" =G, x,0/q" fori <n (6-6a)
which simplifies to
S, =u,.01'q" (a+,6’G) Gjn X0 fori>n (6-6b)

and u,, =u,.

7. The approximate cost-to-go

As in Kendrick (1981, 2002, Ch. 10) the approximate cost-to-go associated with the ‘search’ control
u; is decomposed into three parts: deterministic (/, ), cautionary (/) and probing (/). The

deterministic component for the control at time 0 is, see, e.g., Eq. 10.49 in the cited reference,

Jprs= 1/1 24 kC“+ Z(MKJCE+2u ) (7-1)

0.
/Hl

with CFE indicating the Certainty Equivalence value associated with the non-augmented model. As

shown in Appendix E, in this case Eq. (7-1) can be rewritten as
Jo, =W U+ U+, (7-2)
with
v, =(1/2)| 2,+ B, (7, +v.)|
v, =B, (7, +v.) (7-3)
=(1/2)(ex,) (7, +9.)

where 7/ is the sum of n—1 terms and y _ the sum of an infinite number of terms defined as



(7-4)

7.=3 {{ [Tla8,0)] (442 GZ)}
. = { %1 (e +ﬁ,.0Gl)T [(k% +4,62)][1-p(a+ G, )T .

It is understood that the product term in square brackets is one when its lower limit is larger than its

upper limit.

The cautionary component looks like

o =(V2) Ko7+ K )+ k7ol +(12) X K+ i) -5

j=1

with the kj’.""s, l;lﬁx and the /E}ﬁﬁ ’s defined as above. By using the results in Appendix F it yields

J

Coo

=8U; +3,U, + 6, (7-6)

with
6,=(1/2)[ ko) +(8,+5.)8;, + 2670008, |
5 =[kﬁ"¢0' +(8 +5m)ﬁ0|0}0¢x0 (7-7)
:(1/2)”21kv1q+(1/2) kog(1-p) +(1/2)(8,+6 (o,
and

8, =k (#a) + )Zk]ﬁflaz
n—1

_ BB 42 BB 2 188 (42 ﬂﬂ 2 2 AP
_kl, (¢ 0\0 +I’l0,])+k1, (¢ 0\0 )+ankj+1n
Jj=1

(7-8)

5. =3 k"0 =6 p (a+8G,) [1-p(a+pG,) | .
J=n

Finally, the probing component takes the form
> 1
— Bx xx B
I —(1/2)2:,[ KB + k5 ;\o] (/1 +kj /\0) G- (7-9)
=

As discussed in Appendix G, using a relevant approximation to compute the finite summation
it yields an expression which looks like



1g(uy) 1 1
- eyt — 7-10
P,o 2h(u0) 2V zf(uo) ( )
with
g(”o)zlglliﬁxin (7-11a)
-1
h(uy)=(of’) (7-11b)
- ~ -1 —1
v=hia- [oﬁﬂ (4,00) }W (1-¢°) (7-11¢)
2Jn=2l e (0 N i (7 )
S (”o) =0, 5 kn/4+l,— (An/4+l) + k3n/4+l,— (A3n/4+1)
(7-11d)

-1 -
+[1—p(a+,8Gn)2} kfﬁ}xf,l
where £/ stands for the ‘minus’ portion in £/’ as defined in (5-6), 4, is the quantity in
square brackets in Equation (6-4) and jj denotes an approximation to the original term of the

form 4, = A.x’,. Equation (7-10) is slightly different from the formulation of the probing

j o1
component usually found in the literature, see e.g. Amman and Kendrick (1995), Tucci et al. (2010)
and Amman and Tucci (2017). The familiar portion can be rewritten as usual, i.e.?

g(“o) ¢1(¢2“0+¢3)2

= —, (7-12)
h(u -1 !
(1) [Fotta(uiol va) +o7]
with
¢1 = lglﬂfﬂ
¢2 = ﬂo‘o (7'13)
¢, = ax,

Then, two new terms v and f (uo) appear. The former is largely independent of o-ﬁ"} and xil.

The latter, largely independent of o-lﬁﬁ as well, takes into account the penalty associated with

the variance of the stochastic parameter a,f. It is interesting to notice that the component (7-

11d) can be rearranged as

f(uo) =9, (¢z“o +4, )2 (7-14)

with

9 The reader should be aware of the fact that the parameter ¢ included in /4 (uo) has nothing in common with the
parameters ¢, ¢, and ¢, appearing in the function g (uo) . The former is the transition parameter in the law of motion

of the time-varying parameter S, , while ¢, ¢, and ¢, are coefficients used to define the function g (uo) in the probing

component of the approximate cost-to-go.



¢4 =
T L) k0 (4) T (7-15)
O'zy { 5 [kn/;i—l (An/4+l) +k3ﬁ;,[/34+1,_ (A3n/4+1) :|+|:1—p(a _|_ﬂG) j| kn/;’f}

and ¢@,, ¢, as in (G-13) as shown in Appendix G. At this point by substituting (7-2), (7-6) and (7-
10) into (7-1) yields

S :('//1‘*'51)“5+(‘//2+52)”0+(V/3+53)

+(lj[ ¢1(¢2u0 +¢3) - +lv+%¢4(¢zuo+¢3)2 (7-13)

! 2
2 PP 2 PP 2
$ o504 (uOO'O‘O + q) to, }

with the parameters defined as in (7-3)-(7-4), (7-7)-(7-8) and (7-11)-(7-15). As shown in the
Appendices, these new definitions collapse to those associated to the infinite horizon model

discussed in Amman and Tucci (2017) when ¢ =1 and O',f =0.

8. The dual control in the infinite horizon model with an old estimate of the time-varying
parameter

In this section it considered the case where the estimate of the time-varying parameter available to
the decision maker at the time the control is selected, or the decision is made, is going to be old by
the time the control is applied. It is as if the control is selected using old information, say the
information available at time —1, instead of the information at time 0 as assumed in the previous
sections. Then, the one-period ahead projection of the mean of the augmented state vector z, after

control at time zero is applied, is

Xoir =% +,6’0|_1u0, (8-1)
Byi=8(B..~B)+B. (8-2)
The projected variances in the absence of observation ‘0’ are
V'
q =u’ o’ L*a
— psPP
=¢o’ - Yy (8-3)
8 B
o4 = K St a

and

xx pB
o 1—”0( ol to, )+q

ol =g(#’0”} ,+ o7 Juy (8-4)

o’ = 2 5 2
o, = ¢’ (¢O‘1‘  to, )+0,7.



