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Abstract

Public perceptions of the urgency of fighting climate change differ between countries
and have fluctuated over time. Heterogeneity in ecological thinking poses a problem
because limiting global warming requires cohesion and coordination among the socioe-
conomic system’s leading players in developed and developing countries. Most studies
in the field have wrongly treated advanced and emerging economies as similar systems
in different positions of a linear development path. Developing economies are struc-
turally different as they are populated by a large informal sector that accounts for up
to half of economic activity. The role of the informal sector in economic development
remains controversial, let alone the implications of its existence to a successful green
transition. We present a macrodynamic model to study the interplay between infor-
mality and heterogeneity in ecological thinking. The model explains the endogenous
emergence of four stable equilibria. Two have minor informality but significant differ-
ences in green attitudes. We refer to them as the US vs Europe cases in the Global
North. In the other two, informality prevails, while we observe sharp differences in
general support for mitigation policies, resembling an Asia vs Latin America scenario.
Studying the basins of attraction allows us to provide policymakers with additional
insights into the political economy of climate change in the Global South.
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ment.
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1 Introduction

Global anthropogenic carbon emissions have continued to rise, as have cumulative CO2 in
the atmosphere since the mid-19th century. Despite the near-global consensus among the
scientific community, public perceptions of the urgency to fight climate change differ be-
tween countries and have fluctuated over time (e.g. WRP, 2021; People’s Climate Vote,
2021; Dechezlepretre et al., 2023). Heterogeneity in ecological thinking posits a problem
because limiting global warming requires cohesion and coordination among the players of
the socioeconomic system in both developed and developing countries. Investigating how
environmental attitudes adapt and can be coordinated requires a complex systems approach
(Hommes, 2021). Social scientists have only recently started exploring how boundedly ratio-
nal heterogeneous agents communicate and learn, leading to emergent macro climate-related
behaviours as the aggregate outcome of micro-interactions.

It must be noted, however, that most studies in the field have wrongly treated advanced
and emerging economies as similar systems in distinct positions of a linear development path.
This is a critical limitation as developing economies are structurally different (e.g. Lewis,
1954; see also Ros, 2016; Oliveira and Lima, 2020; Skott, 2023, pp. 155-165). They are
populated by a large informal sector that accounts for up to half of economic activity (La
Porta and Shleifer, 2014; Ulyssea, 2020). Such a characteristic is one of the elements that
define the Global South in contraposition to nations in the Global North. The role of the
informal sector in economic development remains controversial, let alone the implications
of its existence to a successful green transition. Our knowledge of the implications of het-
erogeneity in ecological thinking in informal economies is poor. We know little about the
feedback mechanisms from the economy-environment to the composition of green attitudes
under high levels of informality.1

Our research question lies in the intersection between these two major themes. We
develop a heterogeneous agents’ macrodynamic model to study the interplay between infor-
mality and heterogeneity in ecological thinking. Its main novelty is providing a tractable
framework for studying the interaction between two “choices”: Whether to belong to the
formal sector and supporting or opposing climate mitigation policies. Both change endoge-
nously following the discrete-choice approach (Brock and Hommes, 1997; for a literature
review, see Franke and Westerhoff 2017). The probability of an agent choosing (in)formality
depends on scale and growth effects. In contrast, the probability of acknowledging the ur-
gency of climate change is subject to peer effects, the size of the formal sector, and the
perception of the climate threat.

Conditional to the composition of green attitudes, policymakers choose the carbon tax,
which has an autonomous and sentiment-induced component. Firms react to a stable policy
and adopt more or less energy-efficient production techniques. This decision affects the
output growth rate in the formal sector, thus influencing the size of the informal sector.
Given that only the formal sector is assumed to pollute, the latter becomes a subproduct
of economic activity that feedback on environmental attitudes. Among our main findings,
three deserve special attention. First, if the scale and peer effects are arbitrarily small but
technology’s response to the carbon tax is sufficiently large, and people care about economic
performance when forming environmental preferences, then two stable equilibria coexist.
One green-formal and another non-green-informal.

1Empirical evidence on the informality-environment nexus is scarce. Welcome exceptions include Elgin
and Oztunali (2014), who document an inverse-U relationship between the informal sector size and emis-
sions for 152 countries. One of the main difficulties is disentangling between higher pollution following less
regulation, as in poor countries, and higher emissions due to more energy-intensive productive structures, as
in rich nations (see also Goel and Saunoris, 2020).
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Second, if the scale and peer effects are sufficiently large, the model explains the endoge-
nous emergence of up to four stable equilibria similar to those identified in major climate
surveys. Two have reduced informality but significant differences in green attitudes. We
refer to them as the US vs Europe cases, capturing the state of affairs in the Global North.
In the other two, informality prevails, but we observe sharp differences in general support
for mitigation policies, resembling an Asia vs Latin America scenario. Studying the basins
of attraction allows us to provide policymakers with additional insights into the political
economy of climate change in the Global South. Finally, a sufficiently high autonomous
component of carbon taxes and strong growth can make the other attractors disappear,
leading to a unique green-formal solution. This last result supports the need for cooperation
between developed and developing countries, suggesting that implementing an international
carbon tax that does not depend on domestic politics could create a win-win situation for
both regions.

This paper joins recent efforts to build environmental heterogeneous agent models rooted
in discrete choice theory (e.g. Hommes and Zeppini, 2014; Zeppini and van den Bergh, 2020;
Cahen-Fourot et al., 2023, among others). To the best of our knowledge, we are the first in
this literature to put informality at the centre of the stage. Applications to climate-related
questions include Zeppini (2015) and Mercure (2015) addressing the technology adoption
problem; or Campiglio et al. (2024) showing that commitment uncertainty of policymakers
to announced targets might result in the coexistence of desirable and undesirable transition
paths. Studies by Davila-Fernandez and Sordi (2020) and Cafferata et al. (2021) have explore
the role of environmental regulation using Porter’s hypothesis as the connection between
macroeconomic and environmental dimensions. A reference to the international political
economy of the green transition appears in Galanis et al. (2023), who uses the discrete-
choice framework to investigate countries’ adherence to transnational climate agreements.
While they contrast Global North and South positions, their model is not explicitly concerned
with informality, which remains to be properly incorporated into the discussion.

Our study also relates to a family of Agent-Based Models (ABMs) dedicated to the po-
litical economy of climate change. They include the “battle of perspectives” family initiated
by Janssen and de Vries (1998) and ABMs dedicated to climate policy support, emphasising
carbon tax acceptability (e.g. Foramitti et al., 2021; for a discussion of ongoing controversies
and possible research avenues, see van den Bergh and Savin, 2021). We also engage with
models in a structuralist macro-development tradition (such as the green-Lewis system in
Oliveira and Lima, 2020). As we will show, some of our policy recommendations align with
the idea of an Environmental Big Push in the spirit of Rosenstein-Rodan (1943). We add to
those efforts by providing micro-foundations to boundedly rational agents’ decisions. This
is also an innovation concerning Bento et al. (2018), one of the few studies that, using a
more conventional optimisation toolbox, models the economic consequences of carbon taxes
in the presence of an informal sector. Last but not least, the coexistence of two or more
stable equilibria recalls the literature on poverty traps both neoclassical and evolutionary
(e.g. Azariadis and Stachurski, 2005; Sanchez-Carrera, 2019). While self-reinforcing mecha-
nisms are part of our narrative, our model is a novel application linking underdevelopment
to climate change.

The remainder of the article is organised as follows: Section 2 provides some empirical
insights into the relationship between environmental attitudes and informality. We overview
the relevance of heterogeneity in ecological thinking contrasting developed and developing
countries. Section 3 presents our modelling framework. We describe the main transmission
channels and underlying mechanisms resulting in our 2-dimensional nonlinear map. Section
4 lists a series of Propositions demonstrating analytically the conditions for the coexistence
of stable attractors. Numerical experiments confirm our analytical findings and allow us to
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provide a more concrete visualisation of what is going on in the model. It is shown how
to achieve a green-formal equilibrium, either through the dissolution of the other attractors
or relying on an environmental Big Push. The latter implies a transition between basins of
attraction. Some final considerations follow.

2 Some empirical insights

Data from numerous global surveys now indicate that climate change is broadly accepted
as an important problem (e.g. WRP, 2021; People’s Climate Vote, 2021; Dechezlepretre
et al., 2023). While a more “optimistic” reader could interpret the evidence as indicating
convergence towards a global recognition of the necessity of immediate urgent action, we
believe there are well-grounded reasons for being more sceptical. First, the “opposition” to
adopting a green agenda has become more subtle. Frequently, it is not open and even pays
lip service to the relevance of mitigation policies. Second, the general public might recognise
there is a climate emergency. However, there is a difference between a generic recognition of
the matter and being willing to effectively address the problem.

Climate scientists have been clear that the Earth is well beyond its planetary boundaries
(e.g. Rockstrom et al., 2009; Steffen et al., 2020; Richardson et al., 2023). The United
Nations reports there is currently no credible pathway to limit any rise in global temperature
to 1.5C (UN, 2022), with reasonable projections suggesting there is only a 5% chance that
temperatures will increase less than 2C (see Raftery et al., 2017). Countries’ new pledges
would shave 1% off emissions in 2030, below the 50% reduction necessary to keep the 1.5C
target alive. A closer look at climate surveys suggests that there is no strong support for
implementing a green agenda in most parts of the world. At least not in the scale and
urgency climate scientists have argued. Thus, heterogeneity in ecological thinking is perhaps
more relevant than ever.

Let us have a look at the last edition of the World Risk Poll (WRP, 2021), which inter-
viewed more than 125,000 people in 120 countries. When asked: How serious a threat do
you think climate change is to the people in this country in the next 20 years? Two-thirds
of respondents perceive climate change as a threat, but just a little more than half of them
acknowledge it is a very serious threat. Computing the difference between the share of those
recognising the seriousness of the issue with the rest of the population, we can build an
index Φ ∈ (−1, 1) that will be useful for the model to be developed later. If Φ = 1, then
everybody recognises the need for urgent action. Conversely, Φ = −1 implies nobody cares
about global warming and either openly opposes green policies or pays lip service to the
problem. A Φ = 0 indicates a divided society between the two groups. Fig. 1 shows the
emergence of four distinct regions along the Global North-South divide.

Developed countries in the Global North form two distinct clusters. A darker green
Europe marks a stronger recognition of the urgency of fighting climate change. The United
States (US) in yellow depicts a certain division, to some extent reflecting the politicisation
of the topic in the country (see Dechezlepretre et al., 2023). On the other hand, developing
countries are also divided. Only 1/3 of the population perceives climate change as a serious
threat in Asia, which has a solid energy-intensive industrial base. Thus, most countries in
the region have a Φ < 0 and appear in brow colours. Such figures contrast Latin America,
where more than 70% understand the seriousness of the climate emergency so that Φ > 0.

To the extent that developing countries have a large informal sector that frequently
accounts for more than half of employment, we take the share of formal workers minus
those informal to build an index Ω ∈ (−1, 1). It comes with the desirable property that
in economies where the formal sector dominates, Ω > 0, while informal countries report a
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Ω < 0. Taking those self-employed as a proxy of informality, Fig. 2 plots the Φ-Ω space for
117 countries. The blue quadrant strongly recognises the urgency to fight climate change,
and most of the economy is formal. Contrariwise, the red quadrant shows countries with
high informality rates and insufficient support to implement a green agenda. In grey, we
have hybrid cases, i.e., formal countries with non-green environmental attitudes or informal
ones that see global warming as a serious threat.

Let us turn to the People’s Climate Vote (2021) to provide some robustness to this
informal discussion. Coordinated by the United Nations and the University of Oxford, they
interviewed 1.2 million respondents and reported statistics for 37 countries. When asked: Do
you think climate change is a global emergency? Again, two-thirds responded yes. However,
when confronted with the follow-up question: If yes, what should we do about it? A small
percentage chose do everything necessarily, urgently. Most opted for act slowly while we
learn more about what to do and the world is already doing enough. If, as before, we plot
green attitudes against our formality index, Fig. 3 shows a few countries in the blue and
red quadrants. Most appear in the upper-left in grey, i.e. relatively high formality rates and
non-green attitudes. Not a single country where more than half of workers are informal has
a majority willing to do whatever it takes to respond to climate change.

Together, these figures indicate the existence of two groups in the Global North and
the Global South. There is a significant contrast between the US and Europe, with minor
informality but considerable differences in green attitudes. On the other hand, while Asia and
Latin America have high informality rates, the former region is generally less concerned about
the climate. At the same time, the latter appears in solid green. Moreover, a comparison of
Figs. 2 and 3 provides some useful insights. First, a large informal sector and people willing
to tackle climate change urgently do not appear to be a strong attractor. Few to no countries
fall into it. Second, while blue and red cases seem the most natural cases and somehow echo
the idea of a linear development path from non-green and informal to green and formal, many
countries have a dominant formal sector but see climate change as a secondary problem.

The role of the informal sector in economic development remains controversial, let alone
the implications of its existence to a successful green transition. We need to learn more about
the mechanisms explaining the emergence and coexistence of these combinations between
Φ and Ω. Such an effort includes providing policymakers insights on achieving the more
desirable blue equilibria, especially among developing countries. La Porta and Shleifer (2014)
identify as it five major stylised facts of informality:

1. The informal sector is huge.

2. It has extremely low productivity.

3. Lowering registration and other “formalisation costs” do not bring many informal firms
into the formal sector nor spur output growth.

4. Formal and informal sectors are largely disconnected, with the latter facing strong
financial constraints.

5. Informality becomes less significant as the economy grows.

Taking them as a starting point, the model developed in the next section is a first attempt
to map heterogeneity in ecological thinking under high informality levels. Similarly to the
poverty traps (Azariadis and Stachurski, 2005) and structuralist macro-development litera-
ture (Oliveira and Lima, 2020), we rely on a combination of inertia with self-reinforcement
mechanisms. In our case, they come from within and between the (in)formality and envi-
ronmental attitudes dimensions. Moreover, a distinctive feature is treating each problem
dimension as a “choice” made by boundedly rational agents.
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Figure 1: Attitudes towards climate change in the Global North and South. Green colours
represent the prevalence of climate change awareness, Φ > 0, while in brown, we have
countries where more neutral or indifferent attitudes prevail, Φ < 0.

Figure 2: Green attitudes Φ ∈ [−1, 1] and the formality index Ω ∈ [−1, 1]. The former
reflects threat awareness. The latter corresponds to the share of those who are not minus
those who are self-employed. GDP per capita is reported in 2017 PPP international dollars.
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Figure 3: Green attitudes Φ ∈ [−1, 1] and the formality index Ω ∈ [−1, 1]. The former
reflects recognition of the urgency of action on climate change. The latter corresponds to
the share of those who are not minus those who are self-employed. GDP per capita is
reported in 2017 PPP international dollars.