In this case the updated variance of the stochastic parameter for j =1 is

1
ol =l a(woll,+q) +o; (8-5)
which is identical to Eq. (6-3) when O'(joﬂ is replaced by 05{1 .- The more complicated notation
aﬁ{l is here preferred to stress the fact that the nominal value of u,, say u, iy is obtained by

replacing G, by

af, k
Gl\—l = _% (8-6)
A+ Bk

in (4-1). Analogously, Egs. (4-2)-(4-4) should be rewritten with the G,’s and ,840’5 substituted by

G’1*1 and ﬂdfl’ respectively. In this case the Riccati array is labeled k_/‘ =k ,, n—1 denotes the first

Jjl-1

period in which ﬂ/\fl =L, Gj. converges to G, say G and Egs. (4-5) and (4-6), take the form

n-1j-1>

j—n+l n=2
= Gn-l\ 1(a+ﬂG -1- 1) xo,n—l\—l and Xon- -1 = (a+ﬂi\—le‘\—l )Xo,l‘—l (8_7)

i=1

un,j‘—l

for j > n—1. The fixed point solution to the usual Riccati recursions, say k" is obtained from

-1

Eq. (A-10) in Appendix A with w, replaced by w, ,

The quantity kﬂ in the Riccati array for the augmented system, say &/, now looks like

(‘1’

n—2
k//\}xl l)\jpk:fl\—l (0‘ +pG, ){H(“ +8,.G,, )} G, X0

J=t

n-2 i—1
+Z kzixl‘fl (0! + /Q‘HG;H )|:H (0{ + ﬂjH—IGj‘—l ):| Go,i‘—lxo,l‘—l (8'8)

_ kﬂx

0,001 01\ 1

+ i = k™ x

/\101\1 (-17%0,1]-1

2
for ¢ < n-lwith D, = [l—p(a +,BGHH) }, G, . similar to G, in Eq. (5-3) but based on the

parameter estimate at time ‘—1’, see Appendix H, and

{—n+1
kﬁxl [ (“JfﬂG e 1)} D\jpkﬁufl(OHﬂG R 1) n-1-1%0 11 (8-9)



for{ > n—1. Analogously, k” inEq. (5-1), say kfﬂl, looks like

KPP = ( KPP L

j-1 joc\l jan=1-1

)2, =k (8-10)

jl-17o.0)-1

for j <n—1, where the infinite summation from n—1 to o is denoted by
kffo‘—l = \:1pknw1\ 1G02n 1|- 1{1+p(0[+ﬂGn1 1) kﬂl\ - I'B ( +’0km1\ lﬂ ) } (8-11)
and the finite summation takes the form

n=2
i Z[k’“ Gy 42k G,y = (k5 G

]nl‘l +l‘l Ol‘l +1‘l

+k€f\ 1) ﬂi\z—l(ﬂ’ +k:(1\ 1ﬂi\2—1 )_1} (8-12)

=]

o T/l N -
When j >n-1, Eq. (8-10) simplifies to kﬁﬂ = [p(a +ﬂGHH) } kfﬁ‘flxil‘fl with kffl‘fl

identical to lgjﬁi in Eq. (8-11) as shown in Appendix H.

-1

In this case, the updated variance of the stochastic parameter for a generic period j looks like

aff,_l—{ m /o, Z¢ j=m) } o (8-13)

with

— ! Jj-l
AJ“*1:1+Z¢( )S‘ +O_ IZ (Z¢ lm 01‘1 ollj

» forj >1 (8-14)
-
2(j-2 - 2(j-1-m) =~
1o v )Sj—l\—l +0,q 1Go2,j—1\—1x02,1\—1z¢ v )Am\-l
m=2
G X

Where A unl‘l al‘l

1\—1

. 2(i—n+l)
=1, 8,,=G 2 ofl g for j<n-1 and S, =(a+8G,,,)

1\1 '.q"" when j>n-1 (Appendix H).

Then, using the results in Appendix I, the approximate cost-to-go can be rearranged as

Jw:(W1\1+51\1) ('//2\1+52\1) ('//3\1"'53\1)

. l) ¢1\_1(¢2\_1u0+¢3\_1) i L] L ¢41 b vt (8-15)
(2 [ ot lq(ug fﬂ1+q)l+aj} G - ( - - )




with these parameters being the exact counterpart of those appearing in (7-13) and defined as in (7-

3)-(7-4), (7-7)-(7-8) and (7-11)-(7-15).

9. Conclusion

In these pages the DUAL solution to the BMW infinite horizon model with one time-varying
parameter on the control variable is reported. This may be useful, e.g., when the decision maker
faces time-varying expenditure multipliers or economic agents with ‘moody’ preferences. The
special case where the desired path for the state and control are set equal to 0 and the linear system
has no constant is considered. The appropriate Riccati quantities for the augmented system are
derived and the time-invariant feedback rule defined following the same steps as in Amman and
Tucci (2017). Finally the new approximate cost-to-go is presented. Two cases are considered. In the
first one the optimal control is selected using the updated estimate of the time-varying parameter in
the model. In the second one only an old estimate of that parameter is available at the time the
decision maker chooses her/his control. In this case the observation at time zero of the time-varying
parameter is treated as missing and the updated variance of the stochastic parameter for j =1 is

computed starting out from the projected variance at time ‘-1°.
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Appendix A. Deriving the nominal path for control as a function of the projected state in the
infinite horizon model with a time-varying parameter

Given a certain control at time 0, say u,, the nominal, or Certainty Equivalence (CE), value of x,
denoted by x, , , is given by
X, =0Xy + ﬂo\o”o ) (A-1)

with  fy, = E, (B,) the estimate of the time-varying parameter at time O based on all the

information available at time 0, when the other system parameter is assumed constant and known
and there is no intercept. When this parameter is assumed to evolve over time as in the text, i.e.

B = ¢(ﬂ.f _ﬁ)+'3+’7j+1
with £ its unconditional mean, and the desired path for the state and control is zero, the nominal or

CE value of 4, u,, , is given byl

( ap k )

U =Gx = o™ X (A-2)
ol “1%1 | 2 ol -
/11+ﬂ1|0k2

with ﬂl‘o =E, ( B ) = ¢( ﬂo‘o -p ) +/f the projected value of the mean-reverting time-varying

parameter at time 1 based on all the information available at time 0.

By repeating this procedure, it is then apparent that the nominal control for a generic period j in
the infinite horizon problem can be written as

J-1

u,; =Gx,,; =G, h_][(a + By, )Xo,l}

(A-3)
Jj-1 m=1 j-1
= G./' {H(a—"_ﬂiOGi) (a+ﬂiOGi)Xo,li| :Gj|: (a+lBiOGi)xo,mi|
i=m i=1 i=m
with
ap. k.+ a _2 kl_+
G, = —Lf and (@ +f,,G,) = a—ﬂ";j (A-4)
ﬂ’i + ﬂi\okm ﬂ’i + :Bi\okm

where ﬁ,o = Eo (/B,) =¢ (ﬂoo -p )""ﬁ . In this case G is not time-invariant as in Amman and Tucci
(2017, p. 17). However for j—oo the estimate of the unknown time-varying parameter ,Bj at time

0, ,6’]0, and Gj converge to £ and G, , respectively, and Eq. (A-3) simplifies to

j-1 - '
uo,j - G/ (0[ +ﬁl1OGi)X0,l = ano,j - Gn(a +ﬁGn)j Xo,n for J=nmn +1"" (A_S)
i=1
with
n-1
Xo,n = H((Z + ﬂqui)Xo,l (A'6)

i=1

1 See, e.g., Tucci et al. (2010).



where n indicates the first period in which Bj, = 5.

The time-varying parameter has an unconditional distribution with known constant statistics, i.e.
-1
E([ﬁ’/.): B and Var(ﬂj)=¢2(l—¢2) o, +0o,. The necessary and sufficient condition for the

mean-square (ms) stability of the model stated in De Koning (1982, p. 451, Th. 6.1) then applies. In
the present case this translates to the condition

F=o { _B? [/3 192 (1-9) IGn“’nT}“

which is always true as long as ‘a‘ <1 . When the conditional distribution of the ﬂ.’s at time O is

considered the mean is as in Eq. (A-4) and Var(ﬂo) (1+¢2/)(1 ¢ ) o, +¢* G w1th Oy the

variance associated with the initial estimate ,BO|0 2 These quantities are not constant but for j — o
-1
they converge to E( ﬂjo) =/ and Var( ,Bjo) = (1— ¢2) o, respectively. The relevant condition for

ms-stability in the ‘not constant’ trajectory looks like

x{[dr"(ﬁqo —/3)+,8]2 ¥ [(1—4)2)_1 o, +0"(1-¢%) 0, +¢%c, }}1

and is less than 1 for all j’s, as long as |a| <1. Moreover, this sequence quickly converges, not

unexpectedly given the presence of 2/ as exponent, to 7 with 0< 7 <...<7, <7, <1.
Therefore, the results in Amman and Tucci (2017, App. A) remain valid after convergence of the
projected value of the time-varying parameter to its unconditional mean when X_ is used as initial

nominal state. This is due to the fact that under these conditions, when /lj = pj A and w, = pjw

with p the discount factor, the optimal control law looks like

. z( op ok \’ (A-7)
: L 4 +[;10 !+1J
with
2 -1
b=k =w vk, —(ak B) (A +KuB,) forj=n—-1n-2,.. (A-8)
and

2 See, e.g., Cowpertwait and Metcalfe (2009) Equations 12.1, 12.6 and 12.7.
3 For example when ﬁo‘o =-3,=-5,¢=9,0,=.1and o, =.1 the sequence starts with 7, =.91 and quickly

converges to 7 =.678. At j=8, 7, is equal to .789.



G =G,= —aﬂpkn(in +,6’2pkn)7l ’ (A-9)

with k, the fixed point solution to the usual Riccati recursions

k =k =w +a’pk — (apknﬂ)z (/1n + ,oknﬁz)_1 , (A-10)

for j=n,n+1,n+2,...



Appendix B. Deriving submatrix k™ of the augmented system in the infinite horizon model
with a time-varying parameter

In the BMW model with desired paths for the state and control set to zero, no intercept and a time-
varying parameter following a mean-reverting model as in the previous appendix, the general

formula for k”*, see e.g. Kendrick (1981, 2002, Eq. 10-40) or Tucci (2004, Eq. 2.56), specializes to

K k*x(a+ﬂ )u +kﬁ*(a+ mel) (B-1)

with B, o the estimate of the unknown time-varying parameter £, at time 0, k," = K", G, and u,,

defined as in App. A and
I =1 (@4 By Gy Ju, o + K (@ + G ). (B-2)

Then, by repeated substitution, it can be shown that
z I+1|:H(a+ﬂj0 j)j|u (B'3)

As observed in the previous appendix, when the system is stable and p <1, for j—oo the estimate of

the unknown time-varying parameter B, at time 0, ,6’]0, and Gj converge to ff and G, , respectively,

and Eq. (A-5) holds. Then Eq. (B-3) can be rewritten as

n—1

K=Yk [ p(a+pG,)] 1{

. (a+ 8,0, )} Gx,, + lekl { 1 (@+ 8,6, )} Gyx,, (B-4)

Jj=1

with
Gx :(a+,b’G) ; 0n—(a+,6’G) o %o for i=n,n+1,... (B-5a)
aIB i1

‘0 1+1 A

Gx,, = a+p, =G, x, fori=1,..,n—-1 (B-5b)
| [ A+ Bk J {H( i ’)} ‘

,, and G, =~ implicitly defined and x,, as in (A-6). When the system is ms-stable and ‘a| <1

Afk: Sy
G =|—— i <o, a+f,G=a|l1- iy DY (B-6a)

/Il—}_ﬂ‘o i+1 /1 ﬂo i+l

xx 2 xx
G =[P\ 4G =al1- PP (B-6b)
Py s



and klﬂ * looks like

n—1

k¥ = D™ pk* (a + G, [ (a8, ])}Gonxol

a (B-7)
n—1 i—1

Z k::l (0( + lBi\oGi )|: :

i=l1 j=1

1,0"%0,1

_ I Bx - Bx _~ﬁx
(a+ﬂ‘0 j)i| 0,i ()1 =ki, x +k1n l'x kl Xo.1

with G, and G,, as above, D = [1 - p(a+ BG, )2} and k™ the fixed point solution to the Riccati
quantity described in Appendix A, when there is no intercept, the desired paths are set to zero, the
system 1is stabilizable and the discount factor is less than 1. By repeating the same procedure it can

be shown that a generic kf “with £ < n—1 is defined as

k=D pk* (a+ﬂGn)[ﬁ(a +B, OG]ﬂGO X
- (B-8)

n—1 i—1
>k (a+ 8,6 )[ (@+8,6, )} i Xon = KL, + Ry, = KDx,

=/ j=t

where it is understood that when the lower limit of a summation is higher than its upper limit the
summation is zero and when the lower limit of a product is higher than its upper limit the product is
one. It follows that

k" =D pk (a+BG,)G,x,, =| p(a+BG, ] k> (B-9)

forf > nwith k™ =D pk}* (e + BG,)G,x,,. These results are fully consistent with Eq. (B-28)
in Amman and Tucci (2017, App. B).