3 The model

Our primary purpose is to provide a tractable framework for studying the interaction between
two choices. The first relates to belonging or not to the formal sector. One could debate if this
can be considered a choice, as informality is frequently the only available alternative to firms
and workers in that situation. Still, even in that case, agents will necessarily belong to one
of the states with a given probability. Large informality levels are a defining characteristic of
most developing economies. An extensive literature has investigated over the past decades
the determinants of informality, differentiating between its extensive and intensive margins
(for a review, see La Porta and Shleifer, 2014; Ulyssea, 2020). The latter refers to formal vs
informal employment relations and will be the main focus of this study. The probability of
being formal depends on a vector of explanatory variables; evidence is not always clear-cut.
Here, we will concentrate on the mechanism that, in our view, has more empirical support:
Informality becomes less significant as the economy grows.

The second choice is how seriously people support strong environmental action. In gen-
eral, global warming is broadly accepted as an important problem (e.g. WRP, 2021; People’s
Climate Vote, 2021; Dechezlepretre et al., 2023). However, to effectively address the climate
emergency and to influence policy, arguably, we need more than just a generic recognition of
the matter. Figs. 1-3 suggest that heterogeneity in ecological thinking emerges once we ask
how severe or urgent agents perceive the problem. The literature on environmental attitudes
provides valuable insights into the probabilities of supporting or opposing a green agenda
(e.g. Drews and van den Bergh, 2016; Whitmarsh and Capstick, 2018). Our model addresses
two main channels. On the one hand, high levels of informality reduce the probability of
recognising the urgency of the climate threat because people care more about immediate,
relatable needs rather than something that seems to happen in the distant future. On the
other hand, they also respond to carbon emissions or the consequences of environmental
degradation that follow from it. Fig. 4 provides a summarising diagram of the model.
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Figure 4: A summarising diagram of our behavioural macro model.

Consider an economy consisting of a formal and an informal sector, represented by the
respective subscripts i = {F, I}. The former uses energy and labour inputs, while the
latter uses only labour. Relative prices are assumed to be constant and, for simplicity, are
normalised to one. The population is supposed to be constant and equal to the labour force.
Workers choose their sector, but the decision can be reversed. This means that we will
not discuss the conditions behind firms’ decision to formalise, i.e. the extensive margin of
informality, dealing only with the intensive margin. Finally, agents differ in their support
of adopting a carbon tax. Green sentiments and the sectoral composition of the economy
respond endogenously to the macroeconomic conditions, asynchronously updating their state
following a discrete-choice approach (Brock and Hommes, 1997; Hommes et al., 2005).

3.1 Formal sector

Output (Y ) in the formal sector is produced using a Leontief production function that
combines energy (E) and labour (L) weighted by the respective technical coefficients:

YFt = min {Etvt, LFtqFt} (1)

where v is the output-energy ratio and q stands for labour productivity. This technology is in
line with evidence suggesting there is limited substitutability between human and non-human
production factors (e.g. Gechert et al., 2022). More importantly, it also indicates energy is
an underlying precondition for any human activity so that E and L are complements rather
than substitutes.

From the Leontief efficiency condition, it follows:

YFt = Etvt

(2)

qFt =
YFt

LFt

In growth rates, we have that:
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YFt − YFt−1

YFt−1

=
Et − Et−1

Et−1

+
vt − vt−1

vt−1

+

(
Et − Et−1

Et−1

)(
vt − vt−1

vt−1

)
(3)

qFt − qFt−1

qFt−1

=

YFt−YFt−1

YFt−1
− LFt−LFt−1

LFt−1

1 +
LFt−LFt−1

LFt−1

The first expression in (3) indicates that expanding production in the formal sector is only
possible by demanding more energy or increasing efficiency in using energy inputs. Moreover,
from the second, it follows that the labour market adjusts accordingly, so variations in labour
productivity depend on the difference between output growth and labour requirements.

3.2 Informal sector

Given its small capital requirements, we assume the informal sector uses neglectable amounts
of energy. This assumption is frequently used in structuralist models dealing with an informal
sector (e.g. Ros, 2016; Skott, 2023). Thus, production only depends on labour inputs:

YIt = LItqIt (4)

If labour productivity is constant, then it follows:

YIt − YIt−1

YIt−1

=
LIt − LIt−1

LIt−1

(5)

That is, a positive output growth rate in the informal sector depends on workers leaving
the formal sector. This structure allows us to accommodate two stylised facts of informal
economies. First, informal firms and workers have extremely low productivity compared to
the formal economy. Second, the two are largely disconnected from each other.

3.3 Choosing (in)formality

The first choice agents face is whether to join the formal sector. This dimension of structural
change is captured by the evolution over time in the composition of the employment between
formal and informal sectors. Recall that the workforce was supposed to be constant. Hence,
we have:

L = LFt + LIt

Defining the auxiliary variable (l) as the difference between the two groups:

lt = LFt − LIt

We can build an index (Ω) that has the elegant property of capturing the informality rate:

Ωt =
lt
L

∈ [−1, 1]
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It corresponds to the share of formal minus informal labour. When all employment is formal,
then Ω = 1. In the other extreme, a purely informal economy is such that Ω = −1. Of course,
an economy can be at any point on the spectrum. Developing countries are most likely to
depict Ω < 1 while those in the Global North are such that Ω > 1.

The share of agents in each group changes accordingly to the discrete choice approach (as
in Brock and Hommes, 1997). Given the significant degree of inertia in formality decisions,
we adopt the asynchronously updating version in Hommes et al. (2005). Thus, we write:

LFt

L
= α

LFt−1

L
+ (1− α)pFt−1

(6)

LIt

L
= α

LIt−1

L
+ (1− α)pIt−1

where α ∈ (0, 1) stands for those that repeat the choice of the previous period, and pi is the
probability of belonging to either sector. In the limit, when α = 1, there is no structural
change as the composition of employment remains constant. Alternatively, α = 0 implies
synchronous updating.

Subtracting the second expression from the first in (6), we obtain:

Ωt = αΩt−1 + (1− α)
(
pFt−1 − pIt−1

)
(7)

giving us variations in the sectoral composition in terms of two probability functions.
Applying a specification for pF and pI similar to those in the discrete-choice type of

models, we have:

pFt−1 =
exp

(
ρUFt−1

)∑
i={F,I}

exp
(
ρUit−1

)
(8)

pIt−1 =
exp

(
ρUIt−1

)∑
i={F,I}

exp
(
ρUit−1

)
where Ui is the utility of being formal or informal, and parameter ρ is commonly known as
the intensity of choice. For values of ρ close to zero, both probabilities converge to 0.5. At
the same time, as this parameter goes to infinity, pi tends to zero or one (for a review of its
properties, see Franke and Westerhoff, 2017).

Assume Ui depends on the same variables but with an opposite sign, such that:

UFt = −UIt

Substituting the equality above into (8) and the resulting expressions on Eq. (7), we have:

Ωt = αΩt−1 + (1− α) tanh
(
ρUFt−1

)
(9)

The existing literature has relied on cross-country and within-country (quasi) experi-
mental data to assess informality’s determinants empirically. Here, the distinction between
extensive and intensive margins is critical (see Ulyssea, 2020). The extensive margin de-
pends on firms registering and paying entry fees to achieve a formal status. On the other
hand, the intensive margin refers to formal vs informal employment relations. Our study is
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somehow more related to the latter, though we recognise the importance of the first dimen-
sion. There is some consensus that lowering registration costs neither reduces informality
nor raises economic growth (e.g. La Porta and Shleifer, 2014). The central stylised fact is
that informality becomes much less significant as the economy grows. This also happens
over the business cycle. Job finding rates in the formal sector are strongly pro-cyclical while
remaining relatively stable in the informal sector, suggesting people prefer formality overall.
Considering that the formality of a firm’s suppliers and buyers is correlated with its formal
status, we observe a scale effect.

To summarise the discussion above, we write:

ρUFt−1 = ρΩΩt−1︸ ︷︷ ︸
Scale effect

+ ρY

(
YFt − YFt−1

YFt−1

)
︸ ︷︷ ︸

Growth effect

(10)

where ρΩ and ρY are sensitivity parameters to scale and growth effects. The first captures
the idea that as the formal sector increases, it becomes more attractive to join it. A similar
component appears in Zeppini (2015) and Zeppini and van den Bergh (2020) related to the
adoption of a green technology. The existence of such a component can also be justified by the
existence of increasing returns (Azariadis and Stachurski, 2005) or Marshallian externalities
that arise if a certain type of workers is sufficiently numerous (Carillo and Pugno, 2004),
creating a scale complementarity. Finally, the growth effect indicates that if that sector
grows, there will be an increase in the probability of becoming formal.

Substituting Eq. (10) into (9), the dynamics of (in)formality are given by:

Ωt = αΩt−1 + (1− α) tanh

(
ρΩΩt−1 + ρY

(
YFt − YFt−1

YFt−1

))
(11)

3.4 Choosing (non)green attitudes

For simplicity, we assume the population equals the labour force, thus being constant. It
is divided between those supporting and opposing strong climate action, j = {CS,CD},
respectively:

N = NCSt +NCDt

Defining an auxiliary variable (n) as the difference between the two groups:

nt = NCSt −NCDt

We are able to build an index of green attitudes ranging between -1 and 1, that is:

Φt =
nt

N
∈ [−1, 1]

Our index Φ is analogous to Ω and captures the composition of the population in the envi-
ronmental dimension. If all agents support strong action, then Φ = 1. At the other extreme,
complete opposition or merely paying lip service to climate change is represented by Φ = −1.

The share of agents in each group changes conditional to a set of probabilities:

NCSt

N
= γ

NCSt−1

N
+ (1− γ)pCS

t−1

(12)

NCDt

N
= γ

NCDt−1

N
+ (1− γ)pCD

t−1
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where γ ∈ (0, 1) corresponds to the portion of agents that repeat their convictions from
the previous period. Thus, 1 − γ stands for those that might switch attitudes, with pj

indicating the correspondent probability functions. As a higher γ implies more inertia in
attitudes, Cafferata et al. (2021) interprets this coefficient as capturing the strength of
agents’ confirmation bias.

If we subtract the second expression from the first in (12), it follows that:

Φt = γΦt−1 + (1− γ)
(
pFt−1 − pIt−1

)
(13)

Adopting the traditional specification used in discrete choice models for pCS and pCD

(see the literature review by Franke and Westerhoff, 2017), we have:

pCS
t−1 =

exp
(
βUCSt−1

)∑
j={CS,CD}

exp
(
βUjt−1

)
(14)

pCD
t−1 =

exp
(
βUCDt−1

)∑
j={CS,CD}

exp
(
βUjt−1

)
where Uj is the utility obtained from being (or not) green. The intensity of choice now is
represented by β. When β → 0, both probabilities converge to 0.5. On the other hand,
β → ∞ implies pj converges to zero or one.

It is reasonable to assume that the utility of supporting or opposing climate intervention
depends on the same variables but with an opposite sign:

UCSt = −UCDt

Substituting that relationship into (14) and the resulting expressions into Eq. (13), we
obtain:

Φt = γΦt−1 + (1− γ) tanh
(
βUCSt−1

)
(15)

Research on environmental psychology indicates threat appraisal is one of the strongest
predictors of individual adaptation behaviour (Bamberg et al., 2017; an overview of the
related literature can be found in Bechtoldt et al., 2021). The main idea is that agents are
more likely to support environmental action if they understand or feel the costs imposed
by climate change. Along similar lines, they also respond to the threat of losing their job
in the formal sector and having to find alternatives in informality. This reasoning echoes
the “basic needs hierarchy” argument. Humans only begin to pursue other goals once basic
physiological needs, such as physical safety and access to food, have been taken care of (e.g.
Scruggs and Benegal, 2012; Abou-Chadi and Kayser, 2017).

Taken together, we make the case that a higher emissions growth rate is associated
with an increased probability of supporting stronger climate action. Analogously, higher
formalisation rates increase pCS and reduce pCD because agents have an additional stimulus
to think about more long-run concerns, such as global warming, after securing a good job.
That is:

βUCSt−1 = βΦΦt−1︸ ︷︷ ︸
Peer effect

+ βΩΩt−1︸ ︷︷ ︸
Formalisation effect

+ βP

(
Pt − Pt−1

Pt−1

)
︸ ︷︷ ︸
Climate threat

(16)

where βΦ, βΩ, and βP are sensitivity parameters, while P stands for emissions. Finally,
considering the existing evidence on peer effects affecting political views (Robbett et al.,
2023), we also take into account this channel.
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Substituting Eq. (16) into (15), the dynamics of green attitudes are given by:

Φt = γΦt−1 + (1− γ) tanh

(
βΦΦt−1 + βΩΩt−1 + βP

(
Pt − Pt−1

Pt−1

))
(17)

3.5 Emissions, energy demand and the carbon-tax

Our narrative’s last block of equations expands on the interplay between informality and
environmental support by exploring the connection between emissions and technology. For
this purpose, it is helpful to take as a starting point the Kaya identity:

Pt = N × YFt

N
× Et

YFt

× Pt

Et

Notice that as only the formal sector uses energy inputs, emissions or pollution are a sub-
product of YF . To focus on the relationship between pollution-output-technology, we allow
the energy-output ratio to change over time but assume the pollution-energy ratio is constant
and normalised it to one.2

Furthermore, given that we are assuming a constant population, the Kaya identity can
be simplified to:

Pt =
YFt

vt

In growth rates:

Pt − Pt−1

Pt−1

=

YFt−YFt−1

YFt−1
− vt−vt−1

vt−1

1 + vt−vt−1

vt−1

(18)

To keep our exercise as simple as possible, suppose the growth rate of energy demand is
exogenously defined and given by:

Et − Et−1

Et−1

= gE > 0

Recalling the first dynamic Leontief efficiency condition, substitute gE into the first expres-
sion in (3). Further substituting the result into Eq. (18) and after some manipulation we
have that:

Pt − Pt−1

Pt−1

= gE (19)

implying that emissions go hand in hand with energy demand. This result follows from
the fact that improvements in energy efficiency translate into higher output in the same
magnitude. While we could relax such a result and allow for the possibility of achieving
negative emissions, we leave that option for future research for two main reasons. First,
we would have to introduce a new parameter to address the issue, complicating the algebra
without adding much to our main message. Second, evidence of absolute decoupling is still
limited.

2Instead, we could take the energy-output ratio as constant and allow the pollution-energy ratio to
vary over time. Both are suitable choices and reflect a change in technology towards a more (or less)
environmentally friendly direction. Allowing P/E to change would have required minor adjustments in the
production function (1) and our specification of directed technical change in Eq. (20) without affecting our
main narrative. We preferred using v because, in our opinion, it is less intuitive to have pollution inside
our Leontief technology. Environmental growth models that include P in the production function normally
associate it with a damaging effect or negative externality, a channel we are not exploring here.
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Energy efficiency is supposed to depend on the cumulative effect of taxing emissions,
i.e. a carbon tax (τ). Still, adopting a carbon tax for only one year is unlikely to have
meaningful technological effects. Instead, if sustained sufficiently long, the resulting increase
in energy prices induces firms to adapt by increasing their search for energy-saving production
techniques. This assumption is frequently called the directed technical change hypothesis
and finds some empirical support. For example, studying the automotive industry, Aghion
et al. (2016) estimate that a 1% rise in fuel prices results in 0.85 to 1% more clean patents.
Moreover, they also document there is path dependence in the direction of technical change.
Lin and Chen (2019) report similar figures. They show that a 1% increase in electricity price
can increase innovation in renewable energy technologies by 0.8%–1.1%. Thus, to capture
cumulative and path-dependent effect of τ on v, we write:

vt =
t∏

ω=1

(1 + ϕτω−1) (20)

where ϕ ∈ [0, 1] represents the marginal impact of τ on v on a given period.
Finally, carbon taxes depend on how urgent people believe climate change is. Considering

that some of it depends on technical considerations beyond the political sphere, including
agreements previously signed and the pressure of the international community, we divide the
carbon tax into an autonomous component (τ0) and an attitudes-induced part:

τt−1 = τ0 + τ1Φt−1 (21)

where τ1 ∈ [0, 1] represents the response of taxes to the population composition between
those who support stronger or weaker climate action and τ0 ∈ [0, 1]. One could argue that
in less democratic societies parameter τ1 is relatively small. It is enough for our purposes to
accept that at least part of the taxing emissions effort depends on public support. It is not
a coincidence that numerous cases of fossil fuel subsidy reform withdrawals following social
unrest (McCulloch et al., 2022).