Appendix C. Deriving submatrix k™ of the augmented system in the infinite horizon model
with a time-varying parameter

In the BMW model specified as in App. B, the general formula for £/, see e.g. Kendrick (1981,
2002, Eq. 10-42) or Tucci (2004, Eq. 2.57), specializes to

K = (1] e+, k) + (u, K+ K )—[uo’jkﬁl jo+kf3ﬂ,0]z(/1j+kﬁlﬂjo)l (C-1)

0,j " j+l 0,j" " j+l 0,j " j+1 j+1

with ,3/10 the estimate of the unknown time-varying parameter /3 ;at time 0, kj’.(fl, kj’i ); and u,;

defined as in App. B. Then, by repeated substitution, it yields for j=1

o0

© 0 2 -1
K = il + 23 K, = S, kKB | (2
i=1

i=1 i=1

(C-2)

By proceeding as in the previous appendix, the first infinite summation in (C-2) looks like

0

0 P n-1 P n-1
XX, 2 _ XX XX _ -1 XXM2 2 XX M2 2
z ki+1uo,i - Z ki+1 (Gixo,i) + z ki+1 (Gixo,i) =D pkn Go,nXo,l + z ki+lGo,iXo,1 (C-3)
i=1 i=n i=1 i=1

withD, G, and G, as in Eq. (B-7) and K™ the fixed point solution to the Riccati quantity

described in Appendix A, when there is no intercept, the desired paths are set to zero, the system is
stabilizable and the discount factor is less than 1. It is understood that when the upper limit of the
summation is lower than the lower limit the corresponding term is zero and when the same occurs
for a product the product term is one. Similarly, the second term can be written as

0 n—1

22 ki/ﬁuo,i =2 |:Z kﬁ)lc (Gixo,i ) + z ki’i)lc (Gixo,i )}
i=1

i=n i=1

) (C-4)
= 2[ p(a+ G, )2}0*2 PkEG2 X2+ 221(12“ +kP
i=1

0,1 i+1,00 i+1,n

)G x?

0,i7v0,1

where the results in Egs. (B-8) and (B-9) are used. Finally, the squared portion is

00

Z [”o,ikixﬁﬁi\o + kiijlcﬂi‘o T (/li + ki)fllBi\zo )71
- (C-5)

n—1

=Sk kT B (A ksp ) + S ks kT B (k)

i=n i=1
with
uo,iki)ixl = Gn (a + lBGn )i_n piﬂHlkr)lmxo,)z = I:p(a + ﬂGn )]i_n pk;ijo,nxo,l (C-6a)

and

k5 =[ p(a+pG,) """ D (pk=)(a+ BG,)G, ,x,, (C-6b)



for i=n,n+1,... when Eq. (A-6) is used.
Then the summation from # to infinity in (C-2) can be rewritten as

K2 =D ok G2, (1 plas BG,) ok D (4 phi ) | 2R, )

where the appropriate portions of Eq. (C-3), (C-4) and (C-5) are used and after some tedious
algebra the summation of the first n—1 terms takes the form

kff:f[k“c;z +2k0G, —(k5G +kﬁ’“) [340(/1 +h2B )l:lx = kP2 (C-8)

i+1 i+l o, i+1 i+l 1,n""o,1
i=1
with G_; defined as above and /Eﬁ | as in (B-8). Consequently, k'’ looks like
BB _ (BB 4 BB — [BB.2

kl - (kl k Ln ) 01 kl xo,l' (C'9)

Similarly, under these conditions,
2 -1

Y = G+ 20, K4 K = KB 4 KB, | (/12 + k;*ﬂjlo) (C-10)

and by repeated substitution it yields

-1
K= 3k 23 K- Sk, K, | (ks (1)

i=2 i=2

The only difference with respect to klﬁﬁ lies in the shorter finite summation for i =2,...,n—1 and

putting all pieces together it yields

. n-1 - -1
kfﬁ:kfijyl+2[k;"1Gii+2kﬁfG - (k26 +kﬁ*) B (/1 +hLB ) }xil . (C-12)

i+l o, i+l i+1
=2

By repeating this procedure for the various j’s it is apparent that for j=n
K =D pkyGE, (14 plat BG, ) ~pk D B2 (4, + phiBY) } PP (C-13)

with G, defined as above, which is identical to k7. It follows that forj>n

K= p(a+ 86,V | kP <[ pla+ G, ) | R, =R, (C-14)

giventhat k,, =pk, Vj>n and x,,, =(a+pG,)x,,



Appendix D. Updating the variance of the augmented system in the infinite horizon model
when the updated estimate of the time-varying parameter is available

By combining (3.3”) and (6.2), it follows that the updated variance of the stochastic parameter f in
the BMW model for period 1 is given by

off =(#oll + 02 )~ (sofiu,) [uolh +q] =#all (iioflq ' +1) +o?

— pollgs + o

G0

(D-1)

with A =u Géﬁf +q= q( g Oﬁ"ﬂ q + 1) and the updated variance for period 2 can be rewritten as

-1
szfz zaflﬂ(uilafﬂql+l) +a;‘;=( 0q0q+a¢A)Az +o;

with A = (uj,lgé +U )aqﬂoﬂ +U,,q Ac, +q.

By repeating this procedure, it can be shown that for a generic termj it yields
o = {¢2faooq+¢ Ho2A + U0 A 4k F A A 0
(D-2)
{¢2’affq+a L IIA)}A +o?
with the 4’s defined as

j—1 j—1 )
‘%Z«ﬁ“ +02q‘12[4 Zﬂ”)ué,,}w- (D-3)
1=1 i=l

Equation (D-2) reduces to Eq. (D-4) in Amman and Tucci (2017) when ¢ =1 and 0',27 =0.

Using the formulae in App. A for the nominal path of the state and control, i.e. Egs. (A-1)- (A-6),
and, after some tedious algebra, it can be shown that Eq. (D-2) can be rewritten in the terms of

sB
O'1|1 as

O'ﬁﬁ,:{¢ +¢ (-2) ;27’2\2+ 13017\3+...+¢20'727/Z\.1}Z\j1+0'727
forj>1 (D-4)

. : forj>1 (D-5)
J . _
+¢7s 1ol Y A

0,j-1""0,1
with Z\ =1, G ; as in the previous appendices, and

S=u, 1\1q =G’ x c”q’ (D-6a)

i 0,i"0,1 1\1

which simplifies to



S, =ul,of'q" =(a+pG,)"" G 22 oflq, (D-6b)
with u,, and X, , as in Eq. (A-5) and (A-6), respectively, when/ > n. It is understood that when the
upper limit of the summation in (D-5) is lower than the lower limit the corresponding term is zero

and the term ¢ S , vanishes for /> (n/ 2) Finally, notice that the term in braces multiplying the

Z\m’s looks like

Z¢ " m62 for m<j<n (D-7a)

Z¢ G+ G X 012¢ e+ po)” for m<n<j (D-Tb)
j-1

on ol ¢2l m(a+ﬂG) for n< m<j. (D-7¢)

i=m

Equation (D-4) reduces to Eq. (D-9) in Amman and Tucci (2017) when ¢ =1 and 0'727 =0.