From Eqs. (20) and (21), it follows that the variation rate of v is equal to:

vt − vt−1

vt−1

= ϕ (τ0 + τ1Φt−1)

so that the composition of green attitudes influences technological choices over time. Sub-
stituting it into the first dynamic Leontief efficiency condition in (3) and recalling energy
demand grows at a rate gE, the output growth rate in the formal sector will be equal to:

YF,t − YF,t−1

YF,t−1

= gE + (1 + gE)ϕ (τ0 + τ1Φt−1) (22)

4 Dynamic system

Substituting Eq. (22) into Eq. (11), we obtain the dynamics of (in)formality as a function of
a scale effect and output growth, the latter depending on the evolution of energy efficiency,
which in turn responds to environmental support. Finally, substituting Eq. (19) into (17),
variations in green attitudes respond to a peer effect and macroeconomic performance. Our
2D nonlinear map is defined and given by:

Ωt = αΩt−1 + (1− α) tanh {ρΩΩt−1 + ρY [gE + (1 + gE)ϕ (τ0 + τ1Φt−1)]}
(23)

Φt = γΦt−1 + (1− γ) tanh (βΦΦt−1 + βΩΩt−1 + βPgE)
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In steady-state, Ωt = Ωt−1 = Ω̄ and Φt = Φt−1 = Φ̄. This results in the following
equilibrium conditions:

Ω̄ = tanh
{
ρΩΩ̄ + ρY

[
gE + (1 + gE)ϕ

(
τ0 + τ1Φ̄

)]}
(24)

Φ̄ = tanh
(
βΦΦ̄ + βΩΩ̄ + βPgE

)
The system (23) has no closed solution. Still, we would like to dig a bit deeper analyti-

cally into the existence of unique or multiple equilibrium points before moving to numerical
simulations. To provide the reader with further intuition of what is going on, let us consider a
hypothetical scenario with constant energy demand and carbon taxes fully attitudes-induced
so that:

gE = 0 τ0 = 0

It immediately follows that the equilibrium conditions (24) can be rewritten as:

Ω̄ = tanh
{
ρΩΩ̄ + ρY ϕτ1Φ̄

}
(25)

Φ̄ = tanh
(
βΦΦ̄ + βΩΩ̄

)
These expressions allow us to differentiate between two particular sets of mechanisms. The
first is related to scale and peer effects, as captured by parameters ρΩ and βΦ, respectively.
The second set refers to cross-repercussions of one dimension over the other. On the one
hand, an increase in green attitudes (Φ) provides the necessary public support to increase
the carbon tax by a certain factor (τ1); firms respond by increasing their search for more
energy-efficient production techniques with a given success (ϕ), leading to an increase in the
output growth rate which ultimately improves the likelihood of workers choosing to become
formal with a particular weight (ρY ). On the other hand, higher formalisation rates allow
the general public to pay attention to problems perceived as more related in the long run,
such as global warming (βΩ).

We proceed by stating and proving the following Propositions regarding the existence of
a unique and stable equilibrium point:

Proposition 1 Suppose scale and group effects are arbitrarily small, such that ρΩ and βΦ

are sufficiently close to zero, while ρY ϕτ1 and βΩ also small enough. Then, the dynamic
system only admits the solution defined and given by (Φ̄, Ω̄) = (0, 0).

Proof. See Appendix A.1.

The intuition behind this first Proposition is quite simple. Consider none of the transmis-
sion channels discussed in the model is important. In that case, the probability of choosing
between formality or informality and of strongly supporting or not a green agenda will con-
verge to 0.5. This result follows from the chosen functional forms of the probability functions
in (8) and (14), which follow the discrete-choice literature. Notice that this is not a trivial
nor corner solution because Φ̄ and Ω̄ ∈ [−1, 1]. Therefore, the productive structure will be
equally divided between sectors, and the population will be fragmented regarding attitudes.
Things become more interesting when we allow them to become relevant. For example,
increasing the relative importance of cross-repercussions between informality and environ-
mental attitudes. We proceed by stating and proving the following Proposition regarding
the existence of multiple equilibria and their local stability properties:
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Proposition 2 If scale and group effects are arbitrarily small, such that ρΩ and βΦ are
sufficiently close to zero but ρY ϕτ1 and βΩ are large enough, the dynamic system admits
three equilibria:

1. A saddle (0, 0) solution.

2. A locally stable green-formal point ⇒ (Φ̄, Ω̄) ∈ R2+.

3. A locally stable non-green-informal solution ⇒ (Φ̄, Ω̄) ∈ R2−.

Proof. See Appendix A.2.

Green-formal and non-green informal solutions are critical as initial representations of
the North-South divide. Their coexistence reflects the persistence of uneven development
over time. This finding depends on the complementarity between the growth effect, entering
the probability of being formal, and the formalisation effect, appearing in the probability of
being green. Initial conditions in the basins of attraction of the green-formal point reinforce
the status of developed economies. First, high formality rates block attitudes from becoming
non-green. Second, a majority supporting the green agenda keeps growth sufficiently high
to block agents from migrating to the informal sector. Analogously, initial conditions in the
basins of attraction of the non-green-informal solution work similarly but in the opposite
direction.

The underdevelopment trap here depends on two forces that reinforce each other. On
the one hand, high informality rates make agents relegate the environment as a secondary
problem. As suggested throughout the paper, they might pay lip service to the relevance
of it. Still, climate change mitigation does not appear to be a top priority, so there is no
support for implementing a carbon tax. On the other hand, the latter’s absence implies no
change or even a reduction in energy input efficiency as directed technical change depends
on increasing polluting costs. The absence of technological progress results in lower output
growth. An economy that does not grow cannot attract workers to the formal sector, locking
the trap.

Now, let us turn to the importance of the scale and peer effects muting the previous two
channels. We can state and prove the following Proposition regarding multiple equilibria
and their local stability.

Proposition 3 Suppose instead, cross-repercussions are arbitrarily small, such that ρY ϕτ1
and βΩ are sufficiently close to zero. If ρΩ and βΦ are large enough, the dynamic system
admits nine equilibria:

1. The saddle (0, 0) solution.

2. A locally stable green-formal point ⇒ (Φ̄, Ω̄) ∈ R2+.

3. A locally stable green-informal solution ⇒ Φ̄ ∈ R+ ∧ Ω̄ ∈ R−.

4. A locally stable non-green-formal point ⇒ Φ̄ ∈ R− ∧ Ω̄ ∈ R+.

5. A locally stable non-green-informal solution ⇒ (Φ̄, Ω̄) ∈ R2−.

6. Unstable environmental-polarisation with formality ⇒ Φ̄ ≈ 0 ∧ Ω̄ ∈ R+.

7. Unstable environmental-polarisation with informality ⇒ Φ̄ ≈ 0 ∧ Ω̄ ∈ R−.

16



8. Unstable green with formal-informal sectors of similar size ⇒ Φ̄ ∈ R+ ∧ Ω̄ ≈ 0.

9. Unstable non-green with formal-informal sectors of similar size ⇒ Φ̄ ∈ R− ∧ Ω̄ ≈ 0.

Proof. See Appendix A.3.

Four stable solutions emerge, representing the coexistence of four possible sign combi-
nations between Φ and Ω. Proposition 2 indicated that cross-repercussions between the
two dimensions create the blue and red equilibria in Figs. 2 and 3. Proposition 3 adds to
that result by showing that scale and group effects can create blue, red, and grey states. It
thus becomes quite important to study the respective basin of attraction to understand the
boundary regions between each equilibrium. We will reach this point later when discussing
strategies to achieve the blue region.

Before moving on to our numerical experiments, we relax the assumption that energy
demand is constant and that carbon taxes are fully attitudes-induced. Instead, gE > 0 while
a group of technocrats or international agreements fixes and enforces τ0 > 0. We state the
following Proposition regarding the existence of a unique and stable equilibrium solution.

Proposition 4 Suppose energy demand grows (gE) at an arbitrarily large positive rate and
the attitudes-free component of the carbon tax (τ0) is of considerable size. Then, the dynamic
system has a unique locally stable equilibrium point (Φ̄, Ω̄) ∈ R+.

Given our underlying assumption that there is no absolute decoupling in this economy, a
large gE implies that emissions will continue rising for a sufficiently long time. As emissions
accumulate in the atmosphere, the consequences of climate change become more concrete,
as well as the perception of the climate threat. This increases the probability of recognising
the urgency of fighting climate change, turning Φ̄ > 0. Here comes the connection between
attitudes and the productive structure. If most agents start to support the implementation
of a sufficiently high carbon tax, polluting becomes more expensive. The effect is augmented
by the imposed τ0 that does not depend on the general public. Because τ0 is not subject
to the comes and goes from politics, it establishes a floor to the carbon tax to which firms
respond by increasing their search for more energy-efficient production techniques. Our
story crucially depends on technology’s response to environmental policy because that is
the force that keeps output growth high enough. High growth in the formal sector makes it
more attractive to informal workers, reducing the probability of choosing informality, turning
Ω̄ > 0.

5 Numerical experiments

We calibrate the system to provide a more concrete view of the model’s properties, choosing
economically meaningful parameter values. Their number is relatively small, totalling 11,
with five directly related to the probability functions. Table 1 reports the ranges used in
our simulations. Whenever possible, we followed related studies in the field. Still, given
that we are not calibrating a real economy, we used them as an approximation. Thus, the
interpretation of our numerical experiments is more qualitative, with a particular interest
in reproducing the main stylised facts reported in the first part of the paper. Each figure
reports the specific values used to obtain it for completeness.

For example, Zeppini (2015) and Zeppini and van den Bergh (2020), using a discrete-
choice framework similar to ours, have a increasing return parameter on the adoption of
technology that resembles our scale effect on (in)formality. They assume it lies between 0.1
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Table 1: Choice of parameters

Parameter Value Source/Motivation

α 0− 1 Compatible with asynchronous updating

ρΩ 0.5− 1.1 Zeppini (2015); Zeppini and van den Bergh (2020)

ρY 0.15− 0.5 Fotie and Mbratana (2024)

γ 0− 1 Compatible with asynchronous updating

βΦ 0.5− 1.1 Kukacka and Sacht (2023)

βΩ 0.03− 0.5 Benegal (2018)

βP 0.01− 0.2 Benegal (2018)

ϕ 1− 2 Aghion et al. (2016)

gE 0− 0.02 World Development Indicators

τ0 0− 0.175 OECD; World Development Indicators

τ1 0.1− 1 Compatible with a maximum τ = 0.15 in our preferred scenario

and 1. On the other hand, Kukacka and Sacht (2023) are the first to provide a reliable esti-
mate of the intensity of choice parameter in heuristic-switching behavioural macroeconomic
models. They find it to be slightly above the unity. Taking these findings together, we
assume ρΩ and βΦ vary between 0.5 and 1.1, adopting the latter in our preferred scenario.
Fotie and Mbratana (2024) estimate the impact of output growth on informality, reporting
a coefficient between −0.01 and −0.06; the effect can be larger depending on the level of
output. Thus, we fix ρY = 0.15, slightly above their calculations. Still, to test the model’s
sensitivity to this channel, we allow it up to 0.5 in one of our experiments.

To the best of our knowledge, there are no estimates on the impact of informality on
climate attitudes. So, we use unemployment as a rough proxy. Benegal (2018) suggests that
for each percentage point increase in state unemployment, the likelihood of an individual
engaging in soft denial of climate change rises by 4.3%. He also reports a small effect
of deviations from normal temperatures on climate change perceptions. We adopt similar
magnitudes, choosing βΩ = 0.03 and βP = 0.01 in our favoured scenario. Once more, to
assess robustness, we admit values as high as βΩ = 0.5 and βP = 0.2. Given that Aghion
et al. (2016) document that a 1% increase in fuel prices leads to an increase between 0.85
and 1% in clean patents, we fix our induced technical change parameter ϕ = 1 to simplify
calculations. We assess the model’s response to a stronger induced technical change effect in
one specific case, fixing ϕ = 2. Data on energy demand comes from the World Development
Indicators, published by the World Bank.

Finally, about 16% of GHG emissions are currently priced at 30€ per tonne of CO2, and
only 7% have been priced above 60€ (OECD, 2023). Moreover, the World Development
Indicators report that the European Union has a carbon intensity of 0.0002 tonnes of CO2
per output unit, while China is 0.00075. If we multiply these figures with the maximum
carbon price by emissions intensity, we get a ≤ 0.05 rate. Thus, we allow τ0 to vary from
zero to 0.075 in our preferred scenarios. Analogously, we set τ1 = 0.1 so that a society fully
committed to the green agenda would double the maximum possible autonomous part of the
tax. As extreme cases, we include in our experiments τ0 = 0.175 and a one-to-one response
of the carbon tax to attitudes. Similar ranges can be found in Sordi and Davila-Fernandez
(2023).
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Figure 5: A unique (0,0) equilibrium point illustrating Proposition 1. Parameters α = 0.8,
γ = 0.8, ρΩ = 0.5, ρY = 0.15, βΦ = 0.5, βΩ = 0.03, βP = 0.01, ϕ = 1, gE = 0, τ0 = 0,
τ1 = 0.1.

5.1 Illustrating Propositions 1-4

We provide a concrete visualisation of the analytical results reported in the previous Section.
Fig. 5 assumes scale and group effects are arbitrarily small while cross-repercussions are
also minor. In green and orange, we report the equilibrium conditions Φ̇ = 0 and Ω̇ =
0, respectively. Proposition 1 indicates that, under these conditions, the model admits a
unique locally stable equilibrium point (0, 0). On the environmental attitudes axis, society is
polarised, meaning that half of the population supports and the other half opposes adopting a
carbon tax. As no majority is formed, carbon taxes are independent of Φ. As long as τ0 = 0,
there is no emissions tax. Firms have no incentive to invest in energy-saving production
techniques, resulting in zero growth in the formal sector. Moreover, a stagnant formal sector
keeps the probability of choosing formality vs informality equal so that workers are equally
divided between the two sectors. The black arrows indicate different initial conditions in
each quadrant converging to the steady-state solution.