Appendix E. The deterministic component in the presence of updated estimates of the time-
varying parameter

The deterministic component of the approximate cost-to-go can be written as in Kendrick (1981,
2002, Eqt. 10.49), i.e.

Tori=7 /1u +— kcm Z(x K&+ ) (E-1)

0,j7 J 0.
]H—l

when there is no constant term and the desired path for the state and control are zero, with CE
indicating the Certainty Equivalence value associated with the non-augmented model. In the infinite
horizon model with an updated estimate of the time-varying parameters Eq. (E-1) looks like

1 1 1 2
Jp. = 5)“0“5 +5(ch0 + By, 0) 7 (ax +ﬁ0‘0 0) v (E-2)
with y the sum of a finite number of terms and ¥ the sum of an infinite number of terms
defined as

7, = Zl{[ [T(e+ ﬁ;oc;,.)}2 (k + /@Gj)}

i=1

2 (E-3)
g~ [ e )] [ 201t 0 |

when the results and definitions of Appendix A are used and it is understood that the product term
in square brackets is one when its lower limit is larger than its upper limit. It follows that Eq. (E-1)
can be rearranged as

o =W Uy Ty U+ (E-4)
where

v, =(1/2)[ 2+ B2, (9, +v.) |

Wz = aﬂ0|0)€0 (l/?n + lﬁm) (E-S)

v, =(1/2)(ax,) (7, +v.)



Appendix F. The cautionary component in the presence of updated estimates of the time-
varying parameter

The general formula for the cautionary component of the approximate cost-to-go, see e.g. Kendrick
(1981; 2002, equation 10.50) or Tucci (2004, equation 2.68), for # =0 and 7 =0 looks like

JCOO=(1/2)(k’°‘ 1"i’)‘+kﬂﬂ lﬂ(f)+kxﬁ Xﬂ+(1/2)i( +1q+kfﬁ f}) (F-1)

J=1

with the k’.‘x ’s, l;lﬁx and the Ig_ﬁﬁ ’s defined as in App. A, B and C, respectively. Given that in this

— P2 ~PB BB
case the projected variances are defined as in (3.3), ie. 0'1‘0 uoaqo +q, al|0 ¢GO‘OUO and

1| ’ ¢za$ + 07, after some simple but tedious manipulations Eq. (F-1) can be rewritten as

(1/2)2k+1q+(1/2)k”0'ﬁﬁu +(1/2)( +68_)x2 + kP oo ux (F-2)

oo o oo 0™ o.1

where x =X, , 0 isthe sum of a finite number of terms and 3; the sum of an infinite number of

1lo°

terms defined as

b~k ($ott )+ S

0\0
Jj=1
BB 42 PP BB 42 BB <
=k, (¢ Ty +10, )+k1’n (¢ Tyo +O )+0'

j+1 n (F-3)
Jj=1

-1

5. =X #5e7 =3 pla+ 5G,) [1-pla+ G,)']

with k? defined as in Eq. (C-7), the quantities k°s as in (C-8) and the other results of App. C
1,00 j.n

used. After some additional steps the cautionary component looks like

Jo,, = OUy +6,U,+ 6, (F-4)
with
(1/2)[/(**055 +(8,+5.) B, + 2k og“gﬁqo}
S = |:kﬁ"¢o'0‘o (6n + Sm) [30|0}ch0 (F-5)

(1/2)2k =a+(1/2)pk=g(1-p) " +(1/2)(8, +8_) (e,

where the first # quantities K*’s are as in Eq. (A-8), k™ is the fixed point solution to Eq. (A-10)



and /glﬁxis defined as in (B-7).



Appendix G. The probing component in the presence of updated estimates of the time-varying
parameter

In this context, when the desired paths for the state and control are zero and there is no intercept
the BMW model, the general formula for the probing component of the approximate cost-to-go,
see e.g. Kendrick (1981, 2002, Eqt. 10.51) or Tucci (2004, Eqt. 2.69), for t=0 and T = oo looks
like

2 -1
Px xx i
=(2) X 5 ] o | (4, +k08) ol (G-1)
=
where the unknown parameter time-varying parameter ﬂj is replaced by its estimate at time 0, i.e.

:B_;\o . As noticed in DEPS 766, the j—th term multiplying the updated variance corresponds to the

‘minus term’(C-5), say kjﬁf , in the formula for k” 4 As shown in App. C it can be written as

K =(pk) D7 (4,4 pkl BY) G, + Z(Ga,k,:wkﬁr) Bi(a+ksps)

_kﬁﬂx +kﬁﬁ l_kﬂﬂ2

Jj,o—=""0,1 0 J= ol

forj<n,with G, G . as defined there, kfxas in Eq. (B-8) and
£ <[ p(a+bG,)' | K

for j > n, with /gf b = lgf Eff. Then the probing component can be rewritten as

jn
=(12)k a’x}, +(1/2) {Zkﬂﬂaﬂﬁ +Z[ a+f5G,) } kol }x@ﬁl (G-2)
By replacing the updated variances with Eq. (D-4) in App. D, the infinite sum in (G-2) looks like

k”Z[ (a+5G,) }"P( off 47" +%[Z¢ j‘} X
_kﬁﬂ o 012[ a+ﬁ’G ] (Z¢ J=m) ]_ (G-3)

=
_kﬂﬂ o, ol[l—p(a+ﬁ’Gn)2]

with Z\j as in (D-5). The first equality sign is due to the fact that the term ¢V o” 4 =0 for

l\l J
J 2 n, given that ¢2(j =0 and G‘ Pand A4 are finite quantities. The second one follows from

the fact that

4 The ‘minus term’ was defined as kjﬂf in Amman and Tucci (2017).



e [ (a+fG,) z}jn(iqﬁz j

Jj=n m=2

S j{(Zqﬁ””’ j e a+ﬂc;)}(§¢<"+lm>z jAﬂjl (G-4)
+| p(a+5G,) Hfgb (o) jA,Hﬁ}

m=2

with lim[ pla+ ﬂG)2 T =0 when the system is stabilizable, and

Jj—oo

o

1<thZ¢ =) j‘ }:(1—¢2)_1<oo : (G-5)

because
(S i
m=2
¢2(°°2A2+¢ oo3A v +¢2[oc oon/2+1)]A

[ n/21)A .

00—,

n/2+1+ +¢ A —1+Zoo:|Aoz_:l

1

(n2-2) 7 1
n/2+1+¢ Ay pppin - +¢A +4 ]’4

Aoo— n/2+1

and from (D-5) follows that Aw =..= Aw. Then by using the limiting ratio approach,

-n/2 =
it can be shown that

1im| 5| lim — = p(a+pG,). (G-6)
=os | [ (a+pBG,) T ( pUA, |4
m=2
Analogously, the finite sum in (G-2) can be rewritten as
ST vl el
b (G-7)

mZ¢ kLA +02kﬁ”{ ¢<fm>zmj2ﬁ}

m=2

[s there a computationally fast way to approximate these two summations? For the first one,

going from 2 to n/2, a possibility is to compute Z;/LH and lgﬁfﬂ,_. As far as the second one is

concerned, notice that

S (Lo a i |-y

= 0'; [/Eff +/€ff (¢ZZZ +ZB)Z;1 +"'+l€nﬁ§,— (¢2(n/2—2)22 +¢2(n/2—3)Z3 +_,,+Z,1/2)An/12 (G-8)
kf/f+1 (¢ PN+ gL+ JrAn/ZH)Z’/l2

+ ..
+I€nﬁ_ﬂl’_ (¢2[n—l—n/2]2n_n/2 4 +¢2[n 1-(n— 2 Z ) :|



Given this structure, a reasonable approximation of the mean can be obtained computing only

three quantities (Z:/M )_1, (Z;n/4+1 )_1 k. ie.
SR (A = or 2k (T) R (Fo) . (G-9)

By defining ijf,l :Zj —1 and using the relevant approximationzj :ijj,lin the finite

summation and putting all pieces together it yields

1g(u,) 11
1 L G-10
P,oo 2h(u0)+2v+2f(u0) ( )
with
g(uy)=k"x;,, (G-11a)
-1
h(u)=(of?) (G-11b)
~ ~ -1 _
v=kifo [aﬁ"(AW) }#(1—#) ‘, (G-11c)

n— 2 ~ ;* -1 ~ ;* -1
f(”o) = O_j {T[kﬁﬂ, (An/4+1 ) + kf;f/}4+1; (A3n/4+1) }
(G-114d)
o1
+[1-p(a+46,)] kff}le

~ -1 ~ 7!
Notice that ”ﬂlﬁ(AnM) :[An/4 (O'ﬂﬁ) } , which appears in v, is largely independent of

1t

~ ~ ~ -1
alﬁﬁ and consequently the ratios AmAjf1 behind the terms (A]*) , which appear in f(uo), are

largely independent of dl‘ﬂlﬁ :
Equation (G-10) is slightly different from the formulation of the probing component usually found
in the literature, see e.g. Amman and Kendrick (1995), Tucci et al. (2010) and Amman and Tucci

(2017). The familiar portion can be rewritten as usual, i.e.

g(”o) ¢1(¢2”0+¢3)2

= —, (G-12)
h(u -1 !
( 0) [¢20'()ﬂfq(ugaoﬂf+q) +0';}
with
¢1 = Iglﬁf}
¢2 = ﬂo‘o (G'13)
¢ = ax,

Then, two new terms v and f (uo)appear. The fomer is an approximation of the first

Bp

summation in (G-7) largely independent of o)

and x.,as pointed out above. The latter,

largely independent of O'l‘ﬂlﬂ as well, takes into account the penalty associated with the



variance of the stochastic parameter 05 . Itis interesting to notice that the component (G-11d)

can be rearranged as

f(“o)=¢4 (¢2”0 +¢3)2 (G-14)
with

¢4:
e T o I e e (G-15)
O';{ 2 |:k5§+1,(14n/4+1) +k3ﬁ,’§4+1’,(143,,/4+1) :|+[1—p(a+ﬁGn)j| kﬂﬁﬁ}

and 9, ¢ as in (G-13).



Appendix H. The dual control in the infinite horizon model with an old estimate of the time-
varying parameter

When the estimate of the time-varying parameter is based on old information, say the information

available at time —1, the value of X, in Eq. (A-1) of Appendix A, say X , , is computed using

o]-1°

,6’0‘_1 = ¢(,3_1|_1 - ,3) +5, ie.

Xo,ﬂ—l =ax,+ ﬂqquo’

and the nominal value of u,, say u is obtained by replacing G, with

o,1-1°

G = Pk (H-1)
i 21 + ﬂl\z—lkz\—l
in (A-2). Analogously, Egs. (A-3)-(A-4) should be rewritten with the G;’s and ,6',10’5 substituted by

,1 , and ,6’ , respectively. In this case the Riccati array is labeled kj‘ = kx‘xl, n—1 denotes the first

period in which /3].‘71 =p ,Gj converge to G, say G Egs. (A-5) and (A-6) look like

n—l‘—l 4

Jj-1

Uy ja = Gj\—lH(a + ﬂi\—lGi\—l )"0,1\—1 = Gn—l\—lxo,j\—l

i1 for j>2n—-1 (H-2)
Jj—n+l
- Gn 1-1 (0[ +ﬂG -1- 1) xo,n—l\—l

and
n=2
Xom-i-1 = (a+ﬂi\—lGi\—l )Xo,l\—l' (H-3)
i=1
The fixed point solution to the usual Riccati recursions, say kn"l‘ .» 1s obtained from (A-10) with
w, replaced by w, |
In Appendix B, Eq. (B-1) should be computed using ﬂl‘_l , k;‘xl, Gl‘_l and Uy and the new Riccati
array labeled as kl"g’l‘ Then Eq. (B-2) is obtained using ,6’2‘_1 , k;fl , Gz‘_1 and Uy and Eq. (B-3)
accordingly. In this context, Eq. (B-4) should be rewritten as
5 i-n+2 | n=2
ks = Z ke 1[ (“+ﬂGn-1\-1)} H(“"’ﬂj-lGj-l) Gx, ;.
J= (H-4)

Z ko [H(a +B1G )} Gt %o



i—n+l
with Gx, i (a+ﬂGn 1‘71) G fori=n—1,n,... and

n—l‘flxo,n—l‘fl

(a+ 56, 1),- "G

o,n—l‘—lxo,l‘fl

([ aB Kk -
G:]_1Xo,,1_1 L i Hl‘ : J |: 1( /1 1 /1 ):| o1 G ol- 1X01| (H-5)
/1 +ﬂ1 1 :+1| 1 =1

fori =1,...,n—2. It follows that a generic kf “with £ < n-2 is defined as

n-2
kﬁxl = D\ I,kaxl\ 1 (0[ + ﬂGn—l\—l ){ (0[ + ﬂj‘—lGj‘—l )} Go,nfl‘—lxo,l‘fl
j=t
n=2 i-1
+z ki+1\—1 (0( + ﬂi\—lGi\—l ) H(“ + /BjH—lG/“—l ) Gu,i\—lxa,l\—l (H-6)
- =t
—k/ﬁ;\ %o 1+k£;\-1 a1 —kffxl o1

2
with D, = [1 -pla+56,,.,) } and

Bx _
kz\ 1 - 1p |- 1(0!+,3Gn - 1) n— 1‘—1xo,/

(—n+1 (H-7)
:[p(OH_’BG’HH)} oL pk:xl\ 1(a+'BG = 1) n-1l-1%0,n-1j-1

for{ > n-1.