We proceed by studying the emergence of multiple equilibria when cross-repercussions
between the two dimensions are strong enough. This is perhaps our less relevant case because
we need to assume parameter values significantly outside a range supported empirically.
Nonetheless, such a step is necessary to show the validity of Proposition 2 and allows us to
be as clear as possible about the mechanisms in motion. Fig. 6 indicates the coexistence
of two stable attractors. On the one hand, a green-formal equilibrium (G-F) stands as an
“ideal” Global North. Most of the population supports strong climate action, and workers
are mainly in the formal sector. The blue area marks all initial conditions converging to
it. We have a virtuous process of cumulative causation, where positive attitudes lead to
implementing a carbon tax, which stimulates energy efficiency through induced technical
change, creating more growth in the formal sector. The latter guarantees that citizens have
satisfied their immediate needs so they can dedicate attention to the environment, reinforcing
the process.
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Figure 6: Basins of attraction in the (Φ,Ω) space illustrating Proposition 2. Parameters
α = 0.8, γ = 0.8, ρΩ = 0.5, ρY = 0.5, βΦ = 0.5, βΩ = 0.5, βP = 0.01, ϕ = 2, gE = 0, τ0 = 0,
τ1 = 1.

On the other hand, a non-green informal (NG-I) attractor stands as the “expected” Global
South case. We mark its basin of attraction in red. A vicious chain of forces makes NG-I
also a stable solution. A developing economy with high levels of informality and initially low
environmental support is likely to stay that way because, in the absence of carbon taxes,
there is no induced technical change and efficiency in the use of inputs remains the same,
resulting in no growth. Thus, there is no incentive to become formal, keeping the country
in an underdevelopment trap.

A third set of experiments illustrates Proposition 3. Scale and group effects are now
sufficiently strong. We deal with nine equilibrium points, indicated by the intersection
between green and orange lines. Still, only four of them are locally stable. As before,
we have a green-formal equilibrium on the top right, with its basins of attraction coloured
in blue. On the bottom left, the red area indicates all initial conditions converging to a
non-green informal solution. The two novelties are the areas in grey. They correspond to
hybrid cases. For example, on the top left, we have developed countries with low levels of
informality but that do not recognise the urgency of fighting climate change. Basic material
needs are satisfied because they have low informality, and agents are motivated to look at
the environment. However, as the peer effects are strong and initial conditions are such
that people are surrounded by agents who do not have green attitudes, Φ stays negative.
Moreover, because scale effects are also quite strong, it is very costly to leave the formal
sector, and agents continue to prefer formality even though efficiency is stagnant.

A quick look at Figs. 2 and 3 reveal the quadrant in the bottom right is (almost) empty,
suggesting the second hybrid case is less likely to happen. We will come back to this point
later, but it is enough to understand its rationale for the moment, which is analogous to the
previous case. As most of the population supports strong climate action, a carbon tax is
adopted, and peer effects reinforce agents’ attitudes. However, the induced technical change
channel is relatively weak. Thus, it cannot overcome the scale effect of the informal sector,
resulting in a green-informal equilibrium.
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Figure 7: Basins of attraction in the (Φ,Ω) space illustrating Proposition 3. Parameters
α = 0.8, γ = 0.8, ρΩ = 1.1, ρY = 0.15, βΦ = 1.1, βΩ = 0.03, βP = 0.01, ϕ = 1, gE = 0,
τ0 = 0, τ1 = 0.1.

So far, we have studied our model under the assumption of constant energy demand
and zero autonomous carbon tax, i.e. gE = τ0 = 0. In Proposition 4, we demonstrated
that the model again admits a unique equilibrium solution if we relax it. Fig. 8 confirms
our findings. The informal sector only uses labour to produce. Therefore, gE > 0 implies
that growth in the formal sector is sufficiently strong. This force creates a net incentive to
become formal, leaning the probability functions against informality. Furthermore, τ0 > 0
indicates an exogenous pressure to address climate change. We can think of this parameter
as a group of technocrats that does not directly respond to the general public. In the context
of developed countries, we could think of working groups inside the European Commission.
Looking at developing economies, one could argue that the Chinese Communist Party plays
a similar role. Adopting a global emission tax system by a multilateral organisation such as
the United Nations would work analogously for our purposes. The point is that these two
mechanisms shift the orange line up to the left, destroying all equilibria except the G-F.3

5.2 From the model back to the stylised facts

After evaluating numerically Propositions 1-4, we turn to whether the model is compatible
with what, in our view, are the main elements of Figs. 2 and 3, discussing its connection
with the sytlised facts of La Porta and Shleifer (2014). First, the informal sector is huge.
Accordingly, our model can generate the coexistence of equilibria with low vs high infor-
mality. Second, it has extremely low productivity. This is an underlying assumption of our
framework as qI is constant. Third, lowering registration costs does not bring many informal

3The role of an “sentiments-autonomous” carbon tax controlling for multi-stability also appears in Sordi
and Davila-Fernandez (2023). While their model also uses a discrete-choice approach to environmental atti-
tudes, it mainly describes the dynamics of developed countries. As such, there is no reference to informality,
which is the main novelty of the present paper. Still, the implications regarding policy recommendations are
similar, highlighting the role of multilateral organisations such as the United Nations.
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Figure 8: Basins of attraction in the (Φ,Ω) space illustrating Proposition 4. Parameters
α = 0.8, γ = 0.8, ρΩ = 1.1, ρY = 0.15, βΦ = 1.1, βΩ = 0.03, βP = 0.2, ϕ = 1, gE = 0.02,
τ0 = 0.175, τ1 = 0.1.

firms into the formal sector nor spurs growth. Accordingly, we abstracted from this ele-
ment and focused on the growth benefits of formality, which takes us to the last two points:
Both sectors are largely disconnected, with informality disappearing as the economy grows.
Furthermore, data from the two surveys revisited here suggest that a green informal (G-I)
attractor is unlikely to emerge. Most countries are either green formal (G-F), non-green
formal (NG-F) or non-green informal (NG-I).

Taking Fig. 7 as the starting point, τ0 is the critical policy parameter capable of destroy-
ing the G-I equilibrium. Fig. 9 shows how, as we increase the autonomous component of the
carbon tax, the orange isocline moves to the left, leading to only three equilibrium points.
A positive growth rate of energy demand could break up the red and grey attractors, as in
Fig. 8, but this does not happen here because agents’ response to pollution is realistically
assumed to be low. Thus, the green isocline remains more or less the same and only the
orange moves. In blue, we continue to colour the basins of attraction of G-F, which now
occupies half of the (Φ,Ω) space. Looking at the black arrows, we can appreciate a simple
representation of path dependence, as economies with similar initial conditions can end up
in very different states.

Studying the basins of attraction allows us to provide policymakers with insights into the
social dimension of climate change in the Global South. Suppose a country like India that,
in the context of our model, finds itself in the NG-I point. There are two “Big Push” options
in the spirit of Rosenstein-Rodan (1943). An alternative is to jump along the vertical axis to
achieve formality first. There are many natural reasons to support it. Poor countries have
low emissions per capita. Historically, they have also contributed less to global warming,
which nations in the Global North have fundamentally caused. Moreover, they still have to
satisfy basic needs before dealing with problems that have more long-term consequences, for
which their actions might even have a low scale. On the other hand, a second option is to
jump along the horizontal axis. That is, using the environmental problem as a window of
opportunity for development.
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Figure 9: Basins of attraction in the (Φ,Ω) space making a parallel with Figs. 2 and 3.
Parameters α = 0.8, γ = 0.8, ρΩ = 1.1, ρY = 0.15, βΦ = 1.1, βΩ = 0.03, βP = 0.2, ϕ = 1,
gE = 0.02, τ0 = 0.175, τ1 = 0.1.

Our model supports the second option and advises against the first. Ignoring climate
attitudes creates the need for two shocks. One is to leave the red attractor, and the other
jumps from grey to blue. Conversely, exploring the Φ dimension requires only one direct
shock from the red area to the blue desirable attractor. Still, for this to happen, it is critical
to tax emissions in such a way as to avoid short-term pressure from the general public. A
sufficiently high carbon tax, accompanied by induced technical change, can create a win-win
scenario that overcomes the red trap in a reasonable time horizon. Far from providing an
excessively simplistic assessment of the development problem, we recognise the very stylised
nature of our model, which calls for a note of caution. If the formal sector’s scale effects or
technology’s response to the carbon tax is weak, something likely to happen in developing
nations, underdevelopment will persist.

6 Final considerations

We develop a macrodynamic model to study the interplay between informality and hetero-
geneity in ecological thinking that reproduces some of the main stylised facts in the develop-
ment literature. The paper uses discrete-choice theory to present a tractable framework for
studying the political economy of climate change along the Global North-South divide. The
probability of opting for (in)formality is assumed to depend on scale and growth effects. In
contrast, the probability of acknowledging the urgency of climate change is subject to peer
effects, the size of the formal sector, and the perception of the climate threat. Output growth
and emissions ultimately are a function of the formal sector’s economic performance. More-
over, based on the composition of the population in terms of their environmental attitudes,
policymakers choose the carbon tax. The latter can potentially increase growth through an
induced technical change channel.
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Our model is compatible with the emergence of four stable equilibria. Scale and peer
effects must be sufficiently large for this result to hold. Developed countries are either in
the green-formal or non-green formal equilibria, while non-green informal or green informal
points characterise developing nations. It is shown that if the autonomous component of the
carbon tax is strong enough and firms respond to it by increasing their search for energy-
saving production techniques, then the green-informal equilibria disappear. In that case,
the system admits three stable attractors parallel to those identified in climate surveys.
On the contrary, if scale and peer effects are arbitrarily small but technology’s response to
taxing emissions is still there, and people care about economic performance when forming
environmental preferences, then two stable equilibria coexist. One green-formal and another
non-green-informal.

Studying the basins of attraction allows us to identify different “Big Push” options for
countries currently in the undesirable non-green informal equilibrium. First, a two-step
process focusing on increasing formality by growing at all costs but leaving the environment
as a future concern, thus requiring a second shock. Alternatively, a climate change mitigation
agenda should be implemented as a window of opportunity to overcome underdevelopment.
This option requires one shock emphasising attitudes to achieve the basins of attraction of
the desirable equilibrium. Our analysis supports this last alternative, as ignoring climate
attitudes creates the need for two instead of one big push. Numerical experiments confirm
our analytical findings and allow us to provide a more concrete visualisation of the dynamic
properties of the system.

The parsimonious framework developed here is flexible enough to be extended in sev-
eral possible directions. The most evident is that our numerical experiments were mainly
illustrative, and future research to improve them is to be encouraged. Another avenue is
properly treating how the government can enter the story through alternative spending and
taxing schemes. Arguably, taxation could increase the probability of choosing informality
in poor countries, while the sectoral composition of government expenditures also matters.
This step would allow us to get further insights on how to avoid underdevelopment traps.
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A Mathematical Appendix

Dynamic system{
Ωt = αΩt−1 + (1− α) tanh {ρΩΩt−1 + ρY [gE + (1 + gE)ϕ (τ0 + τ1Φt−1)]}
Φt = γΦt−1 + (1− γ) tanh (βΦΦt−1 + βΩΩt−1 + βPgE)

(A.1)

Lemma 5 If −1 ≤ A ≤ 1 ⇒ 0 ≤ A2, 1 − A2 ≤ 1. If 0 ≤ A,B ≤ 1 ⇒
0 ≤ AmBn, 1− AmBn ≤ 1, ∀m,n ≥ 0 integers.

Proof. Inmediate!

Lemma 6 The equilibrium points
(
Ω,Φ

)
of the dynamic system (A.1) satisfy the system{

Ω = tanh [ρΩΩ + ϕτ1ρY (gE + 1)Φ + ρY (gE + ϕτ0 + ϕτ0gE)]
Φ = tanh (βΦΦ + βΩΩ + βPgE)

(A.2)

and his Jacobian matrix J = J
(
Ω,Φ

)
satisfy the equations:

det (J − I) = (1− α) (1− γ)C1

C1 = βΦ

(
1− Φ

2
)
− ρΩ

(
1− Ω

2
)
+

+ [βΦρΩ − ϕτ1ρY βΩ (1 + gE)]
(
1− Ω

2
)(

1− Φ
2
)
+ 1 (A.3)

C2 = det (J + I) = (1 + α) (1 + γ) + βΦ (1− γ)
(
1− Φ

2
)
+ ρΩ (1− α)

(
1− Ω

2
)
+

+αβΦ (1− γ)
(
1− Φ

2
)
+ γρΩ (1− α)

(
1− Ω

2
)
+

+(1− α) (1− γ) [βΦρΩ − ϕτ1ρY βΩ (gE + 1)]
(
1− Ω

2
)(

1− Φ
2
)

(A.4)

and

C3 = det (J) = αγ + (1− α) (1− γ) [βΦρΩ − ϕτ1ρY βΩ (gE + 1)]
(
1− Ω

2
)(

1− Φ
2
)
+

+αβΦ (1− γ)
(
1− Φ

2
)
+ γρΩ (1− α)

(
1− Ω

2
)

(A.5)

where I represents the identiy matrix. Making the substitutions x = Ω, y = Φ
a1 = α, a3 = ρΩ, a4 = ϕτ1ρY (gE + 1) , a5 = ρY (gE + ϕτ0 + ϕτ0gE)

b1 = γ, b3 = βΦ, b4 = βΩ, b5 = βPgE

(A.6)

the system (A.2) and the equations for C1,C2, C3 can be written as:{
x = tanh (a3x+ a4y + a5)
y = tanh (b3y + b4x+ b5)

(A.7)

C1 = −a3
(
1− x2

)
− b3

(
1− y2

)
+ (a3b3 − a4b4)

(
1− x2

) (
1− y2

)
+ 1

=
[
1− a3

(
1− x2

)] [
1− b3

(
1− y2

)]
− a4b4

(
1− x2

) (
1− y2

)
(A.8)
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C2 = (a1 + 1) (b1 + 1) + a3 (1− a1) (b1 + 1)
(
1− x2

)
+ b3 (a1 + 1) (1− b1)

(
1− y2

)
+(a3b3 − a4b4) (1− a1) (1− b1)

(
1− x2

) (
1− y2

)
(A.9)

C3 = 1 + a4b4 (1− a1) (1− b1)
(
1− x2

) (
1− y2

)
− a3b1 (1− a1)

(
1− x2

)
−a1b3 (1− b1)

(
1− y2

)
− a3b3 (1− a1) (1− b1)

(
1− x2

) (
1− y2

)
− a1b1

= 1 + a4b4 (1− a1) (1− b1)
(
1− x2

) (
1− y2

)
−
{
1− (1− a1)

[
1− a3

(
1− x2

)]} {
1− (1− b1)

[
1− b3

(
1− y2

)]}
(A.10)

Proof. If in the system (A.1),

f (Ω,Φ) = αΩ + (1− α) tanh {ρΩΩ + ρY [gE + (1 + gE)ϕ (τ0 + τ1Φ)]}

and
g (Ω,Φ) = γΦ + (1− γ) tanh (βΦΦ + βΩΩ + βPgE)

then

0 = f
(
Ω,Φ

)
− Ω = (α− 1)

{
Ω− tanh

[
ΩρΩ +

[
gE + ϕ (gE + 1)

(
τ0 + Φτ1

)]
ρY

]}
0 = g

(
Ω,Φ

)
− Φ = (γ − 1)

[
Φ− tanh

(
ΩβΩ + ΦβΦ + βPgE

)]
The system (A.2) occurs because α, γ ∈]0, 1[. On the other hand, considering (A.2) and the

identities d tanh(x)
dx

= sech2 (x) = 1− tanh2 (x) , we obtain:

J
(
Ω,Φ

)
=

[
∂f
∂Ω

∂f
∂Φ

∂g
∂Ω

∂g
∂Φ

]∣∣∣∣
(Ω,Φ)

=

 α + ρΩ (α− 1)
(
Ω

2 − 1
)

ϕτ1ρY (α− 1) (gE + 1)
(
Ω

2 − 1
)

βΩ (γ − 1)
(
Φ

2 − 1
)

γ + βΦ

(
Φ

2 − 1
)
(γ − 1)


The equations (A.3), (A.4), (A.5), (A.7),(A.8),(A.9) and (A.10) are obtained by direct com-
putation and later simplification. And from this it follows that the three necessary and
sufficient conditions for local stability of the equilibrium point

(
Ω,Φ

)
= (x, y) of the system

(A.1) satisfying (A.2) or (A.7), are

C1 = C1 (x, y, a3, a4, b3, b4) > 0, (A.11)

C2 = C2 (x, y, a1, a3, a4, b1, b3, b4) > 0, (A.12)

and
C3 = C3 (x, y, a1, a3, a4, b1, b3, b4) > 0. (A.13)

Lemma 7 Suppose a5 = b5 = 0. If (x, y) is a solution of (A.7), that is if (x, y) is a fixed
point of (A.2), then (x, y) is an intersection point of the curves{

y = a (x) = 1
a4

[
tanh−1 (x)− a3x

]
, |x| < 1

x = c (y) = 1
b4

[
tanh−1 (y)− b3y

]
, |y| < 1

, (A.14)

and therefore (−x,−y) is also a solution of (A.7). Furthermore,
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1. When 0 ≤ a3, b3 ≤ 1 ⇒ a (x) , |x| < 1 and b (x) = c−1 (y) ,−∞ < x < +∞, are
increasing functions with the common point (0, 0) which is an inflexion point of both
curves; the graphic of a is convex downwards when x < 0 and is convex upwards when
x > 0; the convexity of the graphic of b is the opposite.

2. When a3 > 1 ⇒ a (x) is increasing in ]− 1,−α[∪]α, 1[ and decreasing in ]− α, α[, α =√
1− 1

a3
with a local maximum point in −α and a local minimum point in α, (0, 0) is

an inflection point too and his convexity is the same.

3. When b3 > 1 ⇒ the graph of x = c(y) as function in y is increasing in ]− 1,−β[∪]β, 1[
and decreasing in ] − β, β[, β =

√
1− 1

b3
with a local maximum point in −β and a

local minimum point in β, it can be represented by three functions that are the inverse
of the corresponding segments of c(y): B1 (x) , x ∈] − ∞, c (−β) [, increasing, con-
vex upwards;B2 (x) , x ∈]c (β) ,+∞[, increasing, convex downwards, and B3 (x) , x ∈
]c (β) , c (−β) [, decreasing, convex upwards for x < 0, convex downwards for x > 0
with (0, 0) as an inflection point.

Proof. The equations (A.14) are obtained directly from (A.7) using the properties of the
hyperbolic tangent function and a5 = b5 = 0. In the same way, we have that a(−x) = −a(x)
and c(−y) = −c(y), so if (x, y) is a point of intersection of the curves (A.14), (−x,−y) is also
and so it is also a solution of (A.7). Furthermore, we can see the behaviour of the graphics
of the two equations y = a (x) and x = c (y) in (A.14) calculating a′ (x) = da

dx
, a′′ (x) = d2a

dx2

and c′ (y) = db
dy
,

a′ (x) =
1− a3 (1− x2)

a4 (1− x2)
, |x| < 1 and c′ (y) =

1− b3 (1− y2)

b4 (1− y2)
, |y| < 1. (A.15)

a′′ (x) =
(1− x2) (2a3x)− (1− a3 + a3x

2) (−2x)

a4 (1− x2)2
=

2x

a4 (1− x2)2
. (A.16)

We have the following results:

1. When 0 ≤ a3, b3 < 1 we obtain using (A.15) and Lemma 5, a′ (x) > 0 and c′ (y) > 0 ⇒
a (x) , |x| < 1 and b (x) = c−1 (x) ,−∞ < x < +∞ are strictly increasing finctions.
Furthermore, by (A.14) and (A.15), (A.16) we obtain: limx→−1+ a (x) = −∞, a (0) =
0, limx→1− a (x) = +∞, a′ (0) = 1−a3

a4
> 0, a′′ (0) = 0 ⇒ x = 0 is an inflection point and

the graphic is convex downwards when x < 0 and is convex upwards when x > 0; on the
other hand for the function b (x) , we have using (A.14), (A.16), 5, the inverse derivative
and the change rule: limx→−∞ b (x) = −1+, b (0) = c−1 (0) = 0, limx→+∞ b (x) = 1−,

b′ (x) =
1

c′ (y)
=

b4 (1− y2)

1− b3 (1− y2)
=

b4
(
1− b (x)2

)
1− b3

(
1− b (x)2

) (A.17)

⇒ b′ (x) > 0, b′ (0) = b4
1−b3

> 0,

b′′ (x) = b4
(1− b3 + b3y

2) (−2yb′ (x))− (1− y2) (2b3yb
′ (x))

(1− b3 + b3y2)
2

=
−2b4yb

′ (x)

(1− b3 + b3y2)
2 (A.18)

⇒ x = 0 is an inflection point and the graphic is convex upwards when x < 0 and is
convex downwards when x > 0.
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2. When a3 = 1, b3 = 1, a (x) and c (y) are non decreasing and a (x) , |x| < 1 and b (x) =
c−1 (x) ,−∞ < x < +∞ maintain the previous characteristics, the only difference is,
by (A.15), (A.16), (A.17) and (A.18), that a′ (0) = a′′ (0) = 0 and b′(0), b′′(0) do not
exist.

0 ≤ a3 < 1 a3 = 1

0 ≤ b3 < 1 b3 = 1

3. When a3 > 1 ⇒ by (A.15) and (A.16), a′ (x) = 0 if x = ±α, α =
√

1− 1
a3

⇒ a′ (x) > 0

if |x| > α, a′ (x) < 0 if |x| < α ⇒ a (x) is increasing in ]− 1,−α[∪]α, 1[ and decreasing
in ]−α, α[ with a local maximum point in −α and a local minimum point in α.a′′ (0) =
0, a′′ (x) < 0 if x < 0, a′′ (x) > 0 if x > 0 ⇒ (0, 0) is an inflection point and the graphic
of a is convex downwards when x < 0 and is convex upwards when x > 0.

4. When b3 > 1 ⇒ by (A.15), c′ (y) = 0 if y = ±β, β =
√

1− 1
b3

⇒ c′ (y) > 0 if

|y| > β, c′ (y) < 0 if |y| < β ⇒ c (y) is increasing in ]− 1,−β[∪]β, 1[ and decreasing in
] − β, β[ with a local maximum point in −β and a local minimum point in β. Thus,
x = c(y) implicitly determines three functions y = c−1(x) which are the inverse of the
corresponding parts of c(y) and that we will denoted by B1, B2 and B3.B1 (x) , x ∈
] − ∞, c (−β) [;B2 (x) , x ∈]c (β) ,+∞[, B3 (x) , x ∈]c (β) , c (−β) [, B3 (0) = 0. We can
use (A.15), the inverse derivative and the change rule to get in the same way we got
(A.17) and (A.18):

B′
1 (x) =

b4(1−y2)
1−b3(1−y2)

, y ∈]− 1,−β[;B′
2 (x) =

b4(1−y2)
1−b3(1−y2)

, y ∈]β, 1[

B′
3 (x) =

b4(1−y2)
1−b3(1−y2)

, y ∈]− β, β[;B′′
i (x) =

−2b4yBi
′(x)

[1−b3(1−y2)]2
, i = 1, 2, 3

(A.19)

Follows from (A.19) that B′
1 (x) > 0, B′

2 (x) > 0, B′′
1 (x) > 0, B′′

2 (x) < 0, B′
3 (x) <

0, B′
3 (0) =

b4
1−b3

, B′′
3 (0) = 0, B′′

3 (x) > 0 for x ∈]c (β) , 0[,
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B′′
3 (x) < 0 for x ∈]0, c (−β) [. Hence B1 and B2 are increasing functions, B1 convex

upwards, B2 convex downwards, B3 is decreasing function with inflection point (0, 0) ,
convex upwards for x < 0 and downwards for x > 0. In analogy, a(x) can be de-
composed into three functions Ai(x) whose inverses A−1

i (y) are defined in intervals
corresponding to y.

b3 > 1
Inverse Bi (x) of c (y)

β =
√

1− 1
b3

a3 > 1
Inverse A−1

i (y) of a (x)

α =
√
1− 1

a3

Proposition 8 Under the conditions of Lemma 7 the system (A.7) has a unique solution
(0, 0) when

0 ≤ a3, b3 < 1, (1− a3) (1− b3) ≥ a4b4 > 0. (A.20)

It’s asymptotically stable if (1− a3) (1− b3) > a4b4 and a Fold bifurcation if (1− a3) (1− b3) =
a4b4.

Proof. Considering that the fixed points are the points of intersection of the curves x = c (y)
and y = a (x) as given in Lemma 7, our result depend on their behaviour in situation (A.20).
We know that (0, 0) is an intersection point of the two curves. By Lemma 7, if a′ (0) > b′ (0)
and 0 ≤ a3, b3 < 1, the curve a (x) is above the curve b (x) when x > 0 and below when
x < 0 and (0,0) is a contact point of order 0; if a′(0) = b′(0) the same thing happens, only
(0, 0) becomes a contact point of order 2 between the curves. Both graphs looks like with

a′ (0) > b′ (0) a′ (0) = b′ (0)
.

This means that if 0 ≤ a3, b3 < 1 and a′ (0) ≥ b′ (0) ⇔ 1−a3
a4

≥ b4
1−b3

> 0 ⇔ 0 < a4b4 ≤
(1− a3) (1− b3) ⇔ ρY ϕτ1βΩ ≤ (1− ρΩ) (1− βΦ) , then by the convexity of the graphs, (0, 0)
is the unique fixed point of the our system.
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To see the stability of this point we use the substitutions x = y = 0 in equations (A.8),
(A.9), (A.10), (A.11), (A.12), and (A.13) of Lemma 14 to obtain

C1 = (1− a3) (1− b3)− a4b4 > 0, (A.21)

C2 = (a1 + 1) (b1 + 1) + (a3b3 − a4b4) (1− a1) (1− b1)+
+a3 (1− a1) (b1 + 1) + b3 (a1 + 1) (1− b1) > 0

, (A.22)

and

C3 = a4b4 (1− a1) (1− b1) + 1

− [1− (1− a1) (1− a3)] [1− (1− b1) (1− b3)] > 0 (A.23)

(A.21) follows directly of (A.20) if (1− a3) (1− b3) > a4b4. If (1− a3) (1− b3) = a4b4 ⇒
C1 = 0. (A.20) is equivalent to a3b3−a4b4+1 ≥ a3+b3 ≥ 0. Since a1, b1 ∈]0, 1[, the only term
of C2 in (A.22) that could be negative is the second, but it becomes positive by adding the
first term of the sum, and considering that (1 + a1) (1 + b1) > (1− a1) (1− b1) . Explicity,

(1 + a1) (1 + b1) + (a3b3 − a4b4) (1− a1) (1− b1) >

(1− a1) (1− b1) [1 + a3b3 − a4b4] ≥ 0.

Hence (A.22) is satisfied. Finally, since a1, b1 ∈]0, 1[ and a3, b3 ∈ [0, 1[ by Lemma 5

0 < [1− (1− b1) (1− b3)] [1− (1− a1) (1− a3)] < 1

and (A.23) is satisfied too. Thus, (0, 0) is asymptotically stable when (1− a3) (1− b3) > a4b4
and a Fold bifurcation when (1− a3) (1− b3) = a4b4.

Proposition 9 Under the conditions of Lemma 7 the system (A.7) has three solutions: (0, 0)
an unstable point, and two asymptotically stable points (x1, y1) ,
(−x1,−y1) , x1 > 0, y1 > 0, if one of the four conditions happens

0 ≤ a3, b3 ≤ 1, 0 ≤ (1− a3) (1− b3) < a4b4, (A.24)

0 ≤ a3 ≤ 1, b3 > 1, (A.25)

0 ≤ b3 ≤ 1, a3 > 1, (A.26)

a3 > 1, b3 > 1, 0 < (a3 − 1) (b3 − 1) ≤ a4b4. (A.27)

Proof. As in Proposition 8 our results depend on the behaviour of the curves x = c (y) and
y = a (x) as given in Lemma 7 in each situation. In any case, (0, 0) is an intersection point
of the two curves.The following graphs illustrate, respectively, each of the four situations
(A.24), (A.25), (A.26) and (A.27).
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We will only demonstrate the result for (A.24) (1st graph) since for the other situations
the reasoning is similar. At the end of the demonstration, we will only make some brief
comments about the other cases represented by 2nd, 3rd and 4th graphs.

(A.24) is equivalent to 0 ≤ a′ (0) = 1−a3
a4

< b′ (0) = b4
1−b3

. Under this condition, due to
the convexity of two graphs (a (x) and b (x) , Lemma 7), it is clear that for both x > 0 and
x < 0 they separate from (0, 0) which is already a fixed point, and then meet again at an
other fixed point (x1, y1) in the 1st quadrant and at an third fixed point (−x1,−y1) in the
3rd quadrant, the symmetric point of (x1, y1).

We will now analyse the stability of each of these three equilibrium points (0, 0) , (x1, y1)
and (−x1,−y1) .

(0, 0) The three necessary and sufficient conditions are exactly as given in (A.21), (A.22)
and (A.23). Follows directly of (A.24) that (A.21) is not satisfied. By (A.22),

C2 = (a1 + 1) (b1 + 1) + a3b3 (1− a1) (1− b1) + a3 (1− a1) (b1 + 1)

+ b3 (a1 + 1) (1− b1)− a4b4 (1− a1) (1− b1) ,

and we see that C2 could be a non positive number if a4b4 were large. In fact, we
obtain from that equation and (A.24) that C2 > 0 since

(1− a3) (1− b3) < a4b4 <

1

(1− a1) (1− b1)

 b1 + a1 (b1 + 1) + b3 (a1 + 1) (1− b1)+
a3 (1− a1) (b1 + 1)+

a3b3 (1− a1) (1− b1) + 1

 = E1 (A.28)

where E1 is a positive number greater than 1 and that if a4b4 ≥ E1 we have that (A.22)
is not satisfied and we have still the possible existence of a Flip bifurcation.