Following the same steps, the derivation of the Riccati array labeled kff can be carried out.

Equation (C-1) on Appendix C should be computed using ﬂ/.H as the estimate of ., &k, ,, k™~

JH-L? -1

and Uy iy Then Eq. (C-2) is rewritten accordingly. As noticed above, in this context n—1 denotes
the first period in which ﬂj‘_l =4, Gj. converge to G. Then the infinite summations in Eq. (C-3),

(C-4) and (C-5) should be written separating the first n—2 from the rest and the formulae for

k> k77 and £k’  valid for i=n—1,n,... are derived from (C-6) and (C-7), respectively,

oz\lm\l P Vi1 Loo]-1
with x, ., pk,", G,, and x,, replaced by Xpoiirr PRI G and xo,l‘_l,respectively. Then
the infinite and finite summations look like
kffc‘—l \ lpkn -1- 1G02n -1]-1 01\ 1{1+p(a+,BGn 1- 1) kxxl\ 1~ 113 ( +pkxx1\ 1ﬂ ) }(H-S)
—k/ﬂfa\ 1 021\ 1

and



n=2
kﬁffuq _Z|:k)f1 163\ 1+2k+)1r\ 1G -1 (k)-c:l\ 1Goz\ 1+k€f\ 1) ,3‘ 1(/1 +k+1\ 1ﬁ\ 1) :|

[y (H-9)
Xxol\ 1 k,ﬂf -1 51\ 1°
respectively, with G, | and kﬁ as above. Consequently, k'g‘ﬂ1 looks like
s _ (158 B 2
k]‘ 1 (kj oo‘ 1 k]n 1‘ 1) (),1‘ 1 k‘ 1 1‘ 1 (H-IO)
for j <n—1. By repeating this procedure for the various j’s it follows that for j >n—1
pp 2V
k]\ 1_[ (a+/8Gn-1\—1) } k,” -1
(H-11)

P J—n+l ~ s 5 '
= Iip(a + ﬂanl‘fl) jl kl,oo‘flxo,l‘*l k ‘ lxo l‘ 1

The projected variances in the absence of observation ‘0’ are as in the text Egs. (8.3)-(8.4). It
follows that the updated variance of the stochastic parameter for j =1 is

-1
pB — BB _ BB ﬂx xx
= =01~ (0-1\ 1) 1\ 1 ¢ O-o\ 1 1\ 1+O_ (H-12)

0-1\1 11,-1 1\ 1

with 4, —uoao‘ P +q= q(ué (f‘wlq +1) which is identical to Eq. (D-1) in Appendix D with Ujoﬂ

B

replaced by i The more complicated notation o/  is here preferred to stress the fact that

1\1 -1
this, and the following, updated variance(s) are obtained treating the observation at time ‘0’ on
the time-varying parameter as missing. After repeated substitutions, it yields

O'ff,_lz{qﬁ o +o; 2¢ g } A5 (H-13)

for a generic term j with

.

j-1

_ j-1
A, =1+ ¢S, +o7q7' Y ml(

™

-1
21 m) 2
¢ Got‘l 011]

Py m=2 i=m forj >1 (H-14)
J=
_ 2j-2 2 —-1~2 1- m
= Aj*l‘*l + ¢ (/ )ijl‘*l + O-Uq 0,j— 1‘ l o 1‘ lz ¢ J
where 21\71 =1 and
.2 ps -1 _ 2 2
Si‘—l = uo,i‘—lal‘l,flq =0, z‘ lxo l‘ 1 1‘1 lq ) (H'lsa)

which simplifies to



S

2(i—n+1)
— 2 e N
i-1 un,i‘flo-l‘l,flq - (0! + IBGn—l\—l )

G . x o’ q (H-15b)

o,n-1-1"0,1-1 1\1,71q >

Wlth uo,i‘—l’ xo,n—l‘—l

andGo)i‘_1 as above, when j>n-1. Again, when the upper limit of the
summation in (A4.5a) is lower than the lower limit the corresponding term is zero and the
term ¢2(j 72)5}.71‘71

Zm‘f ’s looks like

vanishes for /> (n/ 2)— 1. Finally, notice that the term in braces multiplying the

01\1Z¢ G for m<j<n—1  (H-16a)

i—m i—m 2(i—n+l) .
Xy IZ¢ G2, +G,, 01\1Z¢ (a+/3’Gn 1‘1) for m<n—1<j  (H-16b)
i=n—1

)2(1—n+1)

G, i1 01\ 1Z¢ o ( +,3G,H‘,1 for n—-1< m<j. (H-16c)



Appendix I. The deterministic, cautionary and probing components when using an old
estimate of the time-varying parameter

In the infinite horizon model with an old estimate of the time-varying parameter, the deterministic
component of the approximate cost-to-go looks like

1., 1 : ] 2
Ipew = E/lo”o T E(axo + Bty ) W + E(axo + ﬂo\—luo) Vo1 (I-1)

because X, = aX, + ,quluo , with 1/7,1‘_1 the sum of a finite number of terms and 1/700‘_1 the sum of
an infinite number of terms defined as

=2 ([ 2

CE 2
_ zl {1‘1[(05 + ,B”GH)} (kj‘ \+4,G2 1)
= 1 (1_2)

‘/700\_1 :|:ﬁ(a+ﬂ -1 1):| [(knC—El +ﬂ'n—1G2):||:1_p(a+ﬁG)2j|il

when the results and definitions of Appendix H are used and it is understood that the product term
in square brackets is one when its lower limit is larger than its upper limit. It follows that Eq. (I-1)
can be rearranged as

J D1 — %H”g TWoto TV (I-3)
where

Yia= (1/2) [/10 + :B(il (‘/7,,\71 W )}

Yo = aﬂo\—lxo (V7n\—1 + ‘/700\—1) (I-4)