Finally, (A.23) is satisfied in the same way as was done in Proposition 8 in the case
in that (0, 0) was the unique solution, whatever a4 > 0 and b4 > 0, in particular those
that satisfy (A.24). Thus, we conclude that (0, 0) is an saddle point.

(x1, y1) , x1 > 0, y1 > 0 The three necessary and sufficient conditions for the local stability
in this case, (A.11), (A.8), (A.12), (A.9), and (A.13), (A.10) were obtained in Lemma
14 and we can repeat hear:

C1 =
[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
− a4b4

(
1− x2

1

) (
1− y21

)
> 0, (A.29)

C2 = (a1 + 1) (b1 + 1)+

+a3 (1− a1) (b1 + 1)
(
1− x2

1

)
+ b3 (a1 + 1) (1− b1)

(
1− y21

)
+(a3b3 − a4b4) (1− a1) (1− b1)

(
1− x2

1

) (
1− y21

)
> 0 (A.30)
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and

C3 = a4b4 (1− a1) (1− b1)
(
1− x2

1

) (
1− y21

)
+ 1

−
{
1− (1− a1)

[
1− a3

(
1− x2

1

)]} {
1− (1− b1)

[
1− b3

(
1− y21

)]}
> 0 (A.31)

Before analysing each of them, we must note that at the point (x1, y1) both a(x) and
b(x) are increasing functions and the graph of a(x) is convex upwards while the graph
of b(x) is convex downwards, which allows us to conclude that at that point,

a′ (x1) > b′ (x1) ⇔
1− a3 (1− x2

1)

a4 (1− x2
1)

>
b4 (1− y21)

1− b3 (1− y21)
> 0

⇔
[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
> a4b4

(
1− x2

1

) (
1− y21

)
. (A.32)

Now let’s analyse (A.29), (A.30) and (A.31). Follows directly of (A.32) that (A.29) is
satisfied. Looking at the expression in (A.30) we can say that

C2 > (a3b3 − a4b4) (1− a1) (1− b1)
(
1− x2

1

) (
1− y21

)
+ 1

= 1 + (1− a1) (1− b1)
[
a3b3

(
1− x2

1

) (
1− y21

)
− a4b4

(
1− x2

1

) (
1− y21

)]
> (1− a1) (1− b1) + (1− a1) (1− b1)

[
a3b3 (1− x2

1) (1− y21)
−a4b4 (1− x2

1) (1− y21)

]
= (1− a1) (1− b1)

[
1 + a3b3

(
1− x2

1

) (
1− y21

)
− a4b4

(
1− x2

1

) (
1− y21

)]
(A.33)

However, a direct calculation shows that

1 + a3b3
(
1− x2

1

) (
1− y21

)
=

[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
+

a3
(
1− x2

1

)
+ b3

(
1− y21

)
>

[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
, (A.34)

therefore, substituting (A.34) in (A.33), we have by (A.32),

C2 > (1− a1) (1− b1)

{
[1− a3 (1− x2

1)] [1− b3 (1− y21)]
−a4b4 (1− x2

1) (1− y21)

}
> 0.

As 0 ≤ a3, b3 ≤ 1 and by Lemma 5, the value of the expression of each factor in the last
term of (A.31) is a positive number less than 1 and therefore will also be the product
of the two, meaning that C3 > 0. Hence, as (A.29), (A.30) and (A.31) are satisfied,
the equilibrium point (x, y) = (x1, y1) , x1 > 0, y1 > 0 is asymptotically stable.

(−x1,−y1) , x1 > 0, y1 > 0 Both a (x) and b (x) are increasing functions on
(−x1,−y1) with a′(−x1) > b′(−x1) and opposite convexity’s. On the other hand,
as a′, b′, C1, C2, C3 given in (A.32), (A.29), (A.30) and (A.31) are even expressions in
(x, y), the stability of the fixed point (−x1,−y1) follows from stability of (x1, y1) as
obtained above.

We will now briefly comment on cases (A.25), (A.26) and (A.27). The stability of (x, y)
and (−x,−y) in all of them is exactly as in case (A.24). Therefore, we will only comment
on the stability of (0,0).
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(A.25) a3 > 1, 0 ≤ b3 ≤ 1 ⇒ a′ (0) < 0 < b′ (0) . To the fixed point (0, 0) , C1 < 0 for any
a4 > 0, b4 > 0;C2 > 0 if 0 < a4b4 < E1, where E1 is the positive number obtained in
(A.28) and if a4b4 ≥ E1 we have C2 ≤ 0 and the possible existence of a Flip bifurcation;

C3 > 0 if a4b4 > [1−(1−b1)(1−b3)][1−(1−a1)(1−a3)]−1
(1−a1)(1−b1)

= E2, thus, if E2 ≤ 0, C3 > 0 for any

a4, b4 and if E2 > 0 then C3 > 0 for a4b4 ∈]E2,+∞[. For a4b4 ≤ E2, C3 ≤ 0 and (0, 0)
presents a possible NS bifurcation.

(A.26) 0 ≤ a3 ≤ 1, b3 > 1 ⇒ a (x) is a non-decreasing function and according to 7 and
analogously to case (A.25), we have B′

3 (0) < 0 < a′ (0) and in this situation, to the
fixed point (0, 0) , C1 < 0 for any a4 > 0, b4 > 0;C2 > 0 if a4b4 ∈]0, E1[, where,
once again, E1 is the positive number obtained in (A.28) and also if a4b4 = E1 we
have the possible existence of a Flip bifurcation; C3 > 0 if b3 ∈]1, 1 + E3[ where

E3 =
(

1−a1
1−b1

) [
1−a3+a4b4(1−b1)
1−(1−a1)(1−a3)

]
> 0 and for b3 = 1 + E3, (0, 0) presents a possible NS

bifurcation.

(A.27) a3 > 1, b3 > 1, B′
3 (0) =

b4
1−b3

≤ a′ (0) = 1−a3
a4

< 0 ⇔ a4b4 ≥ (a3 − 1) (b3 − 1) . In this
way, to the fixed point (0, 0) , C1 ≤ 0 being that C1 = 0 for a4b4 = (a3 − 1) (b3 − 1)
and we have a Fold bifurcation ;C2 > 0 if a4b4 ∈ [(a3 − 1) (b3 − 1) , E1[, where E1 is
that positive number obtained in (A.28) and if a4b4 = E1 we have the possible Flip
bifurcation; C3 > 0 if a4b4 ∈]E4,+∞[ where E4 = (a3 − 1) (b3 − 1) + a3−1

1−b1
+ b3−1

1−a1
. For

a4b4 = E4, (0, 0) presents a possible NS bifurcation.

Proposition 10 Under the conditions of Lemma 7 the system (A.7) has at least three solu-
tions: (0, 0) an unstable point, and two asymptotically stable points (x1, y1) , (−x1,−y1) , x1 >
0, y1 > 0,, since

a3 > 1, b3 > 1, (a3 − 1) (b3 − 1) > a4b4 > 0 ⇔ a3b3 − a4b4 > a3 + b3 − 1 > 0 (A.35)

Proof. (A.35) is equivalent to a′ (0) = 1−a3
a4

< B′
3 (0) =

b4
1−b3

< 0. Under this condition, due
to the convexity of two graphs: a (x) and B3 (x) or a (x) and B2 (x) or a (x) and B1 (x), it is
clear that for both x > 0 and x < 0 they separate from (0, 0) which is already a fixed point,
meet in the 2nd and 4th quadrants and meet again in the point (x1, y1) of the 1st quadrant
and their symmetric (−x1,−y1) of the 3rd quadrant according to Lemma 7.

We will now analyse the stability of each of these three equilibrium points (0, 0) , (x1, y1)
and (−x1,−y1) .

(0, 0) The three necessary and sufficient conditions are exactly as given in (A.21), (A.22)
and (A.23). Follows directly of (A.35) that (A.21) and (A.22) are satisfied. By (A.23)

C3 = a4b4 (1− a1) (1− b1) + 1− [1− (1− a1) (1− a3)] [1− (1− b1) (1− b3)]

= a4b4 (1− a1) (1− b1) + 1−[
1− (1− a1) (1− a3)− (1− b1) (1− b3)+

(1− a1) (1− a3) (1− b1) (1− b3)

]
= [a4b4 − (1− a3) (1− b3)] (1− a1) (1− b1)

+ (1− a1) (1− a3) + (1− b1) (1− b3)

from where we get C3 < 0 since each of the terms of the last sum are negative due to
(A.35). Thus, we conclude that (0, 0) is an saddle point.
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(x1, y1) , x1 > 0, y1 > 0 The three necessary and sufficient conditions for the local stability
in this case, obtained in Lemma 14 which were written in (A.29), (A.30) and (A.31),
are repeated hear:

C1 =
[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
− a4b4

(
1− x2

1

) (
1− y21

)
> 0, (A.36)

C2 = (a1 + 1) (b1 + 1) + a3 (1− a1) (b1 + 1)
(
1− x2

1

)
+b3 (a1 + 1) (1− b1)

(
1− y21

)
+(a3b3 − a4b4) (1− a1) (1− b1)

(
1− x2

1

) (
1− y21

)
> 0 (A.37)

and

C3 = a4b4 (1− a1) (1− b1)
(
1− x2

1

) (
1− y21

)
+ 1−{

1− (1− a1)
[
1− a3

(
1− x2

1

)]} {
1− (1− b1)

[
1− b3

(
1− y21

)]}
> 0 (A.38)

Before analysing each of them, we must note that at the point (x1, y1) both a(x) and
B2(x) are increasing functions and the graph of a(x) is convex upwards while the graph
of B2(x) is convex downwards, which allows us to conclude that at that point,

a′ (x1) > B′
2 (x1) > 0 ⇔ 1− a3 (1− x2

1)

a4 (1− x2
1)

>
b4 (1− y21)

1− b3 (1− y21)
> 0

⇔
[
1− a3

(
1− x2

1

)] [
1− b3

(
1− y21

)]
>

a4b4
(
1− x2

1

) (
1− y21

)
⇔ (a3b3 − a4b4)

(
1− x2

1

) (
1− y21

)
+ 1

> a3
(
1− x2

1

)
+ b3

(
1− y21

)
. (A.39)

Follows directly of (A.39) that (A.36) is satisfied. Looking at the expression in (A.37)
and considering (A.35) we can conclude that C2 > 0 because all its terms are positive.

By (A.39), 0 < 1 − a3 (1− x2
1) < 1, 0 < 1 − b3 (1− y21) < 1, thus by Lemma 5, the

value of the expression of each factor in the last term of C3 in (A.38) is a positive
number less than 1 and therefore will also be the product of the two, meaning that
C3 > 0. Hence, as (A.29), (A.30) and (A.31) are satisfied, the equilibrium point(
Ω,Φ

)
= (x1, y1) , x1 > 0, y1 > 0 is asymptotically stable.

(−x1,−y1) , x1 > 0, y1 > 0 Both a (x) and B1 (x) are increasing functions on (−x1,−y1) with
a′(−x1) > B′

1(−x1) and opposite convexity’s. On the other hand, as a′, B′
1, C1, C2, C3

given in (A.15), (A.19), (A.36), (A.37) and (A.38) are even expressions in (x, y), the
stability of the fixed point (−x1,−y1) follows from stability of (x1, y1) as obtained
above.

Proposition 11 Under the hypotheses of Proposition 10, the system (A.7) has in addition
to the three solutions (0, 0), (x1, y1) and (−x1,−y1), two more unstable solutions (−x2, y2)
and (x2,−y2), x2 > 0, y2 > 0, in the second and fourth quadrants, respectively, whenever one
of the three conditions happens:

[−α ≤ c (β)] ∧ [a (−α) ≤ β] (A.40)

or
[−α > c (β)] ∧ [a (x) < B2 (x)∀x < −α] (A.41)

or
[a (−α) > β] ∧

[
c (y) > A−1

1 (y)∀y > β
]
. (A.42)
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Proof. As we saw in Proposition 10, due to (A.35) the graphs of a(x) and c(y) intersect in the
2nd quadrant at least once. This intersection happens only once at the point (−x2, y2), x2 >
0, y2 > 0 if one of the conditions (A.40), (A.41) or (A.42) is satisfied as illustrated in the
following graphs.

[−α ≤ c (β)]
∧

[a (−α) ≤ β]

[−α > c (β)]∧
[a (x) < B2 (x)]

∀x < −α

[a (−α) > β]∧[
c (y) > A−1

1 (y)
]

∀y > β

By Lemma 7, the point (x2,−y2) of the 4th quadrant is also a solution of the system (A.7)
in this case.The meanings of α, β, A1 and B2 are described in that Lemma. Accordingly,
for example, the condition (A.40) tells us that the point −α of the local maximum of a(x)
is less than or equal to the local minimum c(β) of c(y) and that simultaneously the local
maximum a(−α) of a(x) is less than or equal to the β point, the minimum point of c(y); it
is clear in this situation that the graphs intersect only once in the 2nd quadrant. This same
thing happens in the cases (A.41) and (A.42).

Stability of (−x2, y2), x2 > 0, y2 > 0 In order to analyse the stability of the point (−x2, y2)
(and its symmetric (x2,−y2)) we observe that in it, a and c meet in different ways.
Unlike the point (x1, y1) where a and B2 are both increasing, at (−x2, y2) they either
have opposite growth; or a′(−x2) = 0 (x2 = α) and B2 increasing, B3 decreasing or
even B′

3(−x2)∄ (c (β) = −x2); or B
′
3(−x2)∄ and a increasing or decreasing. That is, 7

possibilities. Let’s look at some of them.

a increasing and B3 decreasing

B′
3 (−x2) < 0 < a′ (−x2) ⇔

b4 (1− y22)

1− b3 (1− y22)
< 0 <

1− a3 (1− x2
2)

a4 (1− x2
2)

C1 By (A.8) for x = −x2 and y = y2,

C1 =
[
1− a3

(
1− x2

2

)] [
1− b3

(
1− y22

)]
− a4b4

(
1− x2

2

) (
1− y22

)
Due to the growth condition of a and B3 above, the product in the first term
in the expression of C1 is negative, so C1 < 0 and (A.11) is not satisfied.
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C2 By (A.9) for x = −x2 and y = y2,

C2 = (a1 + 1) (b1 + 1) + a3 (1− a1) (b1 + 1)
(
1− x2

2

)
+

+b3 (a1 + 1) (1− b1)
(
1− y22

)
+(a3b3 − a4b4) (1− a1) (1− b1)

(
1− x2

2

) (
1− y22

)
By (A.35) the last term of C2 is positive and so C2 > 0 and (A.12) is satisfied.