Wi = (1/2)(ax, )2 ('ﬁnH e )

The cautionary component takes the form
Jcoo\ 1 (1/2)(](1)\“1 Oy 1+k1\ﬁﬂl f\gﬁl)"'kl\rﬂl Oy i 1/2 Z(kmu 1q+k7+1\ 1 17) (I-5)
Jj=1

with the &% s, k7 and the ks defined as in App. H. Given that in this case the projected

ji-t -1 ji-t

variances are defined as in (3.3)-(3.3”), i.e. o}, —ué(qﬁzaﬂfl +o )+q, ol ¢(¢2aﬂf1 +o )

and aﬁ = ¢ (¢2aﬂlﬁ" to )+a§, after some simple but tedious manipulations Eq. (I-5) can be

rewritten as

JC,oo‘—l = (1/2)1{1)\0(1 (¢zo-ﬂ1f 1 To ) lzlixl¢(¢zo-ﬁ1f 1 To ) 0,1‘71

] . (1-6)
+(1/2)(5n\ +0, 1) X, 0 +(1/2) ijil‘flq

where O,
n‘ 1

is the sum of a finite number of terms and 5;‘71 the sum of an infinite number of terms

defined as



5 _kl\ﬁﬂl [¢40 -1 G 10, } ka\ 1

e R e U ) RO LA AR R S0y Y W
Jj=1

2 2 -1

- St ol 10 ) [1-rlee 6, ) |

Jj=n-1

with klﬂﬂ i

defined as in Eq. (H-8), the quantities Igff_l‘_l ’s as in (H-9) and the other results of App.

H are used. After some additional steps Eq. (I-6) can be rearranged as

=0,

- Uo+6

2]-1

g+, (I-8)

coo\l
with
:(1/2)[k1"‘)‘1(¢20'ﬁf1+0') (6,,+3. )ﬂo‘l+2k‘l¢(¢20”f1+o—)ﬂo‘_lJ
[_¢( o +02)+(8,,+ 8, )ﬂo‘l}axo (1-9)

~(1/2) 21«3 a+(1/2) pky g (1-p) " (1/2)(5 +500‘1)(0m0)2

where the first n—1quantities &7’

jLi 8 are as in Appendix H, k™, is the fixed point solution to Eq.

(A-10) when an old estimate of the time-varying parameter is available and kP

i is defined as in (H-
4).

In this context, the probing component is written as
JPoc\ 1 (1/2)2[ o/\ 1 /+1\ 1ﬂ/\ 1+k]f1\ 1ﬂj‘—lj| (;t +k;:1\ 1ﬂ]\ 1) ]\j -1 (1'10)

where the unknown parameter time-varying parameter ﬂ. is replaced by its estimate ,6’}.‘71 . Using the

results in Appendix H the ‘minus term’ in (H-8)-(H-9), say kﬂﬁ can be written as

-1

k/ﬂ\ (pkxxl\l) D”p (ﬁnl—i—pk”” B ) on1\ 1x021\1

+Z(Gaz\ 1kzx+x1\ 1+sz)1€\ 1) ﬂi\zfl(ﬂ’ +k§1ﬁ\ 1) X, A1

_kﬁf: -1 31\ 1+kﬁn -1 jl\ 1 kéf\—l'x{il\—l

for j<n-1, with G Y GOJH, k;fl\ , and kf’l“ . » as defined in there and
;5 2V
k_/,,\,l :|:p(0(+bG |- 1) } kn,f‘fl

for j >n—1, with /gfﬂ i = kﬂﬁ Then Eq. (I-10) can be rewritten as

oo—-1"



JP,oo\—l (/ )klﬁ ﬂ\l ﬁﬂ 1xo A1

2 5 I-11
+(1/2) {Z e Z[ (“+ﬂG+11)} P o }xz (I-11)

n—1, ‘1 j‘j -1 0,1‘—1
=2 Jj=n-1

Proceding as in Appendix G, defining Aj‘ 1x0 = Z]H—l and using the relevant

=, x

approximation Aj‘ %, 1‘ ,in the finite summation and putting all pieces together it yields
18a0) 1 1
Jpop1 = 3 h, e ) Ry () (I-12)
with
81 (”0) = ]gl,ﬂ—ﬁ\'—lxj,l\—l’ (I-13a)
-1
() =(ef) (I-13b)
= i { o (2 )1};52(1—;;52 ) (I-13¢)
\ nf4+1,-|-1 1\1 -1\ “Tn/a+1-1 ’
n=2| rp 1 T 1 B
ffl (uo) = O-n 2 kn/4+l -1 (An/4+1‘—l) + an/4+1,—‘—l (ASn/4+l‘—l)
(I-13d)
2. 5
+|:l_p(a+ﬂGn+ll) :l kyfﬂl}xo,l'

=2 -1 =~ -1t
Again 0'1\1 1(A Jaf- 1) = [An/4_1 (alﬁ{’_l) } , In Vi is largely independent of 61\1 ,and consequently

the ratios A4 et j

-1 _ _1
o behind the terms (A:‘_l) , approximations to (A;‘_l) defined as in (G-8) and

included in f ) are largely independent of 0'1\1 .. The familiar portion can be rewritten as

8 (”o) _ ¢1\71 (¢2\71”0 + ¢3\71 )2

—, (I-14)
hW—l (u(’) [(ﬁzaoﬁﬁlq(uo £ﬂ1 + q)_l + G;}
with
by =k,
By1 = By (I-15)
¢3‘71 =@, = ax,.
Similarly to Appendix G, f;, (u,) can be rearranged as
S(w) =6y (By 0+ 4 ) (1-16)
with
¢4\,1 =

n— 2 ;* -1 ~ :* -1 2 - = (1-17)
G;{ > |:kr§€+l - 1(An/4+1\—1) +k£§4+1,—\—1(’43n/4+1\—1) :|+|:1_p(a+ﬂGn+l—l) } kn/ff—l}



and ¢y, ¢, as in (I-15).

At this point by adding the three components of the approximate cost-to-go, i.e. Egs. (I-3), (I-8) and
(I-12), it yields

S, = (‘//1\-1 +0y, )u§ + (Wz\-l + 0y )”o + (‘//3\-1 +0y )

+(lj [ ¢1\71 (¢2\71”0 + ¢3\71) _ +%V1 +%¢41 (¢2‘,1u0 N ¢3‘,1 )2 (I-18)

-1
2 PP 2 PP 2
00‘_1q(u00'0‘_1 + q) + 0',7}

with the parameters defined as in (I-4), (I-9), (I-14) , (I-15) and (I-16).