C3 By (A.10) for x = −x2 and y = y2,

C3 =
[
1− a1b1 − a1b3 (1− b1)

(
1− y22

)]
− a3b1 (1− a1)

(
1− x2

2

)
− (a3b3 − a4b4) (1− a1) (1− b1)

(
1− x2

2

) (
1− y22

)
(A.43)

or

C3 = a4b4 (1− a1) (1− b1)
(
1− x2

2

) (
1− y22

)
− (1− a1) (1− b1)

[
1− b3

(
1− y22

)] [
1− a3

(
1− x2

2

)]
+
{
(1− b1)

[
1− b3

(
1− y22

)]
+ (1− a1)

[
1− a3

(
1− x2

2

)]}
(A.44)

By (A.35), the last two terms of (A.43) are negative. If we choose b3 =
1

a1(1−b1)
,

the first term becomes

1− a1b1 − a1b3 (1− b1)
(
1− y22

)
= y22 − a1b1

and we can choose a3 small enough a3 → 1 and a1, b1 large enough a1 →
1, b1 → 1 so that we have y2 → 0 and this term will also be negative and thus
C3 < 0. On the other hand, due to the growth condition of a and B3, the
first two terms of (A.44) are positive and the last term could be negative but
if we choose b1 large enough and a1 small enough, this term will also become
positive which implies that in this case C3 > 0. This means that in reality

C3
>
=
<
0.

It follows that the point (−x2, y2) is a saddle point with the possibility of an NS
bifurcation.

a decreasing and B2 increasing

B′
2 (−x2) > 0 > a′ (−x2) ⇔

b4 (1− y22)

1− b3 (1− y22)
> 0 >

1− a3 (1− x2
2)

a4 (1− x2
2)

In a similar way we obtain that C1 < 0, C2 > 0, C3
>
=
<

0 and therefore the point

(−x2, y2) is also a saddle point with the possibility of an NS bifurcation.

a′(−x2) = 0 (x2 = α) and B2 increasing

B′
2 (−x2) > 0 e a′ (−x2) = 0 ⇔ b4 (1− y22)

1− b3 (1− y22)
> 0 and 1− a3

(
1− x2

2

)
= 0
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C1 By (A.8) for x = −x2 and y = y2, and 1−a3 (1− x2
2) = 0, C1 = −a4b4 (1− x2

2) (1− y22) <
0 and (A.11) is not satisfied.

C2 Following (A.35) and (A.9) for x = −x2 and y = y2 as before, C2 > 0 and
(A.12) is satisfied.

C3 By (A.10) for x = −x2 and y = y2, 1− b3 (1− y22) > 0 and 1−a3 (1− x2
2) = 0,

C3 = a4b4 (1− a1) (1− b1)
(
1− x2

2

) (
1− y22

)
− (1− a1) (1− b1)

[
1− b3

(
1− y22

)] [
1− a3

(
1− x2

2

)]
+
{
(1− b1)

[
1− b3

(
1− y22

)]
+ (1− a1)

[
1− a3

(
1− x2

2

)]}
= a4b4 (1− a1) (1− b1)

(
1− x2

2

) (
1− y22

)
+ (1− b1)

[
1− b3

(
1− y22

)]
= (1− b1)

{
a4b4 (1− a1)

(
1− x2

2

) (
1− y22

)
+
[
1− b3

(
1− y22

)]}
> 0
(A.45)

and (A.13) is satisfied.

It follows that the point (−x2, y2) is a saddle point.

a′(−x2) = 0 (x2 = α) and B3 decreasing

B′
3 (−x2) < 0 and a′ (−x2) = 0 ⇔ b4 (1− y22)

1− b3 (1− y22)
< 0 and 1− a3

(
1− x2

2

)
= 0

C1 As in the previous case C1 = −a4b4 (1− x2
2) (1− y22) < 0 and (A.11) is not

satisfied.

C2 Also as in the previous case, C2 > 0 and (A.12) is satisfied.

C3 By (A.10) for x = −x2 and y = y2, 1− a3 (1− x2
2) = 0 and (A.45),

C3 = (1− b1)
{
a4b4 (1− a1)

(
1− x2

2

) (
1− y22

)
+
[
1− b3

(
1− y22

)]}
.

We note that if a1 is large, C3 → (1− b1) [1− b3 (1− y22)] < 0 because
B′

3 (−x2) < 0. On the other hand, if a1 is small and a3, b3 are chosen so

that y2 → 1, C3 → 1− b1 > 0. Then C3
>
=
<
0.

It follows that the point (−x2, y2) is a saddle point with the possibility of an NS
bifurcation.
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a′(−x2) = 0 (x2 = α) and B′
3(−x2)∄ (c (β) = −x2)

B′
3 (−x2)∄ and a′ (−x2) = 0 ⇔ 1− b3

(
1− y22

)
= 0 and 1− a3

(
1− x2

2

)
= 0

In a very similar way to the two previous cases, it is concluded that (A.11) is not
satisfied and that (A.12) and (A.13) are satisfied.

It follows that the point (−x2, y2) is a saddle point.

B′
3(−x2)∄ and a increasing or decreasing

B′
3 (−x2)∄ and (a′ (−x2) > 0 or a′ (−x2) < 0)

or

In a similar way we obtain that (−x2, y2) is a saddle point with the possibility of
NS bifurcation in one of the cases.

Stability of (x2,−y2), x2 > 0, y2 > 0 Due to the symmetry and parity of the expressions in-
volved in a′, B′

1, B
′
3, C1, C2, C3 we conclude that as (−x2, y2),

(x2,−y2) is also a saddle point of (A.7).

Proposition 12 Under the hypotheses of Proposition 10, the system (A.7) has in addition
to the three solutions (0, 0), (x1, y1) and (−x1,−y1), four more unstable solutions: (−x2, y2)
and (−x3, y3) in the 2nd quadrant and their symetrics (x2,−y2) and (x3,−y3) in the 4th
quadrant, xi, yi > 0, i = 1, 2, 3, x2 < x3, y2 > y3, whenever one of the two conditions happens:

[−α > c (β)] ∧ [a (x) ≤ B2 (x)∀x < −α, a (−α− δ) = B2 (−α− δ)] (A.46)

or
[a (−α) > β] ∧

[
c (y) ≥ A−1

1 (y)∀y > β, c (β + ε) = A−1
1 (β + ε)

]
(A.47)

for certain small positive values δ, ε.

Proof. As we saw in Proposition 10, due to (A.35) the graphs of a(x) and c(y) intersect
in the 2nd quadrant at least once. If one of the conditions (A.46) or (A.47) is satisfied,
this intersection happens exactly twice, one of them being an intersection proper and the
other being a point of tangency. That points of interception and of tangency are (−x2, y2) or
(−x3, y3), 0 < x2 < x3, y2 > y3 > 0. Let’s look at the two situations in which they happen.
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(A.46) [−α > c (β)] ∧ [a (x) ≤ B2 (x)∀x < −α, a (−α− δ) = B2 (−α− δ)]
Due to the characteristics of growth and convexity of the curves (Lemma 7), this
condition means that the point (−x2, y2) is a point of tangency of the curves, also
known as a point of contact of order 1 and happens, with a and c−1 = B2 increasing,
close (to the left) to the point (−α, a(−α)) the point of maximum of a, that is, there
is a small δ > 0 such that x2 = α + δ. And at the point (−x3, y3) with x3 > x2 the
curves only intersect with a increasing and c−1 = B3 decreasing. This is illustrated in
the following graph:

⇒ .

Stability of (−x2, y2) Due to the growth of a andB2 at the point of tangency (−x2, y2),
we have that

a′ (−x2) =
1− a3 (1− x2

2)

a4 (1− x2
2)

= B′
2 (−x2) =

b4 (1− y22)

1− b3 (1− y22)
> 0

⇔
[
1− a3

(
1− x2

2

)] [
1− b3

(
1− y22

)]
= a4b4

(
1− x2

2

) (
1− y22

)
(A.48)

Let us analyse each of the stability conditions (A.11), (A.8), (A.12), (A.9), and
(A.13), (A.10) which were obtained in Lemma 14 for x = −x2 and y = y2.

C1 By (A.48) we conclude that (A.11) is not satisfied and that C1 = 0.

C2 As in previous cases, (A.12) is satisfied by (A.35).

C3 By (A.48), 0 < 1−a3 (1− x2
2) < 1 and 0 < 1−b3 (1− y22) < 1, thus by Lemma

5, the value of the expression of each factor in the last term of C3 in (A.10)
is a positive number less than 1 and therefore will also be the product of the
two, meaning that C3 > 0 and (A.13) is satisfied.

It therefore follows that at (−x2, y2) we have a Fold bifurcation.

Stability of (−x3, y3) Due to the growth of a and B3 at the point of intersection
(−x3, y3), we have that

B′
3 (−x3) < 0 < a′ (−x3) ⇔

b4 (1− y23)

1− b3 (1− y23)
< 0 <

1− a3 (1− x2
3)

a4 (1− x2
3)

(A.49)

Let us analyse each of the stability conditions (A.11), (A.8), (A.12), (A.9), and
(A.13), (A.10) which were obtained in Lemma 14 for x = −x3 and y = y3.

C1 Due to (A.49), the product in the first term of the expression of C1 in (A.8)
is negative, so C1 < 0 and (A.11) is not satisfied.

C2 As in previous cases, (A.12) is satisfied by (A.35).

C3 The case of the point (−x2, y2) in Proposition 11 is analogous. Thus, C3
>
=
<
0

in our point (−x3, y3).
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It follows that the point (−x3, y3) is a saddle point with the possibility of an NS
bifurcation.

(A.47) [a (−α) > β] ∧
[
c (y) ≥ A−1

1 (y)∀y > β, c (β + ε) = A−1
1 (β + ε)

]
Now, due to the characteristics of growth and convexity of the curves (Lemma 7),
this condition means that the point (−x3, y3) is a point of tangency of the curves and
happens, with a and c−1 = B2 (or c (y) and a−1 (y) = A−1

1 (y)) increasing , close (above)
to the point (β, c(β)) the point of minimum of c, that is, there is a small ε > 0 such
that y3 = β + ε. And at the point (−x2, y2) with x3 > x2, y3 < y2, the curves only
intersect with a decreasing and c−1 = B2 increasing. This is illustrated in the following
graph:

⇒ .

Stability of (−x2, y2) and (−x3, y3) Due to the growth of a and B2 at the point of
intersection (−x2, y2) and at the point of tangency (−x3, y3), we have that

a′ (−x2) < 0 < B′
2 (−x2) ⇒

1− a3 (1− x2
2)

a4 (1− x2
2)

< 0 <
b4 (1− y22)

1− b3 (1− y22)
(A.50)

and that

a′ (−x3) =
1− a3 (1− x2

3)

a4 (1− x2
3)

= B′
2 (−x3) =

b4 (1− y23)

1− b3 (1− y23)
> 0 (A.51)

The analysis of the stability conditions of (−x2, y2) and (−x3, y3) is identical
to that of the points (−x3, y3) and (−x2, y2) , respectively, in the previous case.
Therefore, considering (A.50), (A.51) and (A.35) we obtain C1 < 0, C2 > 0 and

C3
>
=
<

0 at the point (−x2, y2) and C1 = 0, C2 > 0 and C3 > 0 at the point

(−x3, y3)

It follows that the point (−x2, y2) is a saddle point with the possibility of an NS
bifurcation and that at (−x3, y3) we have a Fold bifurcation.

The points (x2,−y2) and (x3,−y3) In both cases, by Lemma 7, the points (x2,−y2) and
(x3,−y3), one of them being a point of tangency and the other a point of intersection,
are also solutions of system (A.7) and due to the symmetry and parity of the expressions
involved in a′, B′

1, B
′
3, C1, C2, C3 we conclude that at the point of tangency we have a

Fold bifurcation and the point of intersection is a saddle point.
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Proposition 13 Under the hypotheses of Proposition 10, the system (A.7) has in addition
to the three solutions (0, 0), (x1, y1) and (−x1,−y1), six more solutions: (−x2, y2), (−x3, y3)
and (−x4, y4) in the 2nd quadrant and their symmetric (x2,−y2), (x3,−y3) and (x4,−y4) in
the 4th quadrant, xi, yi > 0, i = 1, 2, 3, 4, x2 < x3 < x4, y2 > y3 > y4, if none of the conditions
(A.40), (A.41), (A.42), (A.46) and (A.47) of Propositions 11 and 12 occur, or equivalently,
whenever the following condition happens:

[a (x0) > B2 (x0) for some x0 < −α] ∧
[
c (y0) < A−1

1 (y0) for some y0 > β
]
. (A.52)

The points (−x3, y3) , (x3,−y3) are asymptotically stable and the other four are unstable
points.

Proof. As we saw in Proposition 10, due to (A.35) the graphs of a(x) and c(y) intersect
in the 2nd quadrant at least once. It is clear that if none of the conditions (A.40), (A.41),
(A.42), (A.46), (A.47) happens, the curves a(x) and c(y) meet at least three times in the 2nd
quadrant, but due to their growth and convexity characteristics (Lemma 7) they met exactly
three times at points (−x2, y2), (−x3, y3) and (−x4, y4), 0 < x2 < x3 < x4, y2 > y3 > y4 > 0.
Equivalently, if a (x0) > B2 (x0) for some x0 < −α then there is the solution (−x2, y2) with
x0 < −x2, y2 > B2(x0) and if at the same time c (y0) < A−1

1 (y0) for some y0 > β, then
there is the solution (−x4, y4) with y4 < y0, A

−1(y0) < −x4, thus due to the characteristics
of growth and convexity of the curves (lemma 2) x4 > x2, y4 < y2 and there is also the
solution (−x3, y3), x4 > x3 > x2, y4 < y3 < y2, with all three solutions being in the 2nd
quadrant. And again by Lemma 7 the symmetric points (x2,−y2), (x3,−y3) and (x4,−y4)
are also solutions of the system (A.7). The following graph illustrates the reasoning.

Let’s look at the stability of each of the six points.

Stability of (−x2, y2) At this point a is decreasing and B2 is increasing and therefore we
have

B′
2 (−x2) > 0 > a′ (−x2) ⇔

b4 (1− y22)

1− b3 (1− y22)
> 0 >

1− a3 (1− x2
2)

a4 (1− x2
2)

This situation is exactly analogous to that of (−x2, y2) in the case of Proposition 11 in
which a is decreasing and B2 is increasing, as well as to that of (−x2, y2) in the case
of Proposition 12 in which the point of tangency is close to the minimum of c. So,
analysing the the conditions (A.11), (A.12), and (A.13) for x = −x2 and y = y2 we see

that C1 < 0, C2 > 0, C3
>
=
<
0 and we conclude that the point (−x2, y2) is a saddle point

with the possibility of an NS bifurcation.
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Stability of (−x3, y3) At this point a and B2 are increasing with a′ > B′
2 and therefore we

have

a′ (−x3) =
1− a3 (1− x2

3)

a4 (1− x2
3)

> B′
2 (−x3) =

b4 (1− y23)

1− b3 (1− y23)
> 0,

so this situation is analogous to that of (x1, y1) in Proposition 10. We therefore have
that the conditions (A.11), (A.12), and (A.13) for x = −x3 and y = y3 are satisfied
and we conclude that the point (−x3, y3) is asymptotically stable.

Stability of (−x4, y4) At this point a is increasing and B3 is decreasing and therefore we
have

B′
3 (−x4) < 0 < a′ (−x4) ⇔

b4 (1− y24)

1− b3 (1− y24)
< 0 <

1− a3 (1− x2
4)

a4 (1− x2
4)

This situation is exactly analogous to that of (−x2, y2) in the case of Proposition 11
in which a is increasing and B3 is decreasing, as well as to that (−x3, y3) in the case
of Proposition 12 in which the point of tangency is close to the maximum of a. So,
analysing the the conditions (A.11), (A.12), and (A.13) for x = −x4 and y = y4 we see

that C1 < 0, C2 > 0, C3
>
=
<
0 and we conclude that the point (−x4, y4) is a saddle point

with the possibility of an NS bifurcation.

Stability of (x2,−y2) , (x3,−y3) and (x4,−y4) As in previous cases, the stability of each
point (x,−y) in the 4th quadrant is exactly the same as its symmetric counterpart
(−x, y) in the 2nd quadrant. Therefore, (x2,−y2) and (x4,−y4) are saddle points with
the possibility of NS bifurcation and (x3,−y3) is an asymptotically stable point.

Lemma 14 The equilibrium points
(
Ω,Φ

)
of the dynamic system (23) satisfy the system{

Ω = tanh [ρΩΩ + ϕτ1ρY (gE + 1)Φ + ρY (gE + ϕτ0 + ϕτ0gE)]
Φ = tanh (βΦΦ + βΩΩ + βPgE)

(A.53)

and his Jacobian matrix J = J
(
Ω,Φ

)
satisfy the equations:

det (J − I) = (1− α) (1− γ) βΦ

(
1− Φ

2
)
− ρΩ

(
1− Ω

2
)
+

+ [βΦρΩ − ϕτ1ρY βΩ (1 + gE)]
(
1− Ω

2
)(

1− Φ
2
)
+ 1

 , (A.54)

det (J + I) = (1 + α) (1 + γ) + βΦ (1− γ)
(
1− Φ

2
)
+ ρΩ (1− α)

(
1− Ω

2
)
+

+ αβΦ (1− γ)
(
1− Φ

2
)
+ γρΩ (1− α)

(
1− Ω

2
)
+

+ (1− α) (1− γ) [βΦρΩ − ϕτ1ρY βΩ (gE + 1)]
(
1− Ω

2
)(

1− Φ
2
)

(A.55)

and

det (J) = αγ + (1− α) (1− γ) [βΦρΩ − ϕτ1ρY βΩ (gE + 1)]
(
1− Ω

2
)(

1− Φ
2
)
+

+ αβΦ (1− γ)
(
1− Φ

2
)
+ γρΩ (1− α)

(
1− Ω

2
)

(A.56)

where I represents the identity matrix.
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Proof. If in the system (23), f (Ω,Φ) = αΩ+(1−α) tanh {ρΩΩ + ρY [gE + (1 + gE)ϕ (τ0 + τ1Φ)]}
and g (Ω,Φ) = γΦ + (1− γ) tanh (βΦΦ + βΩΩ + βPgE) then

0 = f
(
Ω,Φ

)
− Ω = (α− 1)

{
Ω− tanh

[
ΩρΩ +

[
gE + ϕ (gE + 1)

(
τ0 + Φτ1

)]
ρY

]}
0 = g

(
Ω,Φ

)
− Φ = (γ − 1)

[
Φ− tanh

(
ΩβΩ + ΦβΦ + βPgE

)]
The system (A.53) occurs because α, γ ∈]0, 1[. On the other hand, considering (A.53) and

the identities d tanh(x)
dx

= sech2 (x) = 1− tanh2 (x) , we obtain:

J
(
Ω,Φ

)
=

[
∂f
∂Ω

∂f
∂Φ

∂g
∂Ω

∂g
∂Φ

]∣∣∣∣
(Ω,Φ)

=

 α + ρΩ (α− 1)
(
Ω

2 − 1
)

ϕτ1ρY (α− 1) (gE + 1)
(
Ω

2 − 1
)

βΩ (γ − 1)
(
Φ

2 − 1
)

γ + βΦ

(
Φ

2 − 1
)
(γ − 1)


The equations (A.54), (A.55) and (A.56) are obtained by direct computation and later
simplification.

A.1 Proof of Proposition 1

Suppose scale and group effects are small, such that 0 < ρΩ, βΦ < 1, while ρY ϕτ1 and βΩ also
small enough such that ρY ϕτ1βΩ < (1− ρΩ) (1− βΦ). We consider, in the place of (A.53),
the system {

x = tanh (a3x+ a4y)
y = tanh (b3y + b4x)

(A.57)

where
x = Ω y = Φ

a4 = ϕτ1ρY (gE + 1) a5 = ρY (gE + ϕτ0 + ϕτ0gE)

b4 = βΩ b5 = βPgE

remembering that as gE = τ0 = 0 then a4 = ϕτ1ρY , a5 = b5 = 0. If (x, y) is a solution of
(A.57), that is if (x, y) is an fixed point of (23), then (x, y) is a intersection point of the
curves {

y = 1
a4

[
tanh−1 (x)− a3x

]
= a (x) , |x| < 1

x = 1
b4

[
tanh−1 (y)− b3y

]
= c (y) , |y| < 1

.

To see the behaviour of the graphics of the two equations y = a (x) and x = c (y) , we
calculate a′ (x) = da

dx
and c′ (y) = db

dy

a′ (x) =
a3

(
x2 − a3−1

a3

)
a4 (1− x2)

, |x| < 1 and c′ (y) =
b3

(
y2 − b3−1

b3

)
b4 (1− y2)

, |y| < 1.

Given that 0 < a3, b3 < 1 ⇒ a′ (x) > 0 and c′ (y) > 0 ⇒ a (x) , |x| < 1 and b (x) =
c−1 (x) ,−∞ < x < +∞ are strictly increasing functions. Furthermore we obtain: limx→−1+ a (x) =

−∞, a (0) = 0, limx→1− a (x) = +∞, a′ (0) = 1−a3
a4

, a′′ (x) =
(1−x2)(2a3x)−(1−a3+a3x2)(−2x)

a4(1−x2)2
=

2x
a4(1−x2)2

⇒ x = 0 is an inflection point of a (x) and his graphic is convex downwards when

x < 0 and is convex upwards when x > 0; on the other hand for the function b (x) , we have:

limx→−∞ b (x) = −1+, b (0) = c−1 (0) = 0, limx→+∞ b (x) = 1−, b′ (x) = 1
c′(y)

=
b4(1−y2)

b3
(
y2− b3−1

b3

) =
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b4(1−b(x)2)
b3
(
b(x)2− b3−1

b3

) > 0, b′ (0) = b4
1−b3

, b′′ (x) = b4
(1−b3+b3y2)(−2yb′(x))−(1−y2)(2b3yb′(x))

(1−b3+b3y2)
2 = −2b4yb′(x)

(1−b3+b3y2)
2 ⇒

x = 0 is an inflection point and the graphic is convex upwards when x < 0 and is convex
downwards when x > 0.
Hence (0, 0) is an intersection point of the two curves and if a′ (0) > b′ (0) the curve a (x) is
above the curve b (x) when x > 0 and below it when x < 0. Both graphs looks like with

This means that if a′ (0) > b′ (0) ⇔ 1−a3
a4

> b4
1−b3

⇔ a4b4 < (1− a3) (1− b3) ⇔ ρY ϕτ1βΩ <
(1− ρΩ) (1− βΦ) , then (0, 0) is the unique fixed point of the our system.
To see the stability we use equations (A.54), (A.55) and (A.56) of Lemma 14 to obtain
the three necessary and sufficient conditions for the local stability of the equilibrium point(
Ω,Φ

)
= (x, y) = (0, 0) of the system (23). They are:

a3b3 − b3 − a3 − a4b4 + 1 > 0,

b1 + a1 (b1 + 1) + (a3b3 − a4b4) (1− a1) (1− b1) + a3 (1− a1) (b1 + 1)+
+b3 (a1 + 1) (1− b1) + 1 > 0

,

and

−a3b1 (1− a1)− (a3b3 − a4b4) (1− a1) (1− b1)− a1b1 − a1b3 (1− b1) + 1 > 0.

We will analyse each one:
The first: a3b3−b3−a3−a4b4+1 = 1−a3−b3 (1− a3)−a4b4 = (1− a3) (1− b3)−a4b4 > 0

for the parameter condition of the proposition.
The second: Since a1, b1 ∈]0, 1[, the only term of that sum that could be negative is

(a3b3 − a4b4) (1− a1) (1− b1) , but it becomes positive by adding 1, the last term of the sum,
and considering that a4b4 (1− a1) (1− b1) < 1. Explicity, (a3b3 − a4b4) (1− a1) (1− b1)+1 =
a3b3 (1− a1) (1− b1)+[1− a4b4 (1− a1) (1− b1)] > 0. Hence the second condition is satisfied.

The third: If we join all negative terms of the sum we obtain

− a3b1 (1− a1)− a3b3 (1− a1) (1− b1)− a1b1 − a1b3 (1− b1)

= (b1 + b3 − b1b3) (−a1 − a3 + a1a3)

= − (b1 + b3 − b1b3) (a1 + a3 − a1a3)

= − [1− (1− b1) (1− b3)] [1− (1− a1) (1− a3)] .

Since a1, b1, a3, b3 ∈]0, 1[, 0 < [1− (1− b1) (1− b3)] [1− (1− a1) (1− a3)] < 1, the total sum
is a4b4 (1− a1) (1− b1)+
{1− [1− (1− b1) (1− b3)] [1− (1− a1) (1− a3)]} > 0 and this condition also is satisfied.
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A.2 Proof of Proposition 2

We consider, in the place of system (A.53), the system{
x = tanh (a4y + a5)
y = tanh (b4x+ b5)

(A.58)

where were did the substitutions x = Ω, y = Φ, a4 = ϕτ1ρY (gE + 1) , a5 = ρY (gE + ϕτ0 + ϕτ0gE) , b4 =
βΩ and b5 = βPgE. If (x, y) is a solution of (A.58), that is if (x, y) is an equilibrium point of
(23), then

y =
1

a4

[
tanh−1 (x)− a5

]
and y = tanh (b4x+ b5)

So, if we consider the function

p (x) =
1

a4

[
tanh−1 (x)− a5

]
− tanh (b4x+ b5) , x ∈]− 1, 1[

then x is one of the root of p. To see the behaviour of p we obtain limx→−1+ p (x) =
−∞, limx→1− p (x) = +∞, p (0) = −a5

a4
− tanh (b5) < 0,

p′ (x) =
1

a4 (1− x2)

[
1− a4b4

(
1− x2

)
sech2 (b4x+ b5)

]
(A.59)

p′ (0) =
1

a4
− b4 sech

2 (b5) .

The sign of p′ depend of the sign of 1− a4b4 (1− x2) sech2 (b4x+ b5) . Let’s do

m (x) =
(
1− x2

)
sech2 (b4x+ b5) , x ∈]− 1, 1[. (A.60)

0 < m (x) ≤ 1, limx→−1+,1− m (x) = 0,m (0) = sech2 (b5) ∈]0, 1] and

m′ (x) = −2 sech2 (b4x+ b5)
[
b4
(
1− x2

)
tanh (b4x+ b5) + x

]
(A.61)

m′ (0) < 0, lim
x→−1+−

m′ (x) > 0, lim
x→1−−

m′ (x) < 0 (A.62)

Given that s (x) = b4 (1− x2) tanh (b4x+ b5) + x > 0 if x ≥ 0 ⇒ m′ (x) = 0 for x <
0, b4x+ b5 > 0. Furthermore,

s′ (x) = 1 + b24
(
1− x2

)
sech2 (b4x+ b5)− 2b4x tanh (b4x+ b5) > 0 in ]− 1, 0] (A.63)

⇒ s is increasing in ] − 1, 0], limx→−1+ s (x) = −1, s (0) > 0 ⇒ ∃!c ∈] − 1, 0[ where s (c) =
0 ⇒ c is the unique critical point of m (x) and it’s an maximal point. The function m looks
like
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It follows, from (A.59) and (A.60) that

p′
>
=
<
0 if m (x)

<
=
>

1

a4b4
(A.64)

⇒ if 1
a4b4

≥ m (c) , p′ ≥ 0, p is not decreasing in ] − 1, 1[ and exist an unique root x > 0

of it, x = Ω1; if
1

a4b4
< m (c) ,m (x) = 1

a4b4
for two values x1, x2, x1 < 0 that, according to

(A.64), are critical points of p, p (x1) is a minimal point and p (x2) is a maximal point. The
three possibilities in that case for the function p (x) are illustrated by the graphic

p (x1) < 0, p (x1) = 0, p (x1) > 0

The three function p (blue, black and red) show that p has an root x > 0, x = Ω1. The first
(blue, p (x1) < 0) implies that that root is unique. The second (black, p (x1) = 0) implies
that in addition, there is a second root x < 0, x = x1 = Ω2. The third (red, p (x1) > 0)
implies that there are two root additional, the one, x < x1, x = Ω2 and the other one,
x1 < x = Ω3 < 0.

A.3 Proof of Proposition 3

Using the substitutions in (A.57) and equations (A.54), (A.55) and (A.56) of Lemma 14 we
obtain the necessary and sufficient conditions for the local stability of a given equilibrium
point

(
Ω,Φ

)
= (x, y) of the system (23) with a3 = ρΩ = 0, b3 = βΦ = 0

1− a4b4
(
1− x2

) (
1− y2

)
> 0 (A.65)

(a1 + 1) (b1 + 1)− (a4b4) (1− a1) (1− b1)
(
1− x2

) (
1− y2

)
> 0 (A.66)

1− a1b1 + a4b4 (1− a1) (1− b1)
(
1− x2

) (
1− y2

)
> 0 (A.67)

First of all, let us note that the third condition is always satisfied because a1, b1 ∈]0, 1[.
Furthermore, equilibrium points

(
Ω,Φ

)
= (x, y) satisfy the system (??) or (A.58). We will

consider initially the point P1 =
(
Ω1,Φ1

)
,Ω1 > 0 which to appear always. According to

8, m
(
Ω1

)
= m (x) = (1− x2) (1− y2) < 1

a4b4
whence it follows that (A.65) is satisfied

and considering a1, b1 ∈]0, 1[ (A.66) is satisfied too. Then we conclude that P1 is locally
asymptotically stable. To analyse P2 =

(
Ω2,Φ2

)
,Ω2 < 0 we observe according to 8 that

one possibility is Ω2 = x1 < 0, p (x1) = 0,m (x1) = m
(
Ω2

)
= m (x) = (1− x2) (1− y2) =

1
a4b4

⇒ 1− a4b4 (1− x2) (1− y2) = 0 that is, in P2 it happens the fold bifurcation condition;

the other one in that to appear P2 is when Ω2 = x < x1 < 0, p (x1) > 0,m
(
Ω2

)
= m (x) =

(1− x2) (1− y2) < 1
a4b4

and once again it follows that (A.65) is satisfied and considering
a1, b1 ∈]0, 1[ (A.66) is satisfied too; hence, in this case P2 is locally asymptotically stable.
Finally, to analyse P3 =

(
Ω3,Φ3

)
,Ω2 < Ω3 < 0 we note that it happens when p (x1) >

0,Ω2 < x1 < Ω3 < x2 ⇒ 1
a4b4

= m (x1) < m
(
Ω3

)
= m (x) = (1− x2) (1− y2) ⇒ 1 −

a4b4 (1− x2) (1− y2) < 0 and the condition (A.65) is violed; so P3 is is a saddle point.
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